首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
Gas hydrate was discovered in the Krishna–Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500 m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ∼2.5 km2 defined using seismic attributes of the seafloor reflection, as well as “seismic sweetness” at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ˜6 km NW of Site NGHP-01-10.  相似文献   

2.
Increased oil and gas exploration activity has led to a detailed investigation of the continental shelf and adjacent slope regions of Mahanadi, Krishna–Godavari (KG) and Cauvery basins, which are promising petroliferous basins along the eastern continental margin of India. In this paper, we analyze the high resolution sparker, subbottom profiler and multibeam data in KG offshore basin to understand the shallow structures and shallow deposits for gas hydrate exploration. We identified and mapped prominent positive topographic features in the bathymetry data. These mounds show fluid/gas migration features such as acoustic voids, acoustic chimneys, and acoustic turbid layers. It is interesting to note that drilling/coring onboard JOIDES in the vicinity of the mounds show the presence of thick accumulation of subsurface gas hydrate. Further, geological and geochemical study of long sediment cores collected onboard Marion Dufresne in the vicinity of the mounds and sedimentary ridges shows the imprints of paleo-expulsion of methane and sulfidic fluid from the seafloor.  相似文献   

3.
We report some main results of multidisciplinary investigations carried out within the framework of the Indian National Gas Hydrate Program in 2002–2003 in the Krishna–Godavari Basin offshore sector, east coast of India, to explore indicators of likely gas hydrate occurrence suggested by preliminary multi-channel seismic reflection data and estimates of gas hydrate stability zone thickness. Swath bathymetry data reveal new evidence of three distinct geomorphic units representing (1) a delta front incised by several narrow valleys and mass flows, (2) a deep fan in the east and (3) a WNW–ESE-trending sedimentary ridge in the south. Deep-tow digital side-scan sonar, multi-frequency chirp sonar, and sub-bottom profiler records indicate several surface and subsurface gas-escape features with a highly resolved stratification within the upper 50 m sedimentary strata. Multi-channel seismic reflection data show the presence of bottom simulating reflections of continuous to discrete character. Textural analyses of 76 gravity cores indicate that the sediments are mostly silty clay. Geochemical analyses reveal decreasing downcore pore water sulphate (SO4 2−) concentrations (28.7 to <4 mM), increasing downcore methane (CH4) concentrations (0–20 nM) and relatively high total organic carbon contents (1–2.5%), and microbial analyses a high abundance of microbes in top core sediments and a low abundance of sulphate-reducing bacteria in bottom core sediments. Methane-derived authigenic carbonates were identified in some cores. Combined with evidence of gas-escape features in association with bottom simulating reflections, the findings strongly suggest that the physicochemical conditions prevailing in the study area are highly conducive to methane generation and gas hydrate occurrence. Deep drilling from aboard the JOIDES Resolution during 2006 has indeed confirmed the presence of gas hydrate in the Krishna–Godavari Basin offshore.  相似文献   

4.
During the India National Gas Hydrate Program (NGHP) Expedition 01 in 2006 significant sand and gas hydrate were recovered at Site NGHP-01-15 within the Krishna–Godavari Basin, East Coast off India. At the drill site NGHP-01-15, a 5–8 m thick interval was found that is characterized by higher sand content than anywhere else at the site and within the KG Basin. Gas hydrate concentrations were determined to be 20–40% of the pore volume using wire-line electrical resistivity data as well as core-derived pore-fluid freshening trends. The gas hydrate-bearing interval was linked to a prominent seismic reflection observed in the 3D seismic data. This reflection event, mapped for about 1 km2 south of the drill site, is bound by a fault at its northern limit that may act as migration conduit for free gas to enter the gas hydrate stability zone (GHSZ) and subsequently charge the sand-rich layer. On 3D and additional regional 2D seismic data a prominent channel system was imaged mainly by using the seismic instantaneous amplitude attribute. The channel can be clearly identified by changes in the seismic character of the channel fill (sand-rich) and pronounced levees (less sand content than in the fill, but higher than in surrounding mud-dominated sediments). The entire channel sequence (channel fill and levees) has been subsequently covered and back-filled with a more mud-prone sediment sequence. Where the levees intersect the base of the GHSZ, their reflection strengths are significantly increased to 5- to 6-times the surrounding reflection amplitudes. Using the 3D seismic data these high-amplitude reflection edges where linked to the gas hydrate-bearing layer at Site NGHP-01-15. Further south along the channel the same reflection elements representing the levees do not show similarly large reflection amplitudes. However, the channel system is still characterized by several high-amplitude reflection events (a few hundred meters wide and up to ~ 1 km in extent) interpreted as gas hydrate-bearing sand intervals along the length of the channel.  相似文献   

