首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the elastic Earth properties on seasonal or shorter periodic surface deformations due to atmospheric surface pressure and terrestrial water storage variations is usually modeled by applying a local half-space model or an one dimensional spherical Earth model like PREM from which a unique set of elastic load Love numbers, or alternatively, elastic Green's functions are derived. The first model is valid only if load and observer almost coincide, the second model considers only the response of an average Earth structure. However, for surface loads with horizontal scales less than 2500 km2, as for instance, for strong localized hydrological signals associated with heavy precipitation events and river floods, the Earth elastic response becomes very sensitive to inhomogeneities in the Earth crustal structure.We derive a set of local Green's functions defined globally on a 1° × 1° grid for the 3-layer crustal structure TEA12. Local Green's functions show standard deviations of ±12% in the vertical and ±21% in the horizontal directions for distances in the range from 0.1° to 0.5°. By means of Green's function scatter plots, we analyze the dependence of the load response to various crustal rocks and layer thicknesses. The application of local Green's functions instead of a mean global Green's function introduces a variability of 0.5–1.0 mm into the hydrological loading displacements, both in vertical and in horizontal directions. Maximum changes due to the local crustal structures are from −25% to +26% in the vertical and −91% to +55% in the horizontal displacements. In addition, the horizontal displacement can change its direction significantly. The lateral deviations in surface deformation due to local crustal elastic properties are found to be much larger than the differences between various commonly used one-dimensional Earth models.  相似文献   

2.
The results of experiments which characterise the optically stimulated luminescence (OSL) signals of an ash sample (BI07-TL-05) from Barren Island are presented. The infrared stimulated luminescence signal decreases to 5% of its initial value when preheated at 150 °C for 10 s, suggesting that the infrared stimulated luminescence signal associated with the 290–390 nm emission in this sample arises from a single trap evicted by heating to 150 °C. The post-IR blue stimulated luminescence emission has greater thermal stability and arises from traps which are emptied by heating to temperatures between 120 °C and 240 °C. Dose recovery experiments demonstrate that a laboratory dose can be reliably determined to within 5% for the post-IR blue stimulated luminescence signal. However, the fading rate for the post-IR blue stimulation is high, and the g-value is estimated to be (9.6 ± 3.5)% per logarithmic decade for BI07-TL-05.  相似文献   

3.
At the appropriate times, silica diffusion in clay is possibly the rate determining process for the dissolution of vitrified waste disposed of in a clay layer. For testing this hypothesis, combined glass dissolution/silica diffusion experiment are performed. SON68 glass coupons doped with the radioactive tracer 32Si are sandwiched between two cores of humid Boom Clay, heated to 30 °C. Due to glass dissolution, 32Si is released and diffuses into the clay. At the end of an experiment, the mass loss of the glass coupon is measured and the clay core is sliced to determine the diffusion profile of the 32Si released from the glass in the clay.Both mass loss and the 32Si diffusion profile in the clay are described well by a model combining glass dissolution according to a linear rate law with silica diffusion in the clay. Fitting the experiments to this model leads to an apparent silica diffusion coefficient in the clay between 7 × 10−13 m2/s and 1.2 × 10−12 m2/s. Previously determined values from diffusion experiments at 25 °C are around 6 × 10−13 m2/s (In-Diffusion experiments) and 2 × 10−13 m2/s (percolation experiments). The maximal glass dissolution rate for glass next to clay is around 1.6 × 10−7 g glass/m2 s (i.e. 0.014 g glass/m2 day). In undisturbed clay, the measured silica concentration is around 5 mg/L. Combining these values with the previously measured (In-Diffusion experiments) product of accessible porosity and retardation factor, leads in two ways to a silica glass saturation concentration in clay between 8 and 10 mg Si/L.Another candidate for the rate determining process of the dissolution of vitrified waste disposed in a clay layer is silica precipitation. Although silica precipitation due to glass dissolution has been shown experimentally at 90 °C, extending the model with silica precipitation does not lead to much better fits, nor could meaningful values of a possible precipitation rate be obtained.  相似文献   

