首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the sedimentary environment of the Lower Cambrian organic-rich shales and isotopic geochemical characteristics of the residual shale gas, 20 black shale samples from the Niutitang Formation were collected from the Youyang section, located in southeastern Chongqing, China. A combination of geochemical, mineralogical, and trace element studies has been performed on the shale samples from the Lower Cambrian Niutitang Formation, and the results were used to determine the paleoceanic sedimentary environment of this organic-rich shale. The relationships between total organic carbon (TOC) and total sulfur (TS) content, carbon isotope value (δ13Corg), trace element enrichment, and mineral composition suggest that the high-TOC Niutitang shale was deposited in an anoxic environment and that the organic matter was well preserved after burial. Stable carbon isotopes and biomarkers both indicate that the organic matter in the Niutitang black shales was mainly derived from both lower aquatic organisms and algaes and belong to type I kerogen. The oil-prone Niutitang black shales have limited residual hydrocarbons, with low values of S2, IH, and bitumen A. The carbon isotopic distribution of the residual gas indicate that the shale gas stored in the Niutitang black shale was mostly generated from the cracking of residual bitumen and wet gas during a stage of significantly high maturity. One of the more significant observations in this work involves the carbon isotope compositions of the residual gas (C1, C2, and C3) released by rock crushing. A conventional δ13C1–δ13C2 trend was observed, and most δ13C2 values of the residual gases are heavier than those of the organic matter (OM) in the corresponding samples, indicating the splitting of ethane bonds and the release of smaller molecules, leading to 13C enrichment in the residual ethane.  相似文献   

2.
The microstructure of black siliceous shale from the lower Cambrian Niutitang Formation, Sichuan Basin in China was investigated by the combination of field emission scanning electron microscope (FE-SEM) and argon ion beam milling. The nanometer-to micrometer-scale pore systems of shales are an important control on gas storage and fluid migration. In this paper, the organic porosity in shale samples within oil and gas window has been investigated, and the formation mechanism and diagenetic evolution of nanopores have been researched.FE-SEM reveals five pore types that are classified as follows: organic nanopores, pores in clay minerals, nanopores of framework minerals, intragranular pores in microfossils, and microfractures. Numerous organic nanopores are observed in shales in the gas window, whereas microfractures can be seen within the organic matter of shales in the oil window. Microfractures in oil window shales could be attributed to pressure buildup in the organic matter when incompressible liquid hydrocarbon are generated, and the orientation of microfractures is probably parallel to the bedding and strength anisotropy of the formation. Pores in clay minerals are always associated with the framework of clay flakes, and develop around rigid mineral grains because the pressure shadows of mineral grains protect pores from collapse, and the increasing of silt content would lead to an increase in pressure shadows and improve porosity. Nanopores of rock framework are probably related to dissolution by acidic fluids from hydrocarbon generation, and the dissolution-related pores promote permeability of shales. Porosity in the low-TOC, low-thermal-maturity shales contrast greatly with those of high-TOC, high-thermal-maturity shales. While the high-TOC shales contain abundant organic microporosity, the inorganic pores can contribute a lot to the porosity of the low-TOC shales.  相似文献   

3.
The Western Desert of Egypt is one of the world’s most prolific Jurassic and Cretaceous hydrocarbon provinces. It is one of many basins that experienced organic-rich sedimentation during the late Cenomanian/early Turonian referred to as oceanic anoxic event 2 (OAE2). The Razzak #7 oil well in the Razzak Field in the northern part of the Western Desert encountered the Upper Cretaceous Abu Roash Formation. This study analyzed 23 samples from the upper “G”, “F”, and lower “E” members of the Abu Roash Formation for palynomorphs, particulate organic matter, total organic carbon (TOC) and δ13Corg in order to identify the OAE2, determine hydrocarbon source rock potential, and interpret the depositional environment. The studied samples are generally poor in palynomorphs, but show a marked biofacies change between the lower “E” member and the rest of the studied samples. Palynofacies analysis (kerogen quality and quantity) indicates the presence of oil- and gas-prone materials (kerogen types I and II/III, respectively), and implies reducing marine paleoenvironmental conditions. Detailed carbon stable isotopic and organic carbon analyses indicate that fluctuations in the δ13Corg profile across the Abu Roash upper “G”, “F”, and lower “E” members correspond well with changes in TOC values. A positive δ13Corg excursion (∼2.01‰) believed to mark the short-term global OAE2 was identified within the organic-rich shaly limestone in the basal part of the Abu Roash “F” member. This excursion also coincides with the peak TOC measurement (24.61 wt.%) in the samples.  相似文献   