5.
The Callovian–Oxfordian carbonates in the northeastern Amu Darya Basin of southeastern Turkmenistan, are composed of medium-to thick-bedded, mostly grainy limestones with various skeletal (bivalves, brachiopods, echinoderms, foraminifera, corals, and sponge) and non-skeletal grains (intraclasts, ooids, and peloids). The 6 microfacies types recognized in the Callovianand and 18 microfacies types in Oxfordian carbonates are grouped into two depositional phases, ramp and platform. The Callovian carbonates were deposited on a carbonate ramp, which evolved into a depositional platform in the Oxfordian. The main components of the Oxfordian platform margin complex are reefs and shoals. The principal reef builders are corals, algae and sponges. Regional tectonic movements, eustatic sea-level changes and sedimentation rates were the primary controlling factors of facies evolution during the Callovian–Oxfordian time in the northeastern Amu Darya Basin.  相似文献   

6.
The present work employs a genetic algorithm to carry out wave height forecasting in the Bay of Bengal. The use of empirical orthogonal function analysis allows the spatial extending of the forecast to the entire basin. The chaotic nature of the process limits the horizon of usable forecasts to 48 h in advance. Statistical evaluation of the quality of forecast leads to encouraging results. A major advantage of this method is that, once the forecast equations are derived, they can be used directly without the necessity of having a numerical wave model as an intermediate step.  相似文献   

7.
The distribution of the fugacity of CO2 ( $ f_{{{\text{CO}}_{ 2} }} $ ) and air–sea CO2 exchange were comprehensively investigated in the outer estuary to offshore shallow water region (lying adjacent to the Sundarban mangrove forest) covering an area of ~2,000 km2 in the northern Bay of Bengal during the winter. A total of ten sampling surveys were conducted between 1 December, 2011 and 21 February, 2012. Physico-chemical variables like sea surface temperature (SST), salinity, pH, total alkalinity (TAlk), dissolved inorganic carbon (DIC) and in vivo chlorophyll-a along with atmospheric variables were measured in order to study their role in controlling the CO2 flux. Surface water $ f_{{{\text{CO}}_{ 2} }} $ ranged between 111 and 459 μatm which correlated significantly with the SST (r = 0.71, p < 0.001, n = 62). Neither DIC nor TAlk showed any linear relationship with varying salinity in the estuarine mixing zone, demonstrating the significant presence of non-carbonate alkalinity. An overall net biological control on the surface $ f_{{{\text{CO}}_{ 2} }} $ distribution was established during the study, although no significant correlation was found between chlorophyll-a and $ f_{{{\text{CO}}_{ 2} }} $ (water). The shallow water region studied was mostly under-saturated with CO2 and acted as a sink for atmospheric CO2. The difference between surface water and atmospheric $ f_{{{\text{CO}}_{ 2} }} $ ( $ \Updelta f_{{{\text{CO}}_{ 2} }} $ ) ranged from ?274 to 69 μatm, with an average seaward flux of ?10.5 ± 12.6 μmol m?2 h?1. The $ \Updelta f_{{{\text{CO}}_{ 2} }} $ and hence the air–sea CO2 exchange was primarily regulated by the variation in sea surface $ f_{{{\text{CO}}_{ 2} }} $ , since atmospheric $ f_{{{\text{CO}}_{ 2} }} $ varied over a comparatively narrow range of 361.23–399.05 μatm.  相似文献   

8.
9.
本文使用一种基于SLA数据的涡旋识别方法,通过22年的AVISO高度计测高数据对孟加拉湾的中尺度涡特征进行了研究。本文主要分析了孟加拉湾涡旋的地理分布、涡旋极性、涡旋生命周期和传播距离、涡旋产生和消失位置、涡旋传播方向和移动轨迹、涡旋运动特征、涡旋属性的演化以及涡旋活动的季节和年际变化等特性。涡旋主要分布在孟加拉湾西部海域,并且大部分涡旋向西移动。涡旋极性分布显示气旋涡更经常出现在湾的西北部和南部,而反气旋涡主要出现在湾的东部。在22年间,共追踪探测到生命周期超过30天的气旋涡565个、反气旋涡389个;对所有生命周期和传播距离而言都是气旋涡数量居多。所有观测到的涡旋的运动属性分析显示气旋涡的涡旋平均振幅大于反气旋涡;对平均半径和平均移动速度而言,气旋涡和反气旋涡相差不大。而且,涡旋属性演化显示生命周期超过90天的涡旋具有明显的双阶段演化特征,包括一个前50天的涡旋成长阶段和一个50天之后的涡旋消亡阶段。针对涡旋活动的季节变化,气旋涡在春季居多而反气旋涡在夏季较多;长生命周期的涡旋季节分布显示在孟加拉湾涡旋活动具有明显的季节分布特征。涡旋数量的年际变化与EKE变化有一个明显的负相关。  相似文献   