4.
We have investigated the fate of Staphylococcus aureus by starving the cells and maintaining them in natural seawater at 22 and 4 °C. At 22 °C, cells developed a long-term survival state where about 0.037% of the initial population remained culturable over more than 7 months, whereas at 4 °C, bacteria lost culturability and transiently entered into the viable but non-culturable state (VBNC). However, after 22 days of entry into the VBNC state, the number of viable cells detected via the direct viable count method decreased significantly. We show here that mutational inactivation of catalase (KatA) or superoxide dismutase (SodA) rendered strains hypersensitive to seawater stress at 4 °C and consequently, part of the seawater lethality on S. aureus at low temperature is mediated by reactive oxygen species (ROS) during microcosm-survival process. Shifting the temperature from 4 to 22 °C of totally non-culturable wild-type cells induced a partial recovery of the population. However, deficiencies in catalase or superoxide dismutase prevent resuscitation ability.  相似文献   

5.
Located on the margin of the west Alboran basin, the Gibraltar Arc (Betic-Rif mountain belt) displays post-Pliocene vertical movements evidenced by uplifted marine sedimentary basins and marine terraces. Quantification of vertical movements is an important clue to understand the origin of present-day relief generation in the Betic-Rif mountain chain together with the causes of the Messinian Salinity Crisis. In this paper, we present the results of a pluridisciplinary study combining an analysis of low temperature thermochronology and Pliocene basins evolution to constrain the exhumation history and surface uplift of internals units of the Rif belt (Northern Morocco). The mean (U-Th)/He apatite ages obtained from 11 samples are comprised between 14.1 and 17.8 Ma and display a wide dispersion, which could be explained by a great variability of apatite chemistries in the analyzed samples. No correlations between altitude and age have been found along altitudinal profile suggesting a rapid exhumation during this period. Thermal modeling using our (U-Th)/He apatite ages and geochronological data previously obtained in the same area (40Ar/39Ar and K/Ar data on biotite, zircon and apatite fission track) allow us to propose a cooling history. The rocks suffered a rapid cooling at 60–100 °C/Ma between 22.5 and 19 Ma, then cooled to temperatures around 40 °C between 19 and 18 Ma. They were re-heated at around 110 °C between 18 and 15 Ma then rapidly cooled and exhumed to reach the surface temperature at around 13 Ma. The re-heating could be related to a renewal in thrusting and burying of the inner zones. Between 15 and 13 Ma the cooling resumed at a rate of 50 °C/Ma indicating an exhumation rate of 0.8 mm/y considering an average 40 °C/km geothermal gradient. This exhumation may be linked to the extension in the Alboran Sea. Otherwise biostratigraphic and sedimentological analysis of Pliocene basins of the internal Rif provided informations on the more recent events and vertical movements. Pliocene deposits of the Rifian coast represent the passive infilling of palaeo-rias between 5.33 and 3.8 Ma. The whole coastal area was uplifted at slow average rates (0.01–0.03 mm/y) in relation with a northeastward tilting of 0.2–0.3° since the Lower-Pliocene. A late Pliocene to present extensional tectonics associated to uplift has been identified all along the coastal ranges of the Internal Zone of the Rif chain. This extension was coeval with the major late Pliocene to Pleistocene extensional episode of the Alboran Sea and appears to be still active nowadays. No significant late Messinian uplift was evidenced, thus calling into question the geodynamic models relating the closure of the marine gateways and the MSC to slab roll back.  相似文献   