4.
Nine organic-rich shale samples of Lower Cambrian black shales were collected from a recently drilled well in the Qiannan Depression, Guizhou Province where they are widely distributed with shallower burial depth than in Sichuan Basin, and their geochemistry and pore characterization were investigated. The results show that the Lower Cambrian shales in Qiannan Depression are organic rich with TOC content ranging from 2.81% to 12.9%, thermally overmature with equivalent vitrinite reflectance values in the range of 2.92–3.25%, and clay contents are high and range from 32.4% to 53.2%. The samples have a total helium porosity ranging from 2.46% to 4.13% and total surface area in the range of 9.08–37.19 m2/g. The estimated porosity in organic matters (defined as the ratio of organic pores to the volume of total organic matters) based on the plot of TOC vs helium porosity is about 10% for the Lower Cambrian shales in Qiannan Depression and is far lower than that of the Lower Silurian shales (36%) in and around Sichan Basin. This indicates that either the organic pores in the Lower Cambrian shale samples have been more severely compacted than or they did not develop organic pores as abundantly as the Lower Silurian shales. Our studies also reveal that the micropore volumes determined by Dubinin–Radushkevich (DR) equation is usually overestimated and this overestimation is closely related to the non-micropore surface area of shales (i.e. the surface area of meso- and macro-pores). However, the modified BET equation can remove this overestimation and be conveniently used to evaluate the micropore volumes/surface area and the non-micropore surface areas of micropore-rich shales.  相似文献   

5.
The lacustrine black shales in the Chang7 Member from the Upper Triassic Yanchang Formation of the Ordos Basin in Central China are considered one of the most important hydrocarbon source rocks. However, the mechanism of organic accumulation in the black shales remains controversial. To resolve the controversy, with the former paleontological data of Yanchang Formation and sedimentation rate data of the Chang7 black shales, we investigated the typical intervals of the Chang7 black shales (TICBS) which were obtained by drilling in Yaowan at the southern margin of the Ordos Basin and performed various sedimentary, isotopic and geochemical analysis, including the sedimentary petrography, pyrite morphology, total organic carbon (TOC) and total sulfur (TS), the ratio of pyritic Fe to total Fe (DOPT), major and trace elements, together with pyritic sulfur isotopes (δ34Spy). The high sulfur content, enrichment of redox-sensitive trace metals, and the lower sedimentation rate of the TICBS in addition to the presence of marine spined acritarchs and coelacanth fossils indicate that the TICBS were deposited in a lacustrine environment possibly influenced by seawater. The petrographic observations show a thick layer of black shale with interlayers of thin layered siltstone (silty mudstone) and laminated tuff, which were related to the turbidity currents and volcanism, respectively. The U/Th, C-S, and Mo-U covariations, pyrite morphology, DOPT, combined with the δ34Spy, suggest that the deposition occurred beneath the anoxic-sulfidic bottom waters, which was intermittently influenced by the oxygen-containing turbidity. The Ni/Al and Cu/Al possibly show extremely high to high primary productivity in the water column, which might be connected with the substantial nutrients input from seawater or frequently erupted volcanic ash entering the lake. In addition, the coincidence of an increased abundance of TOC with increased P/Al, Ni/Al, Cu/Al and U/Th, as well as relatively consistent Ti/Al suggest that the accumulation of the organic matter might be irrelevant to the clastic influx, and was mainly controlled by the high primary productivity and anoxic-sulfidic conditions. Further, the covariations of TOC vs. P/Al and TOC vs. Ba/Al indicate that the high primary productivity led to the elevated accumulation and burial of organic matter, while the anoxic to sulfidic conditions were likely resulted from an intense degradation of the organic matter during the early diagenesis. In summary, the organic matter accumulation is ultimately attributed to the high primary productivity possibly resulted from seawater or volcanic ash entering the lake.  相似文献   