10.
《Marine and Petroleum Geology》2012,29(10):1806-1816
The Krishna–Godavari (KG) offshore basin is one of the promising petroliferous basins of the eastern continental margin of India. Drilling in this basin proved the presence of gas hydrate deposits in the shallow marine sediments beyond 750 m water depths, and provided lithologic and stratigraphic information. We obtained multibeam swath bathymetry covering an area of about 4500 km2 in water depths of 280–1800 m and about 1260 line km of high resolution seismic (HRS) records. The general lithology of midslope deposits is comprised of nannofossil-rich clay, nannofossil-bearing clay and foraminifera-bearing clay. The HRS records and bathymetry reveal evidence of slumping and sliding of the upper and midslope sediments, which result in mass transport deposits (MTD) in the northwestern part of the study area. These deposits exhibit 3–9.5 km widths and extend 10–13 km offshore. The boundaries of the MTDs are often demarcated by sharp truncation of finely layered sediments (FLS) and the MTDs are characterized by acoustically transparent zones in the HRS data. Average thickness of recent MTDs varies with depth, i.e., in the upper slope, the thickness is about 45 m, while in the lower slope it is about 60 m, and in deeper offshore locations they attain a maximum thickness of about 90 m. A direct indication for slumping and mass transportation of deposits is provided by the age reversal in 14C AMS dates observed in a sediment core located in the midslope region. Seismic profiling signatures provide indications of fluid/gas movement. We propose that the presence of steep topographic gradients, high sedimentation rates, a regional fault system, diapirism, fluid/gas movement, and neotectonic activity may have facilitated the slumping/sliding of the upper slope sediments in the KG offshore basin.  相似文献   

11.
The Krishna–Godavari (KG) offshore basin is one of the promising petroliferous basins of the eastern continental margin of India. Drilling in this basin proved the presence of gas hydrate deposits in the shallow marine sediments beyond 750 m water depths, and provided lithologic and stratigraphic information. We obtained multibeam swath bathymetry covering an area of about 4500 km2 in water depths of 280–1800 m and about 1260 line km of high resolution seismic (HRS) records. The general lithology of midslope deposits is comprised of nannofossil-rich clay, nannofossil-bearing clay and foraminifera-bearing clay. The HRS records and bathymetry reveal evidence of slumping and sliding of the upper and midslope sediments, which result in mass transport deposits (MTD) in the northwestern part of the study area. These deposits exhibit 3–9.5 km widths and extend 10–13 km offshore. The boundaries of the MTDs are often demarcated by sharp truncation of finely layered sediments (FLS) and the MTDs are characterized by acoustically transparent zones in the HRS data. Average thickness of recent MTDs varies with depth, i.e., in the upper slope, the thickness is about 45 m, while in the lower slope it is about 60 m, and in deeper offshore locations they attain a maximum thickness of about 90 m. A direct indication for slumping and mass transportation of deposits is provided by the age reversal in 14C AMS dates observed in a sediment core located in the midslope region. Seismic profiling signatures provide indications of fluid/gas movement. We propose that the presence of steep topographic gradients, high sedimentation rates, a regional fault system, diapirism, fluid/gas movement, and neotectonic activity may have facilitated the slumping/sliding of the upper slope sediments in the KG offshore basin.  相似文献   

