首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Subgrade soils of traffic infrastructures are subjected to large numbers of load applications at a stress level below their shear strength. It is therefore of great practical relevance to study the deformation behavior of soft clay under long-term cyclic loading. In this study, a series of monotonic triaxial tests and long-term cyclic (50,000 cycles) triaxial tests have been carried out to investigate the undrained deformation behavior of undisturbed soft clay from Wenzhou, China. The stress–strain hysteretic loop, resilient modulus and permanent strain of the tested samples were found significantly dependent on CSR and confining pressure. With an increase of CSR and confining pressure, the resilient modulus decreases more significantly with increasing number of cycles and the accumulation rate of permanent strain increases. Furthermore, the shape of the stress–strain hysteretic loop almost remains unchanged and the resilient modulus tends to a steady value after a large number of cycles. Based on the experimental results, two equations are established for the prediction of long-term resilient modulus and permanent strain. Finally, a new critical value of 0.65 is suggested for CSR. When CSR>0.65, the resilient modulus for large number of cycles is reduced to a so called “asymptotic stiffness” and the accumulation rate of permanent strain significantly increases.  相似文献   

2.
动三轴试验中,若在一定轴向静偏应力基础上施加对称正弦波荷载,土体会在荷载正半部分出现轴向压缩状态,而在荷载负半部分有可能因为侧向应力大于轴向应力而出现轴向等效拉伸状态,将此类荷载暂称为等效拉压荷载。为研究等效拉压荷载下饱和粉质黏土的弹塑性变形,设计了多级正弦波荷载室内不排水动三轴试验。依据试验数据揭示了围压、静偏应力、动偏应力和压实系数对土体弹塑性变形发展的影响,并提出用拉压效应系数来确定轴向塑性累积应变的发展趋势。研究表明:若取轴向压缩方向为正方向,拉压效应系数存在一临界值,当实际值大于临界值时,塑性累积应变向负方向发展,反之则向正方向发展或基本保持不变;同时Hardin模型可以较好地描述饱和粉质黏土的动弹模-动应变关系,且塑性累积应变向负方向发展时动弹模量普遍偏小。  相似文献   

3.
Cyclic triaxial tests have been carried out on a skeletal carbonate sand from the west coast of Eire. Results are presented for undrained cyclic shear tests on samples with 80% of relative density consolidated under both isotropic and anisotropic conditions. Failure was defined as a 5% double amplitude cyclic strain and a 5% peak axial strain for stress-reversal and non-reversal stress conditions, respectively. Using this definition the cyclic strength for isotropically consolidated samples was affected by the confining pressure although the angular platey nature of the sand resulted in higher cyclic strengths than for a comparable silica sand. For anisotropically consolidated samples the cyclic strength increased with increasing initial static shear stress while on the other hand the cyclic strength normalised in the usual way with respect to the initial confining pressure decreased as this pressure increased.  相似文献   

4.
A laboratory study on the undrained dynamic behavior of saturated clays in cyclic triaxial tests with a variable confining pressure (VCP tests) is presented. Tests were performed on remolded clayey samples using a dynamic triaxial device where the deviatoric stress and confining pressure can be varied simultaneously. Various cyclic stress paths have been applied on the specimens through varying the ratios or phase differences between the cyclic deviatoric stress and cyclic confining pressure. Specifically, the stress paths used in the present study were designed to simulate the coupling effects of simultaneously varying shear and normal stresses in clays due to earthquakes and other vibration sources. Test results obtained from this study show that the undrained response of saturated clays is strongly influenced by the variation of confining pressure, in terms of pore water pressure, development speed of cyclic strain and magnitude of cyclic strength. It is found that when strong P-waves are propagating in soil layers, VCP tests are more appropriate for the simulation of in situ stress fields than the conventional cyclic triaxial tests with a constant confining pressure (CCP tests).  相似文献   

5.
不同地域的软黏土表现出不同的动力学特性,针对舟山地区海相软黏土,采用Wille动三轴仪开展了一系列不排水三轴试验,研究了不同加载频率及循环应力比对软黏土的动应力-应变-孔压及软化指数等的影响规律。结果表明:低频荷载的应力-应变滞回曲线对应的面积较大且曲线趋势更倾向于应变轴,随着循环次数的增加土体的软化程度明显增加(软化指数减少),且在高循环应力比下产生较大的累积塑性应变和残余动孔压;在低频较大循环振次和高频荷载作用下,不仅需要关注循环应力比CSR的影响,也需要进一步分别关注围压和轴向偏应力各自数值不同所导致的土体累积塑性应变、残余动孔压的变化;降低循环应力比可以显著减少不同频率荷载对软黏土地基动力特性的影响。此外,实验所测的累积塑性应变和残余动孔压分别采用相关修正模型拟合,取得了一致的拟合结果。该研究将为舟山海相软黏土的工程应用提供参考依据。  相似文献   