6.
The Akyaka section in the central Taurus region in the southern part of Turkey includes the organic matter and graptolite-rich black shales which were deposited under dysoxic to anoxic marine conditions in the Early Silurian. A biostratigraphical analysis, based on graptolite assemblages, indicates that the sediments studied may well be referable to the querichi Biozone and early Telychian, Llandovery. A total of 15 samples have been subjected to Leco and Rock-Eval pyrolysis and graptolite reflectance measurements for determination of their source rock characteristics and thermal maturity. The total organic carbon content of the graptolite-bearing shales varies from 1.75 to 3.52 wt% with an average value of 2.86 wt%. The present Rock-Eval pyrolytic yields and calculated values of hydrogen and oxygen indexes imply that the recent organic matter type is inert kerogen. The measured maximum graptolite reflectance (GRmax %) values are between 5.04% and 6.75% corresponding to thermally over maturity. This high maturity suggests a deep burial of the Lower Silurian sediments resulting from overburden rocks of Upper Paleozoic to Mesozoic Upper Cretaceous and Middle-Upper Eocene thrusts occurred in the region.  相似文献   

7.
Detailed palynofacies analysis of sidewall core samples taken from below, within and above the Tartan Formation (Thanetian, Late Paleocene, 58.7–55.8 Ma), a potential source rock in the epeiric Great South Basin, shows that the formation is characterised by very high percentages of degraded brown phytoclasts, rare marine algae and amorphous organic matter and thereby represents a mix of terrestrial and marine kerogen. The results indicate that the formation was deposited in a marginally marine (hyposaline), proximal environment under bottom conditions that varied from anoxic to oxic along a nearshore–offshore transect. Samples from the upper part of the underlying Wickliffe Formation indicate deposition in a marginal to normal marine, proximal environment under anoxic to oxic bottom environments. The lower part of the overlying Laing Formation was deposited in an open marine, relatively distal setting under anoxic to oxic bottom environments.  相似文献   

8.
在详细调研国内外页岩气储层非均质性研究的基础上,以四川盆地下寒武统筇竹寺组为例,通过平面、层内和微观3个方面分析了泥页岩非均质性特征。平面非均质性主要受区域沉积特征和泥页岩有机地球化学特征控制,盆地中西部主要发育泥质砂岩和砂质泥岩,总有机碳含量TOC和有机质成熟度相对较低;东北部泥质灰岩发育,TOC和有机质成熟度较高;南部以碳质泥页岩为主,TOC和有机质成熟度最高(镜质体反射率Ro可达4.0%)。连井剖面和单井泥岩层矿物特征分析表明,层内非均质性较强,主要表现为横向上地层总厚度、泥页岩单层厚度、泥页岩发育层数、夹层特征和顶—底板岩性沿剖面变化快,纵向上矿物成分和岩石脆性度差异明显。微观非均质性主要受孔隙类型和基质微裂缝影响,黏土层间孔隙和有机质孔隙发育,基质微裂缝对沟通孔隙起主要作用。综合分析认为,四川盆地下寒武统筇竹寺组页岩气储层非均质性特征明显,对页岩气井产能和页岩气采收率有重要影响。  相似文献   

9.
The Upper Jurassic marlstones (Mikulov Fm.) and marly limestones (Falkenstein Fm.) are the main source rocks for conventional hydrocarbons in the Vienna Basin in Austria. In addition, the Mikulov Formation has been considered a potential shale gas play. In this paper, organic geochemical, petrographical and mineralogical data from both formations in borehole Staatz 1 are used to determine the source potential and its vertical variability. Additional samples from other boreholes are used to evaluate lateral trends. Deltaic sediments (Lower Quarzarenite Member) and prodelta shales (Lower Shale Member) of the Middle Jurassic Gresten Formation have been discussed as secondary sources for hydrocarbons in the Vienna Basin area and are therefore included in the present study.The Falkenstein and Mikulov formations in Staatz 1 contain up to 2.5 wt%TOC. The organic matter is dominated by algal material. Nevertheless, HI values are relative low (<400 mgHC/gTOC), a result of organic matter degradation in a dysoxic environment. Both formations hold a fair to good petroleum potential. Because of its great thickness (∼1500 m), the source potential index of the Upper Jurrasic interval is high (7.5 tHC/m2). Within the oil window, the Falkenstein and Mikulov formations will produce paraffinic-naphtenic-aromatic low wax oil with low sulfur content. Whereas vertical variations are minor, limited data from the deep overmature samples suggest that original TOC contents may have increased basinwards. Based on TOC contents (typically <2.0 wt%) and the very deep position of the maturity cut-off values for shale oil/gas production (∼4000 and 5000 m, respectively), the potential for economic recovery of unconventional petroleum is limited. The Lower Quarzarenite Member of the Middle Jurassic Gresten Formation hosts a moderate oil potential, while the Lower Shale Member is are poor source rock.  相似文献   