6.
《Marine pollution bulletin》2012,64(5-12):201-208
Flow cytometry was used to examine immune responses in haemocytes of the green-lipped mussel Perna viridis under six combinations of oxygen level (1.5 mg O2 l−1, 6.0 mg O2 l−1) and temperature (20 °C, 25 °C and 30 °C) at 24 h, 48 h, 96 h and 168 h. The mussels were then transferred to normoxic condition (6.0 mg O2 l−1) at 20 °C for further 24 h to study their recovery from the combined hypoxic and temperature stress. Esterase (Est), reactive oxygen species (ROS), lysosome content (Lyso) and phagocytosis (Pha) were reduced at high temperatures, whereas hypoxia resulted in higher haemocyte mortality (HM) and reduced phagocytosis. For HM and Pha, changes were observed after being exposed to the stresses for 96 h, whereas only a 24 h period was required for ROS and Lyso, and a 48 h one for Est. Recovery from the stresses was observed for HM and Pha but not other immune responses.  相似文献   

7.
Long Valley Caldera is an active volcanic region in east central California. Surface deformation on the resurgent dome within the caldera was an order of magnitude higher for the five-month period September 1997 through January 1998 compared to the previous three-year average. However, the location of the immediate (shallow) source of deformation remained essentially constant, 5–7 km beneath the dome, near the top of a region of probable magma accumulation defined by seismic data. Similarly, although the rate of seismic moment release increased dramatically, earthquake locations remained similar to earlier periods. The rate of deformation increased exponentially between April–May 1997 and late November 1997 with a time constant of ∼55–65 days, after which it decreased exponentially with about the same time constant. We develop a model consistent with these observations and also consistent with independent constraints on sub-surface rheology from thermal, geochemical and laboratory data. Deformation at sites on the resurgent dome most sensitive to the shallow deformation source are well fit by a model with a single pressure source at 6 km depth which experienced a pressure pulse that began in late 1996, peaked in November 1997, close to the time of major seismic moment release, and essentially ended in mid-1999. The pressure source in our model is surrounded by a 1 km thick “shell” of Maxwell viscoelastic material (shell viscosity 1016 Pa s) within an elastic half space, and has peak values that are much lower than corresponding purely elastic half space models. The shell viscosity is characteristic of a weak, deformable solid, e.g. quartz-bearing country rock surrounding the magma chamber at temperatures in the range 500–600°C, i.e. above the brittle–ductile transition, and/or largely crystallized rhyolite near its solidus temperature of ∼670°C, material that probably exists near the top of the zoned magma chamber at Long Valley.  相似文献   

8.
We have studied the phase transformation of forsterite to wadsleyite under shear stress at the Earth's transition zone pressure and temperature conditions. Two-step experiments were performed using a multi-anvil press. First, we hot pressed iron-free forsterite at 6 or 11 GPa and 1100 °C. Then we deformed a slab of this starting material using a direct simple shear assembly at 16 GPa and 1400 °C for 1, 15, 35, 40, or 60 min. Both the starting material and the deformed samples were characterized using optical and scanning electron microscopy including measurements of crystal preferred orientations (CPO) by electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The phase transformation occurs very rapidly, in less than 1 min, and metastable forsterite relics are not observed after deformation. The grain size of wadsleyite is slightly smaller than the forsterite starting material. The water contents obtained from FTIR analyses in forsterite and wadsleyite are 65–124 wt ppm H2O and 114–736 wt ppm H2O, respectively, which are well below water solubility at similar conditions in the presence of free water. Wadsleyite aggregates display weak CPO patterns with [1 0 0] axes concentrated at low angle to the shear direction, [0 1 0] axes perpendicular to the shear plane and nearly random [0 0 1] axes. Only a few dislocations were observed in wadsleyite with TEM. This observation is consistent with the assumption that most dislocations formed during the initial high-stress stages of these stress-relaxation experiments, were consumed in the phase transformation, probably enhancing the transformation rate. CPO patterns vary as a function of the water content: with increasing water content the density of [1 0 0] axes parallel to the shear direction decreases, and the density of [0 0 1] axes increases. Viscoplastic self-consistent modeling of CPO evolution using previously reported glide systems for wadsleyite, i.e., [1 0 0]{0 k l} and 1/2 〈1 1 1〉{1 0 1}, cannot reproduce the measured CPO, unless the [0 0 1](0 1 0) system, for which dislocations have not been observed by TEM, is also activated. In addition, wadsleyite grain growth suggests the participation of diffusion-assisted processes in deformation. Calculated anisotropies for P and S-waves using measured CPO are always below 1%. This very low anisotropy is due to both the low finite strain achieved in the experiments, which leads to weak wadsleyite CPO, and to the diluting effect of added majorite. The present experiments emphasize the importance of stress, grain size evolution and water content in the forsterite to wadsleyite phase transformation and subsequent deformation in the transition zone.  相似文献   