6.
Upon cyclic loading, particle breakage of constituent granular materials occurs when the resulting local stresses exceed their strength, which has a significant influence on the deformation of the embankment, foundation and pavement structures. In this study, the artificially crushable materials were tested to investigate the particle breakage properties of these structures when subjected to drained cyclic triaxial loading. Twelve sets of samples were tested at the confining pressures of 100, 125, 150 and 175 kPa and a frequency of 1.0 Hz using a GCTS triaxial system. The cyclic test results indicate that at the same confining pressure, the residual volumetric strain increases with decreasing maximal deviatoric stress qmax at a given ratio of the number of cycles (N) to the number of cycles of failure (Nf). The cumulative crushing ratio Rcc decreases with increasing qmax, leading to a reduction in Nf. The internal frictional angle decreases with increasing Rcc, and Rcc increases with increasing Nf. Furthermore, the confining pressure, maximal cyclic deviatoric stress and N have significant influences on the degree of particle breakage, which leads to volumetric contraction during the cyclic loading process. Finally, the resilient modulus at failure increases linearly with increasing Rcc.  相似文献   

7.
Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading   总被引:5,自引:0,他引:5  
Experimental investigations and modeling of nonlinear elasticity of fiber-reinforced soil under cyclic loading at small strain are conducted in this paper. The investigations include three aspects. First, cyclic shear tests are conducted using conventional triaxial apparatus. Twenty-seven specimens with three different fiber contents are employed to conduct triaxial cyclic shear tests under different confining pressure and loading repetition. Effects of geofiber, confining pressure and loading repetition on elastic shear modulus of reinforced soil are studied and analyzed. Second, a hyperbolic function is introduced to describe the nonlinear stress–strain skeletal curve under cyclic loading. Nonlinear elastic modulus is expressed as a function of shear strain and two variables A and B that are related to the initial tangential modulus and ultimate cyclic loading stress, respectively. In the present paper, variables A and B both are further assumed to be functions of geofiber content, confining pressure and loading repetition. Finally, eight constitutive coefficients of the nonlinear elastic model are calibrated using stress–strain curves from cyclic triaxial shear tests. The calibration of parameters is conducted using the technique of the linear regression for multiple variables. Impacts and effects of geofiber, confining pressure and loading repetitions on soil nonlinear elastic behavior are discussed.  相似文献   

8.
— The influence of differential stress on the permeability of a Lower Permian sandstone was investigated. Rock cylinders of 50 mm in diameter and 100 mm length of a fine-grained (mean grain size 0.2 mm), low-porosity (6–9%) sandstone were used to study the relation between differential stress, rock deformation, rock failure and hydraulic properties, with a focus on the changes of hydraulic properties in the pre-failure and failure region of triaxial rock deformation. The experiments were conducted at confining pressures up to 20 MPa, and axial force was controlled by lateral strain with a rate ranging from 10?6 to 10?7 sec?1. While deforming the samples, permeability was determined by steady-state technique with a pressure gradient of 1 MPa over the specimen length and a fluid pressure level between 40 and 90% of the confining pressure. The results show that permeability of low-porosity sandstones under increasing triaxial stress firstly decreases due to compaction and starts to increase after the onset of dilatancy. This kind of permeability evolution is similar to that of crystalline rocks. A significant dependence of permeability evolution on strain rate was found. Comparison of permeability to volumetric strain demonstrates that the permeability increase after the onset of dilatancy is not sufficient to regain the initial permeability up to failure of the specimen. The initial permeability, which was determined in advance of the experiments, usually was regained in the post-failure region. After the onset of dilatancy, the permeability increase displays a linear dependence on volumetric strain.  相似文献   

