首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper addresses the mechanical behavior of buried steel pipes crossing active strike-slip tectonic faults. The pipeline is assumed to cross the vertical fault plane at angles ranging between zero and 45 degrees. The fault moves in the horizontal direction, causing significant plastic deformation in the pipeline. The investigation is based on numerical simulation of the nonlinear response of the soil–pipeline system through finite elements, accounting for large strains and displacements, inelastic material behavior of the pipeline and the surrounding soil, as well as contact and friction on the soil–pipe interface. Steel pipes with D/t ratio and material grade typical for oil and gas pipelines are considered. The analysis is conducted through an incremental application of fault displacement. Appropriate performance criteria of the steel pipeline are defined and monitored throughout the analysis. The effects of various soil and line pipe parameters on the mechanical response of the pipeline are examined. The numerical results determine the fault displacement at which the specified performance criteria are reached, and are presented in diagram form, with respect to the crossing angle. The effects of internal pressure on pipeline performance are also investigated. In an attempt to explain the structural behavior of the pipeline with respect to local buckling, a simplified analytical model is also developed that illustrates the counteracting effects of pipeline bending and axial stretching for different crossing angles. The results from the present study can be used for the development of performance-based design methodologies for buried steel pipelines.  相似文献   

2.
The performance of pipelines subjected to permanent strike–slip fault movement is investigated by combining detailed numerical simulations and closed-form solutions. First a closed-form solution for the force–displacement relationship of a buried pipeline subjected to tension is presented for pipelines of finite and infinite lengths. Subsequently the solution is used in the form of nonlinear springs at the two ends of the pipeline in a refined finite element model, allowing an efficient nonlinear analysis of the pipe–soil system at large strike–slip fault movements. The analysis accounts for large strains, inelastic material behavior of the pipeline and the surrounding soil, as well as contact and friction conditions on the soil–pipe interface. The numerical models consider infinite and finite length of the pipeline corresponding to various angles β between the pipeline axis and the normal to the fault plane. Using the proposed closed-form nonlinear force–displacement relationship for buried pipelines of finite and infinite length, axial strains are in excellent agreement with results obtained from detailed finite element models that employ beam elements and distributed springs along the pipeline length. Appropriate performance criteria of the steel pipeline are adopted and monitored throughout the analysis. It is shown that the end conditions of the pipeline have a significant influence on pipeline performance. For a strike–slip fault normal to the pipeline axis, local buckling occurs at relatively small fault displacements. As the angle between the fault normal and the pipeline axis increases, local buckling can be avoided due to longitudinal stretching, but the pipeline may fail due to excessive axial tensile strains or cross sectional flattening. Finally a simplified analytical model introduced elsewhere, is enhanced to account for end effects and illustrates the formation of local buckling for relative small values of crossing angle.  相似文献   

3.
To estimate the demand of structures, investigating the correlation between engineering demand parameters and intensity measures (IMs) is of prime importance in performance-based earthquake engineering. In the present paper, the efficiency and sufficiency of some IMs for evaluating the seismic response of buried steel pipelines are investigated. Six buried pipe models with different diameter to thickness and burial depth to diameter ratios, and different soil properties are subjected to an ensemble of 30 far-field earthquake ground motion records. The records are scaled to several intensity levels and a number of incremental dynamic analyses are performed. The approach used in the analyses is finite element modeling. Pipes are modeled using shell elements while equivalent springs and dashpots are used for modeling the soil. Several ground motion intensity measures are used to investigate their efficiency and sufficiency in assessing the seismic demand and capacity of the buried steel pipelines in terms of engineering demand parameter measured by the peak axial compressive strain at the critical section of the pipe. Using the regression analysis, efficient and sufficient IMs are proposed for two groups of buried pipelines separately. The first one is a group of pipes buried in soils with low stiffness and the second one is those buried in soils with higher stiffness. It is concluded that for the first group of pipes, \(\sqrt {{\text{VSI}}[\upomega_{1} ({\text{PGD}} + {\text{RMS}}_{\text{d}} )]}\) followed by root mean square of displacement (RMSd) are the optimal IMs based on both efficiency and sufficiency; and for the second group, the only optimal IM is PGD2/RMSd.  相似文献   