12.
《Marine and Petroleum Geology》2012,29(10):1768-1778
During the Indian National Gas Hydrate Program (NGHP) Expedition 01, a series of well logs were acquired at several sites across the Krishna–Godavari (KG) Basin. Electrical resistivity logs were used for gas hydrate saturation estimates using Archie’s method. The measured in situ pore-water salinity, seafloor temperature and geothermal gradients were used to determine the baseline pore-water resistivity. In the absence of core data, Arp’s law was used to estimate in situ pore-water resistivity. Uncertainties in the Archie’s approach are related to the calibration of Archie coefficient (a), cementation factor (m) and saturation exponent (n) values. We also have estimated gas hydrate saturation from sonic P-wave velocity logs considering the gas hydrate in-frame effective medium rock-physics model. Uncertainties in the effective medium modeling stem from the choice of mineral assemblage used in the model. In both methods we assume that gas hydrate forms in sediment pore space. Combined observations from these analyses show that gas hydrate saturations are relatively low (<5% of the pore space) at the sites of the KG Basin. However, several intervals of increased saturations were observed e.g. at Site NGHP-01-03 (Sh = 15–20%, in two zones between 168 and 198 mbsf), Site NGHP-01-05 (Sh = 35–38% in two discrete zone between 70 and 90 mbsf), and Site NGHP-01-07 shows the gas hydrate saturation more than 25% in two zones between 75 and 155 mbsf. A total of 10 drill sites and associated log data, regional occurrences of bottom-simulating reflectors from 2D and 3D seismic data, and thermal modeling of the gas hydrate stability zone, were used to estimate the total amount of gas hydrate within the KG Basin. Average gas hydrate saturations for the entire gas hydrate stability zone (seafloor to base of gas hydrate stability), sediment porosities, and statistically derived extreme values for these parameters were defined from the logs. The total area considered based on the BSR seismic data covers ∼720 km2. Using the statistical ranges in all parameters involved in the calculation, the total amount of gas from gas hydrate in the KG Basin study area varies from a minimum of ∼5.7 trillion-cubic feet (TCF) to ∼32.1 TCF.  相似文献   

13.
Currently, global shale gas exploration and exploitation are focused on marine shale. Recently, major shale gas-oil breakthroughs have been made within continental and marine–continental transitional shale in China. This study will show how transitional shale is of great importance. Based on geological field surveys, core observations, thin section analysis, organic geochemistry and X-ray diffraction, we systematically studied the basic geological characteristics (including lithology, mineral composition, and organic geochemistry) of this transitional shale. By comparative analysis of well logging data from 260 wells in the Taiyuan–Shanxi shale, we will show that these methods are effective for identifying organic-rich shale from conventional well logs and determining its thickness distribution in the Carboniferous–Permian strata of the Taiyuan–Shanxi transitional coal-bearing formation.The results indicate that the Taiyuan–Shanxi shale has a high TOC (most 2%–4%) and that the lithology is primarily carbonaceous shale with type Ⅱ2-Ⅲ kerogens. The high thermal maturation (Ro ≥ 1.1%) favors the generation of gas. The mineral components primarily include clay minerals, quartz, and plagioclase with a moderate brittle mineral content (47 wt.%) and high clay mineral content (51 wt.%) dominated by kaolinite (43%) and mixed-layer illite-smectite (31%). The transitional organic-rich shale on conventional log curves is generally characterized by higher gamma ray (GR), neutron porosity (CNL), acoustic travel time (AC), resistivity (Rt), potassium (K), and uranium (U) readings and a lower density (DEN), photoelectric absorption index (PE) and thorium-uranium ratio (TH/U). After analyzing the log response characteristics of the organic-rich shale, the most sensitive logging curves (such as CNL, AC, DEN, PE and U) were optimized to conduct logging overlays and to construct cross-plots to qualitatively identify organic-rich shale. The identified organic-rich shale amalgamates in the middle-upper member of the Taiyuan Formation and the lower member of the Shanxi Formation consistent with the results of the TOC analysis and practical gas logging. Based on the qualitative evaluation methods of the modified △LogR and a multivariate linear regression model, we calculated the TOC of shale wells in the Taiyuan–Shanxi formation. From this we calculated the characteristic values of organic-rich shale thickness. The results indicate that organic-rich shale in the Taiyuan formation is thicker than that in the Shanxi formation. Additionally, the thickness of organic-rich shale within lagoons and deep reed swamp facies are much thicker (25–35 m and 40–80 m) than other structural profile types, whereas their lateral distribution is less than that of marine shale. The relatively small continuous thickness of the single shale layer and high clay content may have negative effects for developing the shale gas potential.  相似文献   

14.
The observed variability of the Kelvin waves and their propagation in the equatorial wave guide of the Indian Ocean and in the coastal wave guides of the Bay of Bengal (BoB) and the southeastern Arabian Sea (AS) on seasonal to interannual time scales during years 1993–2006 is examined utilizing all the available satellite and in-situ measurements. The Kelvin wave regime inferred from the satellite-derived sea surface height anomalies (SSHA) shows a distinct annual cycle composed of two pairs of alternate upwelling (first one occurring during January–March and the second one occurring during August–September) and downwelling (first one occurring during April–June and the second one occurring during October–December) Kelvin waves that propagate eastward along the equator and hit the Sumatra coast and bifurcate. The northern branches propagate counterclockwise over varied distances along the coastal wave guide of the BoB. The potential mechanisms that contribute to the mid-way termination of the first upwelling and the first downwelling Kelvin waves in the wave guide of the BoB are hypothesized. The second downwelling Kelvin wave alone reaches the southeastern AS, and it shows large interannual variability caused primarily by similar variability in the equatorial westerly winds during boreal fall. The westward propagating downwelling Rossby waves triggered by the second downwelling Kelvin wave off the eastern rim of the BoB also shows large interannual variability in the near surface thermal structure derived from SODA analysis. The strength of the equatorial westerlies driven by the east–west gradient of the heat sources in the troposphere appears to be a critical factor in determining the observed interannual variability of the second downwelling Kelvin wave in the wave guides of the equatorial Indian Ocean, the coastal BoB, and the southeastern AS.  相似文献   

