首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
台湾地区强震发生的构造环境与地震活动性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
郑魁香 《地震地质》2002,24(3):400-411
台湾中部造山带前缘呈现为一弧形逆冲构造体系 ,每个弧形带分别由多个不同尺度但各自独立的次级弧形构造组成 ,而每一个弧形构造都有其各自独立的几何学、运动学和动力学特征 ,是典型的褶皱 -逆冲带 ,但同时各个次级弧形构造间却又有自相似特性。在对台湾中部地区弧形逆冲构造体系的空间位置与地震活动间的关系分析基础上 ,归纳出中部弧型逆冲地震带的地震活动特征 ,以台湾东西地震区的构造划分和北部、中部与南部不同的弧陆构造现象 ,描述了台湾地区的近代地震活动 (190 0年以来的 10 0年间 )与现代地震地质构造的关系  相似文献   

2.
1 An out-of-line northwest trending tectonic beltin the middle part of the Yanshan Orogenic Belt The tectonic framework of the intraplate YanshanOrogenic Belt is dominated by east-west and northeastextending structures as revealed by many geologists.There lies, however, a 100-km-long enigmatic out-of-line northwest extending tectonic complex in the mid-dle part of the Yanshan Orogenic Belt (fig. 1). Theresearch on the geometry, kinematics, timing of thiscomplex tectonic belt and its r…  相似文献   

3.
陈社发  邓起东 《地震地质》1994,16(4):413-421
川西前陆盆地是从晚三叠世晚期(须家河期)以来开始发育的,其形成是龙门山推覆构造带自北西往南东持续推覆的结果。本区的构造发展经历了伸展裂陷、构造反转和持续推覆3个主要阶段。构造变形的力源主要来自松潘-甘孜褶皱带的北东~南西向收缩派生的南东向挤压  相似文献   

4.
帕米尔北缘弧形推覆构造带东段由强烈活动的艾卡尔特弧形活动褶皱-逆断裂带与卡兹克阿尔特弧形活动褶皱-逆断裂带南、北两条巨型边缘弧形构造带及其间的推覆构造构成。每个弧形带分别由多个不同级别的、相对独立的次级弧形构造组成。每个弧形构造实际上就是一个独立的逆冲推覆席体,都有其各自独特的几何学、运动学、动力学特征,但同时又具有自相似性特征。独立地震破裂区或形变带与独立活动的弧形推覆构造可能具有一定的对应关系  相似文献   

5.
巴基斯坦北Potwar形变区地震的震源机制研究   总被引:2,自引:0,他引:2       下载免费PDF全文
巴基斯坦北Potwar形变区是西北喜马拉雅褶皱逆冲带前陆区的一部分,绘制了该区的地震活动性图. 与相邻地区比较,该区地震并不活跃,没有显示出与地表地质构造相关的清晰地震活动图象. 做出了4次地震的震源机制解. 结果表明,有3次地震是左旋走滑断层活动,另一次地震是逆断层活动. 地震震源机制解的P轴方向为NW-SE和NE-SW. 现今的构造形变很可能也包括基底的形变.   相似文献   

6.
西昆仑东南构造样式及其对增生弧造山作用的意义   总被引:4,自引:0,他引:4       下载免费PDF全文
西昆仑东南甜水海地区表现为由东北往西南以麻扎-康西瓦冲断系、泉水沟冲断系、甜水海冲断系和南南西边缘盲冲断系而限定数个招皱-逆冲构造带或者褶皱构造带的构造格局构造变形样式总体上以向南逆冲的褶席和逆冲叠瓦扇为特征,以由东北往西南构造变形样式依次出现复式背形堆垛和叠瓦扇组合,到侏罗山式语皱构造带的变化其中用皱样式依次出现大型紧闭平卧卜倒转招皱、中尺度尖棱招皱和具圆筒状转折端的开阔格皱,而断层变化则由断层面产状几乎水平的多重复杂冲精席系到缓倾的顶板冲断层-底板冲断层组合样式到叠瓦扇冲断层.大地构造相分析表明研究区构造变形强度自北东向南西呈递减趋势,与库地一麻扎一带的增生楔杂岩可能组成了复杂的增生楔造山作用的增生楔和前陆招皱冲断带的复杂组合因此,研究区的构造格局并非简单的“塔什库尔干一甜水海地体”,而是复杂的增生弧造山带.  相似文献   