9.
A dielectric model for thawed and frozen Arctic organic-rich soil (50% organic matter) has been developed. The model is based on soil dielectric measurements that were collected over ranges of gravimetric moisture from 0.03 to 0.55 g/g, dry soil density from 0.72 to 0.87 g/cm3, and temperature from 25 to −30 °C (cooling run) in the frequency range of 0.05–15 GHz. The refractive mixing dielectric model was applied with the Debye multi-relaxation equations to fit the measurements of the soil’s complex dielectric constant as a function of soil moisture and wave frequency. The spectroscopic parameters of the dielectric relaxations for the bound, transient bound, and unbound soil water components were derived and were complimented by the thermodynamic parameters to obtain a complete set of parameters for the proposed temperature-dependent multi-relaxation spectroscopic dielectric model for moist soils. To calculate the complex dielectric constant of the soil, the following input variables must be assigned: (1) density of dry soil, (2) gravimetric moisture, (3) wave frequency, and (4) temperature. The error of the dielectric model was evaluated and yielded RMSEε values of 0.348 and 0.188 for the soil dielectric constant and the loss factor, respectively. These values are on the order of the dielectric measurement error itself. The proposed dielectric model can be applied in active and passive microwave remote sensing techniques to develop algorithms for retrieving the soil moisture and the freeze/thaw state of organic-rich topsoil in the Arctic regions.  相似文献   

10.
The warming trend observed during the last decades in the Bay of Biscay is put within the context of sea surface temperature (SST) changes observed in the area since 1854. Macroscopically, two consecutive warming–cooling cycles were detected during this period of time: cooling from 1867 to 1910; warming from 1910 to 1945; cooling from 1945 to 1974; and warming from 1974 to nowadays. Warming rates of 0.17 and 0.22 °C per decade were measured during the warming sub-periods and cooling rates of ?0.14 and ?0.10 °C per decade were measured during the cooling sub-periods. The present warming period is on the same order of magnitude although slightly more intense than the one observed from 1910 to 1945, which is consistent with previous analysis carried for the North Atlantic. Finally, the thermal amplitude defined as the difference between the maximum and minimum annual values has increased since 1974 at a rate of 0.06 °C per decade due to the different increasing rates of the maximum (0.26 °C per decade) and minimum (0.20 °C per decade) SSTs.  相似文献   

11.
We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~ 23 km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°–344° with dip of 26°–41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5 MPa. The derived geodetic moment of 2.92 × 1018 N-m is equivalent to a Mw = 6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24 km and maximum slip of 190 mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7–15 km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~ 20–23 km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.  相似文献   

12.
Wind-driven processes exert an important impact on aquatic ecosystems, especially on shallow reservoirs. Flow and heat transport under wind in the Douhe reservoir in China were simulated by a two-dimensional mathematical model. Areas corresponding to different temperature rises were calculated for different wind speed conditions with high frequency. It is shown that high temperature rise areas increase for maximum wind speed conditions while low temperature rise areas keep constant for various wind speed conditions. The concentration of Chl.a decreases with the increase of wind speed, indicating that low wind speed is suitable for algae blooming in the Douhe reservoir. The effects of wind on Bacillariophyta biomass growth become more obvious with the increase of temperature rise areas. The influenced areas of lower temperature rise (0.2–1.49 °C) and higher temperature rise (1.5–2 °C) zone are 8.57 × 106 m2 and 5.18 × 106 m2, respectively, and corresponding total variation amounts of Bacillariophyta biomass are 2.24 × 105/m2 and 0.42 × 105/m2, respectively. Results show that wind has a significant impact on ecological effects due to thermal discharge from thermal power plant into shallow reservoirs.  相似文献   