15.
The shallow-marine carbonate rocks of the Jandaíra Formation have been subject to significant permeability variations through time due to various events of fracturing and calcite cementation. As a consequence, the Jandaíra Formation accommodated fluid flow only during specific moments in time. We reconstructed these episodes of fluid flow based on isotope characterizations and microscope characteristics of calcite veins and host rock cements. The Jandaíra Formation, which belongs to the post-rift sequence of the Potiguar Basin in northeast Brazil, was deposited from the Turonian onward until a marine regression exposed it in the Campanian. Due to the subaerial exposure, meteoric waters flushed out marine connate waters, leading to an event of early diagenesis and full cementation of the Jandaíra Formation. Fluid flow through the resulting impermeable carbonate formation appears to be closely related to fracturing. Fracturing in the Late Cretaceous induced a drastic increase in permeability, giving rise to extensive fluid circulation. Host rock dissolution associated to the circulating fluids led to calcite vein cementation within the fracture network, causing it to regain an impermeable and sealing character. In the research area, fluid flow occurred during early burial of the Jandaíra Formation at estimated depths of 400–900 m. This study documents the first application of fluid inclusion isotope analysis on vein precipitates, which allowed full isotopic characterization of the paleo-fluids responsible for calcite vein cementation. The fluid inclusion isotope data indicate that upwelling of groundwater from the underlying Açu sandstones provided the fluids to the fracture network. In Miocene times, renewed tectonic compression of a lower intensity created a secondary fracture network in the Jandaíra Formation. The density of this fracture network, however, was too low to induce a new episode of fluid circulation. As a result, this tectonic event is associated with the development of barren extensional fractures.  相似文献   

16.
The 85°E Ridge, located in the Bay of Bengal of the northeastern Indian Ocean is an enigmatic geological feature as it possesses unusual geophysical signatures. The ridge's internal structure and mode of eruptions are unknown due to lack of deep seismic reflection and borehole data control. Here, we analyze 10 km of long-streamer seismic reflection data to unravel the ridge's internal structure, and thereby to enhance the understanding of how the ridge was originated and grew over a geologic time. Seismic facies analysis reveals the ridge structure consisting of volcanic vent and several stratigraphic units including packs of prograding clinoforms. The clinoform sequences are interpreted as volcanic successions, and led to the formation of lava-delta fronts. Interpreted features of lava-fed deltas and intervening erosional surfaces, and mass flows along ridge flanks suggest that the 85°E Ridge is a volcanic construct, and was built by both subaqueous and multiphase sub-marine volcanism during the Late Cretaceous (approximately from 85 to 80 Ma). At later time, from Oligocene-Miocene (∼23 Ma) onwards the ridge was buried under the thick sediments of the Bengal Fan system.  相似文献   

17.
Izvestiya, Atmospheric and Oceanic Physics - The goal of this study is to identify the properties of the rock–fluid system in the subduction zone of lithospheric plates using the example of...  相似文献   

18.
A brief review of the studies performed by Russian scientists in dynamic meteorology in 2003–2006 is presented. This review is based on the material prepared by the Commission on Dynamic Meteorology of the National Geophysical Committee of the Russian Academy of Sciences and included in the general information report of the Section of Meteorology and Atmospheric Sciences at the 24th General Assembly of the International Union of Geodesy and Geophysics.  相似文献   

19.
A brief review of the results of investigations carried out by Russian scientists in the field of dynamic meteorology in 2007–2010 is presented. This review is based on the information prepared by the Commission on the Dynamic Meteorology of the National Geophysical Committee, Russian Academy of Sciences, and included in the general information report of the Section of Meteorology and Atmospheric Sciences at the XXV General Assembly of the International Union of Geodesy and Geophysics.  相似文献   

20.
Mikhailova  N. V.  Bayankina  T. M.  Sizov  A. A. 《Oceanology》2021,61(4):443-449
Oceanology - The paper examines the influence of the main mode of interannual variability of the North Atlantic climate system—the North Atlantic Oscillation (NAO)—on the hydrophysical...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号