7.
Abstract K–Ar age determinations were carried out on phengite separates from pelitic schists collected systematically from the Sanbagawa southern marginal belt and the associated area. The petrography and phengite chemistry by electron probe micro-analyzer (EPMA) revealed the existence of detrital white micas in the schist that have an extremely older age (108 Ma) in comparison with the neighboring schists (88 Ma) without any detrital mica. The ages become gradually older from the north ( ca 78 Ma) to the south ( ca 90 Ma) except for some samples that contain detrital micas and/or have been reactivated thermally by intrusives. The age is interpreted as an exhumation-cooling age that has been controlled by the ductile deformation of the host rocks that have never experienced a culmination temperature higher than 350°C which corresponds to the closure temperature of the K–Ar phengite system. The southward aging of the recorded ages in the extensive chlorite zone of the central Shikoku, from the Dozan river area of the north ( ca 65 Ma) to the study area of the south ( ca 85 Ma) through the Asemi river area ( ca 75 Ma), is explained in terms of increasing exhumation/cooling rates of the host rocks from north to south. The phengite K–Ar ages in the pelitic schists from the Kyomizu tectonic zone, which is classically considered as a remarkable thrusting shear zone, have no significant difference in comparison with that of the neighboring schists. This fact suggests that the latest stage of brittle deformation during exhumation/uplift has not significantly affected the ages of phengite in the schists.  相似文献   

8.
龙门山及其邻区的构造和地震活动及动力学   总被引:156,自引:37,他引:156       下载免费PDF全文
邓起东  陈社发 《地震地质》1994,16(4):389-403
论述了龙门山推覆构造带、岷山隆起、成都平原和龙泉山地区的构造和地震活动,讨论了构造活动特点和演化历史,并分析了它们的形成机制和动力学问题  相似文献   

9.
焉耆盆地北缘和静逆断裂-褶皱带第四纪变形   总被引:5,自引:5,他引:0       下载免费PDF全文
焉耆盆地是塔里木盆地东北缘天山山间的重要坳陷区,盆地北缘发育的和静逆断裂-褶皱带是一条现今活动强烈的逆断裂-褶皱带,对其第四纪以来缩短量和隆升量的计算有利于分析该区域的构造活动情况,对缩短速率和隆升速率的估计可以与天山造山带其他区域的活动速率进行横向对比,从而反映出焉耆盆地在天山晚新生代构造变形的作用。在深部资料不足的情况下,对背斜形态完整、构造样式简单的和静逆断裂-褶皱带,利用地表可获得的地层和断层产状,通过恢复褶皱几何形态,计算褶皱的缩短量、隆升量和断层滑动量,得到逆断裂-褶皱带早更新世晚期(1.8Ma)、中更新世(780ka)和晚更新世中期(80ka)以来的缩短量分别为1.79km、0.88km和26m,初步估计的缩短速率分别为0.99mm/a、1.13mm/a和0.33mm/a。显示和静逆断裂-褶皱带自开始形成以来构造活动强度并不一致。与地壳形变观测结果对比,作为南天山东段最主要的坳陷区,焉耆盆地吸收了这一区域(86°~88°E)的大部分地壳缩短,且主要表现为盆地北缘新生逆断裂-褶皱带的强烈变形。  相似文献   

10.
Abstract The central part of the Kokchetav Massif is exposed in the Chaglinka–Kulet area, northern Kazakhstan. The ultrahigh-pressure–high-pressure (UHP–HP) metamorphic belt in this area is composed of four subhorizontal lithological units (Unit I–IV) metamorphosed under different pressure–temperature (P–T) conditions. The coesite- and diamond-bearing Unit II, which consists mainly of whiteschist and eclogite blocks, is tectonically sandwiched between the amphibolite-dominant Unit I on the bottom and the orthogneiss-dominant Unit III on the top. Total combined thickness of these units is less than 2 km. The rocks of the UHP–HP metamorphic belt are affected by at least four deformational events post-dating peak metamorphism: (i) The earliest penetrative deformation is characterized by non-coaxial ductile flow in a NW–SE direction. The shear sense indicators in oriented samples from Unit I provide consistent top-to-the-northwest motions and those from Unit III provide top-to-the-southeast, south or south-west motions; (ii) Upright folds with subhorizontal enveloping surface refold earlier foliations including shear-indicators throughout the metamorphic belt; (iii) The third stage of deformation is denoted by large-scale bending around a subvertical axis; and (iv) Late localized fault (or shear) zones cut all earlier structures. The fault zones have subvertical shear planes and their displacements are essentially strike-slip in manner. The subhorizontal structure and opposite shear directions between Unit I and Unit III during the earlier deformation stage suggest north-westward extrusion of UHP Unit II.  相似文献   