4.
Buried pipelines are often constructed in seismic and other geohazard areas, where severe ground deformations may induce severe strains in the pipeline. Calculation of those strains is essential for assessing pipeline integrity, and therefore, the development of efficient models accounting for soil‐pipe interaction is required. The present paper is aiming at developing efficient tools for calculating ground‐induced deformation on buried pipelines, often triggered by earthquake action, in the form of fault rupture, liquefaction‐induced lateral spreading, soil subsidence, or landslide. Soil‐pipe interaction is investigated by using advanced numerical tools, which employ solid elements for the soil, shell elements for the pipe, and account for soil‐pipe interaction, supported by large‐scale experiments. Soil‐pipe interaction in axial and transverse directions is evaluated first, using results from special‐purpose experiments and finite element simulations. The comparison between experimental and numerical results offers valuable information on key material parameters, necessary for accurate simulation of soil‐pipe interaction. Furthermore, reference is made to relevant provisions of design recommendations. Using the finite element models, calibrated from these experiments, pipeline performance at seismic‐fault crossings is analyzed, emphasizing on soil‐pipe interaction effects in the axial direction. The second part refers to full‐scale experiments, performed on a unique testing device. These experiments are modeled with the finite element tools to verify their efficiency in simulating soil‐pipe response under landslide or strike‐slip fault movement. The large‐scale experimental results compare very well with the numerical predictions, verifying the capability of the finite element models for accurate prediction of pipeline response under permanent earthquake‐induced ground deformations.  相似文献   

5.
地震断层作用下的埋地管道等效分析模型   总被引:2,自引:0,他引:2  
王滨  李昕  周晶 《地震学刊》2009,(1):44-50
地震作用下,活动断层附近的埋地管道易发生强度屈服、局部屈曲或整体失稳等形式的破坏,建立准确、高效的埋地管道在断层作用下的计算模型,对管道的抗震设计和震后安全状态评估具有重要的实用价值。本文采用非线性弹簧模拟远离断层处埋地管道的反应,基于管土之间小变形段管道处于强化阶段,提出一种改进的管土等效分析模型,进一步减小了管土之间大变形段的分析长度,从而提高了有限元分析效率。该模型采用ALA推荐的方法计算管土间的滑动摩擦力,可以考虑土体种类的影响;用Kennedy方法确定管道的计算长度。通过与精确模型比较,验证了管土等效模型的合理性和有效性。  相似文献   

6.
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated.  相似文献   

7.
The complex problem of strength verification of a buried steel pipeline crossing the trace of a normal active fault is treated analytically, and a refined methodology for the calculation of the axial and bending pipeline strains is presented. In essence, the proposed methodology extends the analytical methodology originally proposed by Karamitros et al. [1] for the simpler case of strike-slip fault crossings. The modifications introduced to the original methodology are first identified, following a thorough examination of typical results from advanced 3D nonlinear numerical analyses, and consequently expressed via an easy to apply solution algorithm. A set of similar numerical analyses, performed for a wide variety of fault plane inclinations and intersection angles between the pipeline axis and the fault trace, is used to check the accuracy of the analytical predictions. Fairly good agreement is testified for pipeline strains up to 1.50–2.00%. It is further shown that, although the methodology proposed herein applies strictly to the case of right intersection angles, it may be readily extended to oblique intersections, when properly combined with existing analytical solutions for strike-slip fault crossings (e.g. [1]).  相似文献   

8.
玻璃钢夹砂管在土木水利工程领域得到了愈来愈广泛的应用,但现有的埋地管道地震响应分析模型大多不考虑管-土动力相互作用,且多针对均质材料管道,无法应用于具有明显层状复合材料结构特征的玻璃钢夹砂管。基于玻璃钢夹砂管的层状复合材料结构特征,建立了完整的埋地玻璃钢夹砂管地震响应分析模型,在数值分析模型中,考虑了管-土间复杂的动力相互作用,以及地震散射波从有限域向无限域的传播。算例分析表明,所建立的埋地玻璃钢夹砂管地震响应分析模型可合理地分析埋地玻璃钢夹砂管在地震荷载作用下的动力响应。  相似文献   