10.
The Middle Triassic Botneheia Formation of eastern Svalbard (Edgeøya and Barentsøya) comprises an organic carbon-rich, fine-grained clastic succession (∼100 m thick) that makes the best petroleum source rock horizon in the NW Barents Sea shelf. The succession records a transgressive–regressive interplay between the prodelta depositional system sourced in the southern Barents Sea shelf (black shale facies of the lower and middle parts of the Muen Member) and the open shelf phosphogenic system related to upwelling and nutrient supply from the Panthalassic Ocean (phosphogenic black shale facies of the upper part of the Muen Member and the Blanknuten Member). The relationships between organic matter, authigenic apatite, and pyrite in these facies allow to characterize the relative roles of redox conditions and oceanic productivity in the organic carbon preservation. The accumulation of terrestrial and autochthonous marine organic matter in the black shale facies occurred under dominating oxic conditions and increasing-upward productivity related to early transgressive phase and retrogradation of the prodelta system. The phosphogenic black shale facies deposited in an oxygen-minimum zone (OMZ) of the open shelf environment during the late transgressive to regressive phases under conditions of high biological productivity, suppressed sedimentation rates, and changing bottom redox. The phosphatic black shales occurring in the lower and upper parts of the phosphogenic succession reveal depositional conditions indicative of the shallower part of OMZ, including high input of autochthonous organic matter into sediment, oxic-to-dysoxic (episodically suboxic and/or anoxic) conditions, intense phosphogenesis, and recurrent reworking of the seabed. The massive phosphatic mudstone occurring in the middle of the phosphogenic succession reflects the development of euxinia in the deeper part of OMZ during high-stand of the sea. High input of autochthonous organic matter in this environment was coupled with mineral starvation and intermittent phosphogenesis. In mature sections in eastern Svalbard, the petroleum potential of the Botneheia Formation rises from moderate to good in the black shale facies, and from good to very good in the phosphogenic black shale facies, attaining maximum in the massive phosphatic mudstone.  相似文献   

11.
This study examined the relationship between carbon isotopic composition of sinking organic matter (OM) and the biological, physical and chemical properties of the surface ocean in the Cariaco Basin. The 13C/12C ratio of OM (δ13Corg) in sinking particles was determined on sediment trap samples from four depths collected from 1996 to 1999 as part of the CArbon Retention In A Colored Ocean time series. Water column properties, including temperature, productivity, chlorophyll and concentration of dissolved CO2, were concurrently measured on monthly cruises. The δ13Corg varied from a high of –17.7‰ to a low of –22.6‰ during the study period. The variation of the δ13Corg throughout seasonal cycles was directly proportional to the strength of upwelling and was negatively correlated with temperature (r2=0.64). During the 1996–1997 upwelling event, the strongest during the study period, the δ13Corg increased by 4.4‰ whereas during the 1998–1999 upwelling event, the weakest during the study period, the δ13Corg only increased by 3.3‰. Contrary to most previous studies, we observed a negative relationship (r2=0.53) between [CO2 aq] and the estimated isotopic fractionation factor (εp). However, there was no correlation between εp and the calculated growth rates indicating that there was non-diffusive uptake of carbon into phytoplankton cells. It thus appears that [CO2 aq] does not control the δ13Corg in the water column of the study site. The best explanation for the isotopic enrichment observed is a carbon concentrating mechanism (CCM) in phytoplankton. The existence of a CCM in phytoplankton has major implications for the interpretation of the δ13Corg in the Cariaco Basin.  相似文献   