13.
To identify the effect of non-plastic silt on the cyclic behavior of sand–silt mixtures, total sixty undrained cyclic triaxial stress-control tests were carried out on sand–silt mixtures. These tests were conducted on specimens of size 71 mm diameter and 142 mm height with a frequency of 1 Hz. Specimens were prepared at a constant relative density and constant density approach. The effect of relative density, confining pressure as well as magnitude of cyclic loading was also studied. For a constant relative density (Dr=60%) the effect of limiting silt content, pore pressure response and cyclic strength was observed. The rate of generation of excess pore water pressure with respect to cycles of loading was found to initially increase with increase in silt content till the limiting silt content and thereafter it reverses its trend when the specimens were tested at a constant relative density. The cyclic resistance behavior was observed to be just opposite to the pore pressure response. Permeability, CRR and secant shear modulus decreased till limiting silt content; after that they became constant with increasing silt content.  相似文献   

14.
New Late Cretaceous paleomagnetic results from the Okhotsk-Chukotka Volcanic Belt in the Kolyma-Omolon Composite Terrane yield stable and consistent remanent directions. The Late Cretaceous (86–81 Ma) ignimbrites from the Kholchan and Ola suites were sampled at 19 sites in the Magadan area (60.4° N, 151.0° E). We isolated the characteristic paleomagnetic directions from 16 sampled sites using an alternating field demagnetization procedure. The primary nature of these directions is ascertained by dual polarities and positive fold tests. A tilt-corrected mean direction (D = 42.8°, I = 84.7°, k = 46.0, α95 = 10.0°) yields a paleomagnetic pole of 66.7° N, 168.5° E (A95 = 18.8°) which appears almost identical to the 90–67 Ma pole reported from the Lake El’gygytgyn area of the Okhotsk-Chukotka Volcanic Belt (Chukotka Terrane). This consistency suggests that the Kolyma-Omolon Composite Terrane and Chukotka Terrane has acted as a single tectonic unit since 80 Ma without any significant internal deformation. Accordingly, we calculate a combined 80 Ma characteristic paleomagnetic pole (Long. = 164.7° E, Lat. = 68.0°, A95 = 10.9°, N = 12) for the Kolyma-Omolon-Chukotka Block which falls 16.5–17.5° south of the same age poles from Europe and East Asia. We ascribe this discrepancy in pole positions to tectonic activity in the area and infer a southward displacement of 1640 ± 1380 km for the Kolyma-Omolon-Chukotka Block with respect to the North American and Eurasian blocks since 80 Ma; more than 260 km of it is attributed to tectonic displacement in the Arctic Ocean due to the opening of the Canadian Basin.  相似文献   