9.
In this paper, we extend the previous studies of semi-brittle flow of synthetic calcite-quartz aggregates to a range of temperatures and effective pressures where viscous creep occurs. Triaxial deformation experiments were performed on hot-pressed calcite-quartz aggregates containing 10, 20 and 30 wt% quartz at confining pressure of 300 MPa, pore pressures of 50-290 MPa, temperatures of 673-1073 K and strain rates of 3.0×10−5/s, 8.3×10−5/s and 3.0×10−4/s. Starting porosity varied from 5 to 9%. We made axial and volumetric strain measurements during the mechanical tests. Pore volume change was measured by monitoring the volume of pore fluid that flows out of or into the specimen at constant pore pressure. Yield stress increased with decreasing porosity and showed a dependence on effective pressure. Thus, the yield stress versus effective pressure can be described as a yield surface with negative slope that expands with decreasing porosity and increasing strain hardening, gradually approaching the envelope of strength at 10% strain, which has a positive slope. Creep of porous rock can be modeled to first order as an isolated equivalent void in an incompressible nonlinear viscous matrix. An incremental method is used to calculate the stress-strain curve of the porous material under a constant external strain rate. The numerical simulations reproduce general trends of the deformation behavior of the porous rock, such as the yield stress decreasing with increasing effective pressure and significant strain hardening at high effective pressure. The drop of yield stress with increasing porosity is modeled well, and so is the volumetric strain rate, which increases with increasing porosity.  相似文献   

10.
This study utilises the equivalent granular state parameter, ψ, as a key parameter for studying static and cyclic instability and their linkage. ψ can be considered as a generalisation of the state parameter as first proposed by Been and Jefferies so that the influence of fines content in addition to stress and density state can be captured. Test results presented in this study conclusively showed that ψ at the start of undrained shearing and ηIS, the stress ratio at onset of static instability, can be described by a single relationship irrespective of fines content for both compression and extension shearing. This single relationship is referred as instability curve. However, the instability curve in extension shearing is different from that of compression. In this paper, the capacity of the instability curve in predicting triggering of cyclic instability was evaluated experimentally. An extensive series of undrained one-way (compression) and non-symmetric two-way cyclic triaxial tests, in addition to monotonic triaxial tests in both compression and extension were conducted for this evaluation. Furthermore, a published database for Hokksund sand with fines was also used. Test results show that cyclic instability was triggered shortly after the cyclic effective stress path crossed the estimated ηIS-zone(s) as obtained from instability curve(s) irrespective of whether instability occurs in the compression or extension side.  相似文献   

11.
粗粒土等压固结与K0固结三轴试验比较   总被引:1,自引:0,他引:1  
对某堆石坝覆盖层砂卵砾石料进行了不同干密度试样中型三轴试验,试验包括常规各向等压固结的三轴排水剪试验(CID试验)和各向不等压(K0)固结的三轴排水剪试验(CK0D试验),对试验结果进行对比分析,研究2种试验方法对试验结果的影响。结果表明,2种试验所得到的应力—应变关系曲线总体规律比较一致,大小略有差异,CK0D试验的剪胀性比CID试验明显;不同围压下,2种试验的偏应力峰值差异(相对峰值)平均幅值为3.9%;对应3种密度(2.17、2.22、2.40g/cm3),CK0D试验各围压下的平均内摩擦角分别比CID试验的内摩擦角大0.88°、0.48°、0.43°;随着密度增大,2种试验的强度均显著增大,且强度指标随密度近似线性增大。列出并比较了2种试验的邓肯模型参数,两者没有显著的差异。  相似文献   

12.
Small strain shear modulus Gmax is an essential parameter in soil dynamics, and it is usually estimated based on the Hardin and Richart equation. However, many previous researches on sands have indicated that the Hardin and Richart equation does not consider the influences of cyclic loading history on Gmax. In this paper, effects of cyclic loading history on Gmax of saturated clays under undrained conditions are studied using a combination device of piezoelectric-ceramic bender element system and cyclic triaxial apparatus. The dynamic pre-loading includes both relatively high amplitudes of cyclic stresses and cyclic strains. Gmax without cyclic loading history is also investigated for the comparison purpose. Test results show that, at the same effective stress, both cyclic strain history and cyclic stress history will induce reduction of Gmax compared to the corresponding Gmax values with non-cyclic loading effects. In strain-controlled tests, the reduction of Gmax is slight and relatively stable; while in stress-controlled tests, the reduction of Gmax increases suddenly and remarkably when the effective stresses degrade to a certain degree. The comparison between double amplitude axial strain and residual excess pore water pressure behaviors show that the remarkable reduction of Gmax can demonstrate the cyclic failure of saturated clays.  相似文献   