12.
The Es3L (lower sub-member of the third member of the Eocene Shahejie Formation) shale in the Jiyang Depression is a set of relatively thick and widely deposited lacustrine sediments with elevated organic carbon, and is considered to be one of the most important source rocks in East China. We can determine the mineralogy, organic and inorganic geochemistry of the Es3L shale and calculate paleoclimate indexes by using multiple geochemical proxies based on organic chemistry (total organic carbon [TOC] and Rock-Eval pyrolysis), major and trace elements, X-Ray diffraction, and carbon and oxygen isotope data from key wells alongside ECS (Elemental Capture Spectroscopy) well log data. These indicators can be used to analyze the evolution of the paleoenvironment and provide a mechanism of organic matter (OM) accumulation. The Es3L oil shale has high TOC abundance (most samples >3.0%) and is dominated by Type I kerogens. Additionally, the organic-rich shale is rich in CaO and enrichment in some trace metals is present, such as Sr, Ba and U. The positive δ13C and negative δ18O values, high Sr/Ba, B/Ga and Ca/Ca + Fe ratios and low C/S ratios indicate that the Es3L shales were mainly deposited in a semi-closed freshwater-brackish water lacustrine environment. The consistently low Ti/Al and Si/Al ratios reflect a restricted but rather homogeneous nature for the detrital supply. Many redox indicators, including the Th/U, V/(V + Ni), and δU ratios, pyrite morphology and TOC-TS-Fe diagrams suggest deposition under dysoxic to suboxic conditions. Subsequently, the brackish saline bottom water evolved into an anoxic water body under a relatively arid environment, during which organic-lean marls were deposited in the early stage. Later, an enhanced warm-humid climate provided an abundant mineral nutrient supply and promoted the accumulation of algal material. OM input from algal blooms reached a maximum during the deposition of the organic-rich calcareous shale with seasonal laminations. High P/Ti ratios and a strongly positive relationship between the P and TOC contents indicate that OM accumulation in the oil shale was mainly controlled by the high primary productivity of surface waters with help from a less stratified water column. Factors such as the physical protection of clay minerals and the dilution of detrital influx show less influence on OM enrichment.  相似文献   

13.
Relationships between organic carbon, total nitrogen and organic nitrogen concentrations and variations in δ13Corg and δ15Norg are examined in surface sediments from the eastern central Arctic Ocean and the Yermak Plateau. Removing the organic matter from samples with KOBr/KOH and determining residual as well as total N shows that there is a significant amount of bound inorganic N in the samples, which causes TOC/Ntotal ratios to be low (4–10 depending on the organic content). TOC/Norg ratios are significantly higher (8–16). This correction of organic TOC/N ratios for the presence of soil-derived bound ammonium is especially important in samples with high illite concentrations, the clay mineral mainly responsible for ammonium adsorption. The isotopic composition of the organic N fraction was estimated by determining the isotopic composition of the total and inorganic nitrogen fractions and assuming mass-balance. A strong correlation between δ15Norg values of the sediments and the nitrate concentration of surface waters indicates different relative nitrate utilization rates of the phytoplankton in various regions of the Arctic Ocean. On the Yermak Plateau, low δ15Norg values correspond to high nitrate concentrations, whereas in the central Arctic Ocean high δ15Norg values are found beneath low nitrate waters. Sediment δ13Corg values are close to −23.0‰ in the Yermak Plateau region and approximately −21.4‰ in the central Arctic Ocean. Particulate organic matter collected from meltwater ponds and ice-cores are relatively enriched in 13C (δ13Corg=−15.3 to −20.6‰) most likely due to low CO2(aq) concentrations in these environments. A maximum terrestrial contribution of 30% of the organic matter to sediments in the central Arctic Ocean is derived, based on the carbon isotope data and various assumptions about the isotopic composition of the potential endmembers.  相似文献   

14.
《Marine Geology》1999,153(1-4):77-89
The sediments of the eastern Mediterranean basin contain Corg-enriched layers (sapropels) interbedded with the Corg-poor sediments which form by far the greater part of the record. While it is generally appreciated that different surface ocean productivity and bottom water conditions are necessary for the formation and preservation of these two sediment types, less attention has been paid to diagenetic effects which are an expected consequence of transitions between dramatically different bottom water oxygenation levels. A geochemical interpretation has emerged of post-depositional oxidation of the most recent sapropel (S1), initially based on the relationship of the Mn, Fe, Corg and S concentration/depth profiles observed around S1, and the characteristic shapes of these elemental profiles known from other situations. This indicates that post-depositional oxidation has removed approximately half of the visual evidence of the sapropel (∼6 cm from a total of ∼12 cm in the deep basin). The oxidation interpretation from redox-sensitive element redistribution profiles has subsequently been consolidated with evidence from pore water (O2, NO3, Mn2+ and Fe2+) studies, from characteristic solid phase Ba profiles which yield palaeoproductivity records, and from oxidation-sensitive indicator trace elements (I and Se). So far, these geochemical observations have been concentrated in the deeper central parts of the basin, where sediment accumulation rates are lower than on the basin margins, and radiocarbon dating indicates that S1 formation occurred between 5.3 and 9.0 ky (uncorrected conventional radiocarbon time). It remains to be demonstrated whether or not these times are applicable to the entire E. Mediterranean basin. The implications of these findings to guide sampling in future work on the S1 productivity episode and on older sapropels for palaeoenvironmental investigations are discussed.  相似文献   