11.
库车坳陷活动构造的基本特征   总被引:12,自引:1,他引:11       下载免费PDF全文
简要介绍了南天山山前库车坳陷的主要活动逆断裂-背斜带的分布特征、构造样式、最新活动证据等资料。平面上库车坳陷呈一“眼”状,由南北两大背斜带构成。北部靠近南天山为一套向南逆冲的逆断裂-背斜系统,最新活动的逆断裂-背斜带为喀桑托开逆断裂-背斜带;南部靠近塔里木盆地的是一套向北逆冲的逆断裂-背斜系统,最新活动的主要是秋里塔格逆断层-背斜带及其以南的亚肯背斜等新背斜;南北两大背斜系统夹持着拜城盆地。坳陷区北部的喀桑托开断裂与坳陷区南部的秋里塔格断裂带是区内最主要的活动断裂,前者长逾60km,后者长近200km,沿这两条断裂带均发现了清楚的断裂露头和古地震形变带。此外,在秋里塔格背斜带以南发育了更新的、规模较小的背斜,表明库车坳陷区的褶皱作用继续向盆地方向扩展。石油地震剖面资料显示,库车坳陷南北两侧的褶皱作用均受盖层与基底之间的滑脱断层控制,属于山前的薄皮构造。滑脱面的深度可达10km左右。这是库车坳陷主要的发震层  相似文献   

12.
川东弧形带三维构造扩展的AFT记录   总被引:3,自引:1,他引:2       下载免费PDF全文
对川东弧形褶皱带北段、中段和南段的三条剖面,进行了7件样品的磷灰石裂变径迹(AFT)测试,结合前人已发表的4件样品,分析模拟了主要背斜的隆升-剥露热历史.结果表明川东弧形带主体构造变形时间为135→65 Ma,即早白垩世早期到晚白垩世晚期.进而建立并对比了三条剖面的构造变形时序,揭示出川东弧形带的三维构造扩展历史:(1) 平行于构造线走向,表现为从中心向两翼的构造扩展,弧形带中段的构造变形最早,起始时间为早白垩世早期(约135 Ma),北段和南段的变形较晚,起始时间为早白垩世晚期(约100 Ma);(2) 垂直于构造线走向,在弧形带北段和中段均表现为由东向西的构造扩展,而在弧形带南段,由于受到前缘华蓥山断裂的影响,表现为自西向东的变形时序.川东弧形带的三维构造扩展历史暗示了"弯山构造"的成因模式,以及华蓥山先存断裂对弧形构造的限制作用.  相似文献   

13.
Through detailed field mapping, the tectonic deformation in the front area of the Tianjingshan fault zone is discussed in this paper. The result shows that there are two Quaternary thrust (oblique) fault-fold belts, namely: the Miaoshan and Hongjianshan fault-fold belts, in the front area of the south wall's strike-slip movement of the Tianjingshan fault zone. The Hejiakouzi Quaternary anticline, which is a part of the Miaoshan fault-fold belt, is mainly discussed. It is pointed out that the fold began to grow in the middle part near Hejiakouzi in the mid-late stage of middle Pleistocene epoch and then gradually developed towards the ends in late Quaternary. Based on the Cenozoic structural features, the genesis of the Miaoshan and Hongjianshan fault-fold belts and the kinematic relation they bear with the Tianjingshan fault zone are analyzed.  相似文献   

14.
The early stages of southern Apennine development have been unraveled by integrating the available stratigraphic record provided by synorogenic strata (of both foredeep and wedge-top basin environments) with new structural data on the Liguride accretionary wedge cropping out in the Cilento area, southern Italy. Our results indicate that the final oceanic subduction stages and early deformation of the distal part of the Apulian continental margin were controlled by dominant NW–SE shortening. Early Miocene subduction-accretion, subsequent wedge emplacement on top of the Apulian continental margin and onset of footwall imbrication involving detached Apulian continental margin carbonate successions were followed by extensional deformation of the previously ‘obducted’ accretionary wedge. Wedge thinning also enhanced the development of accommodation space, filled by the dominantly siliciclastic Cilento Group deposits. The accretionary wedge units and the unconformably overlying wedge-top basin sediments experienced renewed NW–SE shortening immediately following the deposition of the Cilento Group (reaching the early Tortonian), confirming that the preceding wedge thinning represented an episode of synorogenic extension occurring within the general framework of NW–SE convergence. The documented Early to the Late Miocene steps of southern Apennine development are clearly distinct with respect to the subsequent (late Tortonian-Quaternary) stages of fold and thrust belt evolution coeval with Tyrrhenian back-arc extension, which were characterized by NE-directed thrusting in the southern Apennines.  相似文献   