13.
The availability of efficient numerical techniques and high speed computation facilities for carrying out the nonlinear dynamic analysis of soil-structure interaction problems and the analysis of ground response due to earthquake loading increase the demand for proper estimation of dynamic properties of soil at small strain as well as at large strain levels. Accurate evaluation of strain dependent dynamic properties of soil such as shear modulus and damping characteristics along with the liquefaction potential are the most important criteria for the assessments of geotechnical problems involving dynamic loading. In this paper the results of resonant column tests and undrained cyclic triaxial tests are presented for Kasai River sand. A new correlation for dynamic shear damping (Ds) and maximum dynamic shear modulus (Gmax) are proposed for the sand at small strain. The proposed relationships and the observed experimental data match quite well. The proposed relationships are also compared with the published relationships for other sands. The liquefaction potential of the sand is estimated at different relative densities and the damping characteristics at large strain level is also reported. An attempt has been made to correlate the Gmax with the cyclic strength of the soil and also with the deviator stress (at 1% strain) from static triaxial tests.  相似文献   

14.
—Uniaxial compression, triaxial compression and Brazialian tests were conducted on several kinds of rock, with particular attention directed to the principal tensile strain. In this paper we aim to clarify the effects of the experimental environment—such as confining pressure, loading rate, water content and anisotropy—on the critical tensile strain, i.e., the measured principal tensile strain at peak load.¶It was determined that the chain-type extensometer is a most suitable method for measuring the critical tensile strain in uniaxial compression tests. It is also shown that the paper-based strain gage, whose effective length is less than or equal to a tenth of the specimen’s diameter and glued on with a rubber-type adhesive, can be effectively used in the Brazilian tests.¶The effect of confining pressure P C on the critical tensile strain ? TC in the brittle failure region was between ?0.02 × 10?10 Pa?1 and 0.77 × 10?10 Pa?1. This pressure sensitivity is small compared to the critical tensile strain values of around ?0.5 × 10?2. The strain rate sensitivities ?? TC /?{log(d|?|/dt)} were observed in the same way as the strength constants in other failure criteria. They were found to be from ?0.10 × 10?3 to ?0.52 × 10?3 per order of magnitude in strain rate in the triaxial tests. The average magnitude of the critical tensile strain ? TC increased due to the presence of water by 4% to 20% for some rocks, and decreased by 22% for sandstone. It can at least be said that the critical tensile strain is less sensitive to water content than the uniaxial compressive strength under the experimental conditions reported here. An obvious anisotropy was observed in the P-wave velocity and in the uniaxial compressive strength of Pombetsu sandstone. It was not observed, however, in the critical tensile strain, although the data do show some variation.¶A "tensile strain criterion" was proposed, based on the above experimental results. This criterion signifies that stress begins to drop when the principal tensile strain reaches the critical tensile strain. The criterion is limited to use within the brittle failure region. The critical tensile strain contains an inelastic strain component as well as an elastic one. It is affected by the strain rate, however, it is relatively insensitive to the confining pressure, the presence of water and anisotropy.  相似文献   

15.
考虑温度效应软黏土累积塑形应变模型及验证   总被引:1,自引:1,他引:0       下载免费PDF全文
通过对宁波饱和软黏土开展应力控制循环三轴试验,研究了不同温度、动应力、初始偏应力、围压作用对累积塑性应变的影响。在试验的基础上,引入综合影响参数对试验数据进行归一化,建立饱和软黏土累积塑性应变的双曲线模型,并基于动态平衡的假设,建立了长期动荷载作用下饱和软黏土达到平衡状态后的归一化累积塑性应变预测模型及考虑温度影响的考虑温度影响的归一化累积塑性应变预测模型,模型预测值与试验结果吻合性较好,可以为轨道交通设计和施工提供参考。  相似文献   

16.
地震荷载作用下发生滑坡的滑动带通常由粗颗粒与细颗粒组成。滑带土的动力性质及动孔隙水压力的发展对边坡的稳定性至关重要。对掺细料砾石混合土进行动三轴试验来探讨细料(粒径小于0.5mm)含量对砾石(粒径6~20mm)混合土的动孔压特性的影响,进行细料含量为0%、20%和40%的三组试样的动三轴试验,采用固结围压为100kPa、固结应力比为1.0、频率为1.0Hz,施加轴向动应力分别为0.50、0.55、0.60和0.65kN,得到动孔压的变化规律。试验发现:(1)相同激振力作用下,随着细料含量的增加,动孔隙水压力增长速度逐渐变缓;相同细料含量时,随着激振力的增大,动孔隙水压力增长速度变快。(2)激振力较大和细料含量较少时,动孔隙水压力在较少的振次下达到较大值并趋于稳定。(3)细料含量为20%的砾石混合土试样在试验终止时的振动次数最大,细料含量为40%的砾石混合土在试验终止时的振动次数最小。(4)当细粒含量为0%和20%时,试验终止时最终的孔压都可以接近固结围压;当细粒含量为40%,激振力较大时,试验终止时最终的孔压才接近固结围压,而激振力较小时最终的孔压远远没有达到固结围压。  相似文献   