15.
Barremian–Aptian organic-rich shales from Abu Gabra Formation in the Muglad Basin were analysed using geochemical and petrographic analyses. These analyses were used to define the origin, type of organic matters and the influencing factors of diagenesis, including organic matter input and preservation, and their relation to paleoenvironmental and paleoclimate conditions. The bulk geochemical characteristics indicated that the organic-rich shales were deposited in a lacustrine environment with seawater influence under suboxic conditions. Their pyrolysis hydrogen index (HI) data provide evidence for a major contribution by Type I/II kerogen with HI values of >400 mg HC/g TOC and a minor Type II/III contribution with HI values <400 mg HC/g TOC. This is confirmed by kerogen microscopy, whereby the kerogen is characterized by large amounts of structured algae (Botryococcus) and structureless (amorphous) with a minor terrigenous organic matter input. An enhanced biological productivity within the photic zone of the water columns is also detected. The increased biological productivity in the organic-rich shales may be related to enhanced semi-arid/humid to humid-warm climate conditions. Therefore, a high bio-productivity in combination with good organic matter preservation favoured by enhanced algae sizes are suggested as the OM enrichment mechanisms within the studied basin.  相似文献   

16.
Two sets of Lower Paleozoic organic-rich shales develop well in the Weiyuan area of the Sichuan Basin: the Lower Cambrian Jiulaodong shale and the Lower Silurian Longmaxi shale. The Weiyuan area underwent a strong subsidence during the Triassic to Early Cretaceous and followed by an extensive uplifting and erosion after the Late Cretaceous. This has brought about great changes to the temperature and pressure conditions of the shales, which is vitally important for the accumulation and preservation of shale gas. Based on the burial and thermal history, averaged TOC and porosity data, geological and geochemical models for the two sets of shales were established. Within each of the shale units, gas generation was modeled and the evolution of the free gas content was calculated using the PVTSim software. Results show that the free gas content in the Lower Cambrian and Lower Silurian shales in the studied area reached the maxima of 1.98–2.93 m3/t and 3.29–4.91 m3/t, respectively (under a pressure coefficient of 1.0–2.0) at their maximum burial. Subsequently, the free gas content continuously decreased as the shale was uplifted. At present, the free gas content in the two sets of shales is 1.52–2.43 m3/t and 1.94–3.42 m3/t, respectively (under a current pressure coefficient of 1.0–2.0). The results are roughly coincident with the gas content data obtained from in situ measurements in the Weiyuan area. We proposed that the Lower Cambrian and Lower Silurian shales have a shale gas potential, even though they have experienced a strong uplifting.  相似文献   

17.
The biogeochemical processes participating in the transformation of the particulate matter into sediment along the Yenisei River-St. Anna Trough (Kara Sea) meridional profile were studied using hydrochemical, geochemical, microbiological, radioisotope, and isotope methods. The water-sediment contact zone consists of three subzones: the suprabottom water, the fluffy layer, and the surface sediment. The total number, biomass, and integral activity of the microorganisms (dark 14CO2 assimilation) in the fluffy layer are usually higher than in the suprabottom water and sediment. The fluffy layer shows a decrease in the oxygen content and the growth of the dissolved biogenic elements. It was provided by the particulate organic matter supporting the vital activity of the heterotrophs from the overlying water column and by the flux of reduced compounds (NH4, H2S, CH4, Fe2+, Mn2+, and others) from the underlying sediments. The Corg isotopic composition of the fluffy layer and the sediments is 2–4 ‰ heavier than that of the particulate matter and sediment due to the presence of the isotopically heavy biomass of microorganisms. A change in the isotopic composition of the Corg in the fluffy layer and surface sediment as compared to the Corg of the particulate matter is a widespread phenomenon in the Arctic shelf seas and proves the leading role of microorganisms in the transformation of the particulate matter into sediment.  相似文献   