15.
磁组构与构造变形   总被引:1,自引:0,他引:1       下载免费PDF全文
王开  贾东  罗良  董树文 《地球物理学报》2017,60(3):1007-1026
磁组构通常指磁化率各向异性,即AMS(Anisotropy of Magnetic Susceptibility),是一种重要的岩石组构,是弱变形沉积岩地区灵敏的应变指示计.近年来,AMS在造山带及前陆地区的广泛应用为构造变形研究提供了极大的帮助,同时提升了该方法的理论认识.本文在研读最新相关文献与著作的基础上,结合笔者及研究团队在龙门山地区获得的磁组构研究成果,综述了磁组构在沉积岩地区构造变形研究中的应用进展,并基于现有的研究认识对关键问题进行讨论,提出以下几点认识:(1)磁性矿物分析是AMS研究的关键,应结合多种岩石磁学实验及光学与电子显微构造研究手段展开详细的磁性矿物学分析;(2)磁化率椭球与应变椭球的对应主轴在绝大多数情况下相互平行,但在不同期次、不同种类复杂的磁性矿物组成,或者多期次构造变形的影响下,AMS与应变的关系相对复杂,应比对高场和低温AMS及非磁滞剩磁各向异性(AARM)测试结果,获得不同矿物的优选定向特征,并对获得的组构进行分期;(3)AMS可以揭示造山带及其前陆地区的构造演化历史,并且是分析断层相关褶皱的有限应变特征和变形机制的重要方法,同时也是厘定断裂带变形性状和期次及运动学分析的有效手段;(4)磁组构形成于成岩作用早期或构造变形的最早阶段,能很好地记录褶皱和逆冲作用之前的平行层缩短变形,因此可以揭示同沉积阶段的古构造应力方向.后期足够强烈的构造变形能局部改造或彻底掩盖先存AMS记录,构造流体有关的同构造期结晶矿物或先存矿物的重结晶导致的再定向被认为是其根本原因;(5)斜交磁线理是一种特殊的磁组构类型,反映了区域构造叠加或多期构造变形作用或隐伏斜向逆冲等可能的构造过程,有必要结合多方面的地质证据对其成因作出合理解释.  相似文献   

16.
沂沭大陆裂谷的生成与演化   总被引:18,自引:5,他引:13       下载免费PDF全文
本文从沂沭断裂带的大地构造背景、边界断裂、地貌、沉积岩相、火山和地震活动、地壳深部结构、重力、地热等的分析,说明沂沭断裂是一条中生代的裂谷,并给出了裂谷的形成机制及其演化特征  相似文献   

17.
Tianshan is one of the longest and most active intracontinental orogenic belts in the world. Due to the collision between Indian and Eurasian plates since Cenozoic, the Tianshan has been suffering from intense compression, shortening and uplifting. With the continuous extension of deformation to the foreland direction, a series of active reverse fault fold belts have been formed. The Xihu anticline is the fourth row of active fold reverse fault zone on the leading edge of the north Tianshan foreland basin. For the north Tianshan Mountains, predecessors have carried out a lot of research on the activity of the second and third rows of the active fold-reverse faults, and achieved fruitful results. But there is no systematic study on the Quaternary activities of the Xihu anticline zone. How is the structural belt distributed in space?What are the geometric and kinematic characteristics?What are the fold types and growth mechanism?How does the deformation amount and characteristics of anticline change?In view of these problems, we chose Xihu anticline as the research object. Through the analysis of surface geology, topography and geomorphology and the interpretation of seismic reflection profile across the anticline, we studied the geometry, kinematic characteristics, fold type and growth mechanism of the structural belt, and calculated the shortening, uplift and interlayer strain of the anticline by area depth strain analysis.
In this paper, by interpreting the five seismic reflection profiles across the anticline belt, and combining the characteristics of surface geology and geomorphology, we studied the types, growth mechanism, geometry and kinematics characteristics, and deformation amount of the fold. The deformation length of Xihu anticline is more than 47km from west to east, in which the hidden length is more than 14km. The maximum deformation width of the exposed area is 8.5km. The Xihu anticline is characterized by small surface deformation, simple structural style and symmetrical occurrence. The interpretation of seismic reflection profile shows that the deep structural style of the anticline is relatively complex. In addition to the continuous development of a series of secondary faults in the interior of Xihu anticline, an anticline with small deformation amplitude(Xihubei anticline)is continuously developed in the north of Xihu anticline. The terrain high point of Xihu anticline is located about 12km west of Kuitun River. The deformation amplitude decreases rapidly to the east and decreases slowly to the west, which is consistent with the interpretation results of seismic reflection profile and the calculation results of shortening. The Xihu anticline is a detachment fold with the growth type of limb rotation. The deformation of Xihu anticline is calculated by area depth strain analysis method. The shortening of five seismic reflection sections A, B, C, D and E is(650±70) m, (1 070±70) m, (780±50) m, (200±40) m and(130±30) m, respectively. The shortening amount is the largest near the seismic reflection profile B of the anticline, and decreases gradually along the strike to the east and west ends of the anticline, with a more rapidly decrease to the east, which indicates that the topographic high point is also a structural high point. The excess area caused by the inflow of external material or outflow of internal matter is between -0.34km2 to 0.56km2. The average shortening of the Xihubei anticline is between(60±10) m and(130±40) m, and the excess area caused by the inflow of external material is between 0.50km2 and 0.74km2. The initial locations of the growth strata at the east part is about 1.9~2.0km underground, and the initial location of the growth strata at the west part is about 3.7km underground. We can see the strata overlying the Xihu anticline at 3.3km under ground, the strata above are basically not deformed, indicating that this section of the anticline is no longer active.  相似文献   