9.
In this paper, seismic behavior of gas supply networks is investigated by constructing a 24 m×24 m buried network and conducting an artificial earthquake test by detonating TNT explosives. The pipe network consists of typical welded steel pipes used in gas supply networks. Ground motion is produced by detonating 30 kg of TNT explosives buried 5 m below ground surface and 15 m away from the network. The test preparations are presented, including site selection, network layout, ground motion generation, and arrangements of different sensors. The measured ground acceleration, strain, and acceleration of welded steel pipes, and pipe–soil relative slippage are discussed. The deformation patterns of welded steel pipes are also analyzed and explained, including axial and bending deformations, systematic network characteristics, deformation relationship between ground and pipes, and dynamic response of buried pipes.  相似文献   

10.
Permanent fault displacements (PFDs) because of fault ruptures emerging at the surface are critical for seismic design and risk assessment of continuous pipelines. They impose significant compressive and tensile strains to the pipe cross‐section at pipe‐fault crossings. The complexity of fault rupture, inaccurate mapping of fault location and uncertainties in fault‐pipe crossing geometries require probabilistic approaches for assessing the PFD hazard and mitigating pipeline failure risk against PFD. However, the probabilistic approaches are currently waived in seismic design of pipelines. Bearing on these facts, this paper first assesses the probabilistic PFD hazard by using Monte Carlo‐based stochastic simulations whose theory and implementation are given in detail. The computed hazard is then used in the probabilistic risk assessment approach to calculate the failure probability of continuous pipelines under different PFD levels as well as pipe cross‐section properties. Our probabilistic pipeline risk computations consider uncertainties arising from complex fault rupture and geomorphology that result in inaccurate mapping of fault location and fault‐pipe crossings. The results presented in this paper suggest the re‐evaluation of design provisions in current pipeline design guidelines to reduce the seismic risk of these geographically distributed structural systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In the present paper a semi-analytical methodology for a nonlinear stress–strain analysis of buried steel pipelines at active fault crossings is presented and verified. The developed model introduces a number of critical refinements to the existing methodologies which extend the application area of analytical models in pipeline design. In particular, a strike-slip and normal-slip fault crossings can be analyzed taking into account material and large displacement nonlinearities, nonlinear pipe–soil interaction. The proposed model is verified against the results by other authors and numerical results, obtained with the finite element method.  相似文献   

12.
Seismic ground faulting is a severe hazard for continuous buried pipelines. Over the years, researchers have attempted to understand pipe behavior, most frequently via numerical modeling and simulation. However, there has been little, if any, physical modeling and tests to verify the numerical modeling approaches and assumptions. This paper presents results of five pairs of centrifuge tests designed to investigate the influence of various factors on the behavior of buried high-density polyethylene (HDPE) pipelines subjected to strike-slip faulting. Parameters considered are the soil moisture content, fault offset rate, relative burial depth (H/D), and pipe diameter. The centrifuge test results show that pipe behavior, specifically pipe strain, is nominally not affected by the soil moisture content and fault offset rate when the pipe is subjected to strike-slip faulting. On the other hand, the burial depth ratio (H/D) and pipe diameter influence peak pipe strain, and in some cases, the ground soil failure pattern.  相似文献   