17.
高德清 《地震工程学报》2019,41(6):1615-1622
对筑坝反滤料进行室内中型动三轴试验研究,探讨残余变形等动力特性,在此基础上,运用二维颗粒流方法,对相关试验进行数值模拟,为筑坝料的动力特性研究提供一种新的思路和途径。试验结果表明:(1)应力水平对关系曲线斜率无影响;(2)初期体积应变的读数会出现偏小的现象;(3)围压和动应力值过大,会导致模拟结果产生较大误差;(4)正确的细观参数应依据特定的试验结果反复推敲逼近而得。  相似文献   

18.
针对广西上林县原状红黏土开展一系列循环加载动三轴试验,分析天然含水率、围压与固结应力比等对红黏土动力特性,包话动应力-动应变关系、动弹性模量以及阻尼比等的影响来研究循环荷载作用下红黏土的动力特性。试验结果表明:广西原状红黏土动应力-动应变关系曲线接近双曲线;由于初始剪应力的影响,达到相同的动应变,在均压固结下所需的动应力比在偏压固结下所需动应力要小;动弹性模量随着动应变的增加而减小,且减小幅度随应变增加逐渐减小,初始应力状态对动弹性模量的影响最为显著;固结应力比、围压、含水率和振动次数等对阻尼比均有影响,综合反映在阻尼比随动应变增加而减小,阻尼比离散性较大,取值范围在0.05~0.20之间。利用Konder双曲线模型对试验数据进行拟合,得到相关参数,可为广西地区原状红黏土动力特性设计和数值计算提供一定的理论和参数支持。  相似文献   

19.
为探究黄土路基在冻融循环和交通荷载耦合作用下的累积塑性应变变化规律,选取西宁地区重塑黄土为研究对象,采用GDS双向动三轴测试系统对其进行一系列动三轴试验,研究不同冻融循环次数、围压、动应力幅值以及频率对累积塑性应变的影响规律,并通过引入拟合参数建立考虑多因素的累积塑性应变预测模型。结果表明:累积塑性应变随冻融循环次数的增大而增大,在6次冻融循环后增长速率减缓且趋于稳定;减小动应力幅值和增大围压能显著抑制累积塑性应变的发展;加载初期累积塑性应变随频率变化不明显,随着振次的增加,频率作用凸显,累积塑性应变随着频率的增大而减小;基于试样的累积塑性应变演变规律,分别采用幂指数模型和对数模型进行拟合,发现后者拟合效果好;综合考虑4种因素对累积塑性应变的影响,建立累积塑性应变预测模型,并对试验的实测值与预测值进行对比,验证模型的可行性。研究成果可为季冻区黄土路基永久变形的计算提供理论参考依据。  相似文献   

20.
Stiffness degradation of natural fine grained soils during cyclic loading   总被引:5,自引:0,他引:5  
Cyclic behavior of natural fine grained soils under a broad range of strains were investigated considering the effects of plasticity index and changes in confining pressures based on cyclic triaxial tests. A total of 98 stress controlled cyclic triaxial tests were conducted on normally consolidated and slightly overconsolidated samples. The investigation was divided into two parts. The first part consists of stress controlled cyclic triaxial tests under different stress amplitudes that were conducted to estimate the modulus reduction and the thresholds between nonlinear elastic, elasto-plastic and viscoplastic behavior. The second part involves the investigation of the undrained stress–strain behavior of fine grained soils under irregular cyclic loadings. The results showed that the elastic threshold is approximately equal to 90% of Gmax. Another transition point was defined as the flow threshold where the value of tangent of shear modulus ratio changes for the second time. Simple empirical relationships to estimate the dynamic shear modulus and damping ratio was formulated and compared with the similar empirical relationships proposed in the literature. The results provide useful guidelines for preliminary estimation of dynamic shear modulus and damping ratio values for fine grained soils based on laboratory tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号