15.
Adsorption of Pb2+ from aqueous solution onto a sugarcane bagasse/multi-walled carbon nanotube (MWCNT) composite was investigated by using a series of batch adsorption experiments and compared with the metal uptake ability of sugarcane bagasse. The efficiency of the adsorption processes was studied experimentally at various pH values, contact times, adsorbent masses, temperatures and initial Pb2+ concentrations. A pH of 4.5 was found to be the optimum pH to obtain a maximum adsorption percentage in 120 min of equilibration time. The composite showed a much enhanced adsorption capacity for Pb2+ of 56.6 mg g−1 compared with 23.8 mg g−1 for bagasse at 28 °C. The Langmuir adsorption isotherm provided the best fit to the equilibrium adsorption data. The pseudo first-order, pseudo second-order, intraparticle diffusion and Elovich kinetics models were used to analyse the rate of lead adsorption and the results show that the Elovich model is more suitable. The thermodynamic parameters of adsorption, namely ΔG°, ΔH° and ΔS°, were determined over the temperature range of 20–45 °C. The adsorption of Pb2+ onto both bagasse and the sugarcane bagasse/MWCNT composite was found to be spontaneous but for the former adsorbent it was enthalpy-driven whereas for the latter it was entropy-driven. Desorption of the lead-loaded adsorbents was fairly efficient with 0.1 mol dm−3 HCl. Overall this composite has the potential to be a good adsorbent for the removal of Pb2+ from wastewaters.  相似文献   

16.
There are many areas of uncertainty when solving the inverse problems of snow water equivalent (SWE) reconstruction. These include (i) the ability to infer the Final Date of the Seasonal Snow (FDSS) cover, particularly from remote sensing; (ii) errors in model forcing data (such as air temperature or radiation fluxes); and (iii) weaknesses in the snow model used for the reconstruction, associated with both the fidelity of the equations used to simulate snow processes (structural uncertainty) and the parameter values selected for use in the model equations. We investigate the trade-offs among these sources of uncertainty using 10,000 station-years worth of data from the western US SNOTEL network. Model structural and parameter uncertainty are eliminated by using a perfect model scenario i.e. comparing results to modelled control runs. The model was calibrated for each station-year to ensure that the model simulations reflect reality. Results indicate that for a temperature index model, a ±5 days error in FDSS gives a median −25%/+32% error in maximum SWE. A 1 °C air temperature bias produces a SWE error larger than a 5 days error in the FDSS for 50% of the 10,000 cases. Similarly, a 5 days error in FDSS could be accounted for by a net radiation error of 13 W m−2 or less during the melt period, in 50% of cases. Mean absolute errors of 1 °C or more are typically reported in the literature for air temperature interpolations at high elevations. Observed solar radiation during the melt season can differ by 30 W m−2 over relatively short distances, while estimates from reanalysis (NARR, ERA-Interim, MERRA, CFSRR) and GOES satellites typically span more than 40 W m−2. Using data from both MODIS sensors (Terra & Aqua) at all snow covered points in the western US, a consecutive 5 days gap in imagery at time of FDSS is likely to occur only 5–10% of the time. This work shows that errors in model forcing data are at least as important, if not more, than image availability when reconstructing SWE.  相似文献   

17.
We used GPS velocities from approximately 700 stations in western China to study the crustal deformation before the Wenchuan MS8.0 earthquake. The processing methods included analyses of the strain rate field, inversion of fault locking and the GPS velocity profiles. The GPS strain rate in the E-W direction in the Qinghai-Tibet block shows that extensional deformation was dominant in the western region of the block (west of 92.5° E), while compressive deformation predominated in the eastern region of the block (from 92.5° E to 100° E). On a regional scale, the hypocentral region of the Wenchuan earthquake was located at the edge of an intense compression deformation zone of about 1.9 × 10−8/a in an east-west direction. The characteristic deformation in the seismogenic fault was compressive with a dextral component. The compression deformation rate was greater in the fault's western region than in its eastern region, and the strain accumulation was very slow on the fault scale. The results of a fault locking inversion show that the locking fraction and slip deficit was greater in the middle-northern section of the seismogenic fault than in the southern section. The GPS velocity profile before the Wenchuan earthquake shows that the compression deformation was smaller than the dextral deformation, which is asymmetrical with respect to the distribution of co-seismic displacement. These deformation characteristics should provide some clues to the Wenchuan earthquake which occurred in the later period of the earthquake cycle.  相似文献   