13.
Local gas pipelines provide a valuable resource to urban areas and are often forced to cover unfavourable ground conditions in order to form a serviceable network. This can force pipelines through soil, which is subjected to permanent ground displacements due to faulting and strong vibrations due to earthquakes. Due to the inseparability of faulting from earthquakes it is pertinent to examine the combined effect of dynamic vibration and shear deformation of the surrounding soil on buried pipelines and a better understanding of the factors affecting pipe response to these inputs will enable more intelligent design of future pipe networks with the intention of reducing damage inflicted on pipes in extreme events. To advance understanding of this topic, a series of model experiments were performed under 1 g conditions on instrumented 20 mm diameter acrylic prototype pipes buried in dry Toyoura sand as well as a tyre derived aggregate (TDA) backfill trench surrounded by Toyoura sand crossing a vertical fault. The apparatus setup allowed faulting and dynamic input to be applied simultaneously to the model, which revealed that the simultaneous loading reduces the bending of a pipe and that installation of a pipe in a tyre derived aggregate backfill reduces the bending moment experienced by the pipe by up to 74% for small fault displacement and low levels of acceleration.  相似文献   

14.
A buried pipe extends over long distances and passes through soils with different properties. In the event of an earthquake, the same pipe experiences a variable ground motion along its length. At bends, geometrically a more complicated problem exists where seismic waves propagating in a certain direction affect pipe before and after bend differently. Studying these different effects is the subject of this paper. Two variants for modeling of pipe, a beam model and a beam-shell hybrid model are examined. The surrounding soil is modeled with the conventional springs in both models. A suitable boundary condition is introduced at the ends of the system to simulate the far field. Effects of angle of incidence in the horizontal and vertical planes, angle of pipe bend, soil type, diameter to thickness ratio, and burial depth ratio on pipe strains at bend are examined thoroughly. It is concluded that extensional strains are highest at bends and these strains increase with the angle of incidence with the vertical axis. The pipe strains attain their peaks when pipe bend is around $135^{\circ }$ and exceed the elastic limit in certain cases especially in stiffer soils, but remain below the rupture limit. Then equations for predicting the seismic response of the buried pipe at bend are developed using the analytical data calculated above and regression analysis. It is shown that these semi-analytical equations predict the response with very good accuracy saving much time and effort.  相似文献   

15.
This paper studies the response of pipelines to vibrations induced by the operation of a pavement breaker during the rehabilitation of concrete pavements. An efficient two-and-a-half-dimensional (2.5D) formulation is employed, where the geometry of the structure and the soil is assumed to be invariant in the longitudinal direction, allowing for a Fourier transform of the longitudinal coordinate y along the structure to the wavenumber ky. The dynamic soil–structure interaction problem is solved by means of a 2.5D coupled finite element–boundary element (FE–BE) method using a subdomain formulation. The numerical model is verified by means of results available in the literature for a buried pipeline subjected to incident P- and SV-waves with an arbitrary angle of incidence. The presented methodology is capable to incorporate any type of incident wave field induced by earthquakes, construction activities, traffic, explosions or industrial activities. The risk of damage to a high pressure steel natural gas pipeline and a concrete sewer pipe due to the operation of a pavement breaker is assessed by means of the 2.5D coupled FE–BE methodology. It is observed that the stresses in the steel pipeline due to the operation of the pavement breaker are much lower than those induced by the operating internal pressure. The steel pipeline behaves in the linear elastic range under the combined effect of the loadings, indicating that damage to steel pipelines close to the road due to the operation of a pavement breaker is unlikely. The maximum principal stress in the concrete pipe, on the other hand, remains only slightly lower than the specified tensile strength. The decision to use a pavement breaker should hence be taken with care, as its operation may induce tensile stresses in concrete sewer pipes which are of the same order of magnitude as the tensile strength of the concrete. Assessing the risk of damage by means of vibration guidelines based on the peak particle velocity (PPV) gives, for the particular cases considered, qualitatively similar results.  相似文献   