18.
Foliated garnet-bearing granite, usually associated with high pressure and ultrahigh -pressure (UHP) metamophic rocks, is a particular rock-type extensively exposed in the Mesozoic Dabie-Sulu orogenic belt of China. This study focuses on deformation features and SHRIMP zircon dating of foliated garnet granite in a high-pressure metamorphic unit from Huwan, western Dabie Mountains in order to resolve discrepancies in current versions of its petrogenesis and structural evolution. SHRIMP dating reveals a zircon age of 762 ± 15 Ma (MSWD=1.7) for Huwan granites, representing the Middle to Late Neoproterozoic age of intrusion and crystallization. Field and microstructural studies show that the Huwan granite body underwent multiple-stage deformation. The deformation was manifested by an early stage of rootless folding and imposition of relict foliation (S1); an Indosinian main stage marked by imposition of north-dipping penetrative gneissosity (S2) and development of ductile shear zones under NNE-SSW directed compression; and a final Indosinian stage of southward thrusting of the Huwan high-pressure unit. Shallow level extension prevailed after the Late Triassic, giving rise to south-dipping thrust faults and north-dipping normal faults. Supported by the National Natural Science Foundation of China (Grant Nos. 40802046 and 40334037) and the Project of Science & Technology Research and Development from Sinopec (Grant No. P02009)  相似文献   

19.
Since the latest Oligocene–earliest Miocene the building of the Sicilian fold and thrust belt has been accompanied by development of a “peripheral” foreland basin system which migrated toward the foreland. In north-western Sicily, the sedimentary record of the foreland basin system migration is represented by a stratigraphic succession made up of several lithostratigraphic units, bounded by regional unconformity surfaces, deposited recording at least four main sedimentary phases, each characterized by the development of different types of syntectonic basins.  相似文献   

20.
As is well known that many decollement layers were developed in the Longmenshan thrust belt,Si-chuan Basin,China. Through field investigation,explanation of seismic profiles and analysis of the balanced sections,we can divide the decollement zones into 3 categories: (1) the deep level decolle-ment zones,including the crust-mantle decollement layer,intracrustal decollement layer,and presinian basal decollement layer. The main structural styles of their deformation are the crust-mantle decoup-ling detachment deformation,the basal ductile shear deformation,etc.; (2) the middle level decollement zones,including the Cambrian-Ordovician decollement layer,the Silurian decollement layer,etc.,the main structural styles of their deformation are the isopachous fold,the angular fold,the saddle struc-ture,and the combination styles of them; and (3) the shallow level decollement zones,including the Xujiahe Formation decollement layer of Upper Triassic and the Jurassic decollement layers,the main structural styles of their deformation are the thrust-nappe tectonic,the pop-up,the triangle zone ,the duplex,etc. Multi-level decollement zones not only made the Longmenshan thrust belt develop many different deformation styles from deep place to shallow place,but also made some local areas have the superimposition of the tectonic deformation apparently. This study indicates that the multi-level de-collement zones have a very important effect on the shaping and evolution of the Longmenshan thrust belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号