18.
Deposition of organic rich black shales and dark gray limestones in the Berriasian-Turonian interval has been documented in many parts of the world. The Early Cretaceous Garau Formation is well exposed in Lurestan zone in Iran and is composed of organic-rich shales and argillaceous limestones. The present study focuses on organic matter characterization and source rock potential of the Garau Formations in central part of Lurestan zone. A total of 81 core samples from 12 exploratory wells were subjected to detailed geochemical analyses. These samples have been investigated to determine the type and origin of the organic matter as well as their petroleum-generation potential by using Rock-Eval/TOC pyrolysis, GC and GCMS techniques. The results showed that TOC content ranges from 0.5 to 4.95 percent, PI and Tmax values are in the range of 0.2 and 0.6, and 437 and 502 °C. Most organic matter is marine in origin with sub ordinary amounts of terrestrial input suggesting kerogen types II-III and III. Measured vitrinite reflectance (Rrandom%) values varying between 0.78 and 1.21% indicating that the Garau sediments are thermally mature and represent peak to late stage of hydrocarbon generation window. Hydrocarbon potentiality of this formation is assessed fair to very good capable of generating chiefly gas and some oil. Biomarker characteristics are used to provide information about source and maturity of organic matter input and depositional environment. The relevant data include normal alkane and acyclic isoprenoids, distribution of the terpane and sterane aliphatic biomarkers. The Garau Formation is characterized by low Pr/Ph ratio (<1.0), high concentrations of C27 regular steranes and the presence of tricyclic terpanes. These data indicated a carbonate/shale source rock containing a mixture of aquatic (algal and bacterial) organic matter with a minor terrigenous organic matter contribution that was deposited in a marine environment under reducing conditions. The results obtained from biomarker characteristics also suggest that the Garau Formation is thermally mature which is in agreement with the results of Rock-Eval pyrolysis.  相似文献   

19.
We have conducted elemental, isotopic, and Rock-Eval analyses of Cenomanian–Santonian sediment samples from ODP Site 1138 in the southern Indian Ocean to assess the origin and thermal maturity of organic matter in mid-Cretaceous black shales found at this high-latitude location. Total organic carbon (TOC) concentrations range between 1 and 20 wt% in black to medium-gray sediments deposited around the Cenomanian–Turonian boundary. Results of Rock-Eval pyrolysis indicate that the organic matter is algal Type II material that has experienced modest alteration. Important contributions of nitrogen-fixing bacteria to the amplified production of organic matter implied by the high TOC concentrations is recorded in δ15N values between −5 and 1‰, and the existence of a near-surface intensified oxygen minimum zone that favored organic carbon preservation is implied by TOC/TN ratios between 20 and 40. In contrast to the marine nature of the organic matter in the Cenomanian–Turonian boundary section, deeper sediments at Site 1138 contain evidence of contributions land-derived organic matter that implies the former presence of forests on the Kerguelen Plateau until the earliest Cenomanian.  相似文献   

20.
Organic geochemical and palynofacies studies of 172 ditch cuttings samples of possible source rock shales from the Late Cretaceous Gongila and Fika formations in the Chad Basin of NE Nigeria were carried out to determine their paleoenvironments of deposition. Although dominated by amorphous organic matter, C/S ratios and molecular parameters suggest the mostly organic lean shales (TOC contents typically below 1.5%) were deposited in a normal marine environment. Levels of oxygenation influenced by water depth in the depositional environment appear to control organic richness and quality of the dark grey shales.The organic rich (TOC > 2.0%) upper part of the Fika Formation was deposited under anoxic conditions during the Late Cretaceous and could represent an Oceanic Anoxic Event. Mature intervals where such conditions prevailed would have generated liquid hydrocarbon, although none were sampled here.A trend of increasing organic richness towards the central part of the larger Chad Basin observed in this and other studies supports the development of organic rich marine shales (average TOC contents of 2–3%) of equivalent age in the Termit Basin where water depth would have been deeper and oxygen conditions at levels that permitted preservation of marine organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号