16.
The present paper investigates the mechanical behavior of buried steel pipelines, crossing an active strike-slip tectonic fault. The fault is normal to the pipeline direction and moves in the horizontal direction, causing stress and deformation in the pipeline. The interacting soil–pipeline system is modelled rigorously through finite elements, which account for large strains and displacements, nonlinear material behavior and special conditions of contact and friction on the soil–pipe interface. Considering steel pipelines of various diameter-to-thickness ratios, and typical steel material for pipeline applications (API 5L grades X65 and X80), the paper focuses on the effects of various soil and pipeline parameters on the structural response of the pipe, with particular emphasis on identifying pipeline failure (pipe wall wrinkling/local buckling or rupture). The effects of shear soil strength, soil stiffness, horizontal fault displacement, width of the fault slip zone are investigated. Furthermore, the influence of internal pressure on the structural response is examined. The results from the present investigation are aimed at determining the fault displacement at which the pipeline fails and can be used for pipeline design purposes. The results are presented in diagram form, which depicts the critical fault displacement, and the corresponding critical strain versus the pipe diameter-to-thickness ratio. A simplified analytical model is also developed to illustrate the counteracting effects of bending and axial stretching. The numerical results for the critical strain are also compared with the recent provisions of EN 1998-4 and ASCE MOP 119.  相似文献   

17.
在考虑管道的材料非线性和几何非线性、管土相互作用的非线性和管道接口非线性的基础上,建立了由管体梁单元、三向土弹簧单元和接口单元组成的埋地非连续管道在断层位移作用下的有限元模型,并以美国密歇根大学Junhee等(2010)所做的跨断层水泥管试验为原型进行了模拟分析。有限元结果给出的水泥管最终变形、接口转角、接口位移与实验结果基本一致,表明本文提出的跨断层埋地非连续管道抗震计算的有限元分析方法具有一定的合理性。有限元结果和试验结果都表明,在逆冲断层作用下,水泥管的破坏主要是因为在管道接口处的轴向压力和弯矩的耦合作用,在断层附近的管道接口承受了较大的转动和压缩位移。本文所提出的分析方法可推广到埋地非连续管道在其它永久地面变形作用下的有限元分析。  相似文献   

18.
穿越逆冲断层的埋地管道非线性反应分析   总被引:2,自引:0,他引:2  
金浏  李鸿晶 《地震学刊》2010,(2):130-134
穿越逆冲断层的埋地管道在地震作用下,容易发生局部屈曲或整体失稳等形式的破坏,研究逆冲断层作用下的埋地管道地震反应规律,对管道抗震设计及施工等具有重要的意义。本文将埋地管线及周围土体从半无限地球介质中取出,分别以空间薄壳单元和实体单元进行离散,采用非线性接触力学方法模拟管、土之间的滑移、分离及闭合现象;采用线性位移加载模拟断层的错动,考虑了系统初始应力状态的影响,对土体未开裂前的管土相互作用系统进行了拟静力数值分析;分析了位错量、土体刚度、埋设深度、径厚比及跨越角度对埋地管道反应的影响,得出了一些有益的结论。  相似文献   

19.
跨越断层埋地管道屈曲分析   总被引:19,自引:7,他引:19  
考虑埋地管道与土介质的相互作用,分析了管道作为薄壳结构的断层位错反应。管道模型化为四结点薄壳单元结构,土介质简化为弹塑性弹簧,建立了管土相互作用的有限元分析模型。计算中,考虑了管道与土介质的材料非线性,管道几何参数,断层类型及破碎带宽,断层滑移角,埋深,内压,温度应力等因素的影响,根据计算结果描绘出管道控制点位移,应力及应变时空分布曲线;比较不同参数下管道的反应特征,总结管道反应的变化规律。最终得到结论:在大位移断层运动作用下,埋地管道反应存在明显的非线性效应,断层类型,管道埋深等因素不能忽略。  相似文献   

20.
Simplified design methods for obtaining the maximum strain in pipelines crossing active faults proposed by Newmark, Kennedy and Wang have not considered the section deformation of the pipe. In this study, a new simplified method is developed for obtaining the maximum strain in steel pipes crossing faults considering non‐linearity of material and geometry of pipe section. It is assumed that the pipe will bend near the fault and the geometry of pipe in the longitudinal direction will change according to a bent deformation. On the other hand, the relation between maximum strain and bent angle has been obtained using a beam–shell hybrid FEM for different pipe‐fault conditions. The developed method can be used for calculating the maximum strains for fault‐crossing steel pipes with different angles of crossing both in tension and compression, by considering the deformation of the pipe cross‐section. Copyright © 2001 John Wiley Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号