18.
Mechanisms and kinetics of the post-spinel transformation in Mg2SiO4 were examined at 22.7–28.2 GPa and 860–1200 °C by in situ X-ray diffraction experiments using synchrotron radiation combined with microstructural observations of the recovered samples. The post-spinel phases nucleated on spinel grain boundaries and grew with a lamellar texture. Under large overpressure conditions, reaction rims were formed along spinel grain boundaries at the initial stage of the transformation, whereas under small overpressure conditions, the transformation proceeded without formation of reaction rims. Mg2SiO4 spinel metastably dissociated into MgSiO3 ilmenite and periclase, and stishovite and periclase as intermediate steps in the transformation into the stable assemblage of MgSiO3 perovskite and periclase. Topotactic relationships were found in the transformation from spinel into ilmenite and periclase. Kinetic parameters in the Avrami rate equation, time taken to 10% completion, and the growth rate were estimated by analysis of the kinetic data obtained by in situ X-ray observations. The empirical activation energy for 10% transformation decreases with increasing pressure because the activation energy for nucleation becomes smaller at larger overpressure conditions. Extrapolations of the 10% transformation to ∼700 °C, which is the lowest temperature expected for the cold slabs at ∼700 km depth, suggest that overpressure of more than ∼1 GPa is needed for the transformation. Because the growth rate is estimated to be large even at low-temperatures of ∼700 °C and overpressures of 1 GPa, the depth of the post-spinel transformation in the cold slabs is possibly controlled by nucleation kinetics.  相似文献   

19.
We present the new 14C extraction line at ETH Zürich. This system is designed to extract in situ-produced cosmogenic 14C from terrestrial quartz samples, and to obtain pure CO2 gas for analysis with a gas ion source Accelerator Mass Spectrometry (AMS) system. Samples are degassed at 1550–1600 °C without the use of a fluxing agent. Gas purification is achieved by a series of cryogenic traps and passage through hot Ag and Cu wool/mesh. Graphitization and, thus, sample dilution is not required. Tests to determine the CO2 recovery after gas extraction and cleaning yielded consistently good recovery rates of >99.8% (n = 7). The 14C blank contribution from the all-metal tubing system is negligible. Our preliminary procedural blank estimate – deriving mostly from the hot extraction furnace – is <5 × 105 14C atoms. Extraction tests on two quartz samples by stepped-heating show a quantitative separation of atmospheric 14C at ≤500 °C from the in situ component above 1200 °C. Based on these data, we estimate to achieve a complete 14C extraction from a quartz sample.  相似文献   

20.
Outcrops of the Cretaceous Upper sandstone formation some 375 km to the East of Addis Ababa on the motor Highway to Harar was paleomagnetically investigated. About seventy core samples were collected at various stratigraphic levels from 250–300 meters thick sedimentary formation. After standard sample preparations in the laboratory the resulting specimens were subjected to routine paleomagnetic demagnetization protocol. In the first steps of demagnetizations process the recent and viscous magnetizations were removed by heating until a temperature of level of 300 °C. Further demagnetization of the samples resulted in the isolation of the final magnetization with stable line segments that is directed towards the origin, which is interpreted as Characteristic Remanent Magnetization (ChRM). Rock – magnetic experiments have identified goethite (αFeOOH), hematite (αFe2O3), detritial hematite, and magnetite as the magnetic mineral phases carrying the remanence. The ChRM identified resulted in an average value of (Ds = 0.5°, Is = ?0.7°, α95 = 4.3°, N = 34) for the red sandstones while an average value of (Ds = 335.8°, Is = ?31.8°, α95 = 4.7°, N = 14) for the limestone intercalations. The former ChRM in the red sandstone is determined to be secondary while the latter ChRM is known to be primary. Comparison of these directional results and their pole equivalents with the African plate Apparent Polar Wander Path curve established by Besse and Courtillot (2003) give ages of between 115–130 Million years for the limestone intercalation and ages of 30 million years for red sandstone unit. These are interpreted respectively as estimates of the age of deposition and a later remagnetization respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号