首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tight grainstones, although widespread throughout the Lower Triassic Feixianguan Formation in the Sichuan Basin, have received little attention, in part, due to their lower porosity and greater heterogeneity relative to their dolostone counterparts. Based on data from cores and thin sections, as well as petrophysical properties, the Feixianguan grainstones, representing a major gas reservoir in the Jiannan gas field were systemically analysed to better understand porosity evolution in tight carbonates that have experienced original oil accumulation and subsequent thermal cracking during progressive burial. The grainstones were divided into two types according to whether pyrobitumen was present, and their porosity evolutions were quantitatively reconstructed. Taking 40% as the original porosity, the grainstones without pyrobitumen, which were ineffective palaeo-oil reservoirs, lost 21.94% and 3.13% of their porosities through marine and burial calcite cementation, respectively, and 13.34% by compaction, and have a current porosity of 1.59%, thus allowing them to serve as major present-day gas reservoirs. Comparatively, pyrobitumen-bearing grainstones, which were once palaeo-oil reservoirs, lost 23.96% and 2.36% of their porosities through marine and burial calcite cementation, respectively; 11.4% by compaction, and 1.44% by pyrobitumen and have a current porosity of 0.84%, thus making them ineffective gas reservoirs. This study provides a quantitative understanding of the close association between porosity evolution and reservoir effectiveness for the palaeo-oil charge and present-day gas accumulation with respect to diagenetic history, which is useful for the future exploration in tight gas limestone reservoirs.  相似文献   

2.
The Ordos Basin is a large cratonic basin with an area of 250,000 km2 in central China. Upper Paleozoic coals and shales serve as gas source rocks with peak generation and migration at the end of the early Cretaceous. Recent exploration has verified the huge gas potential in the “basin-centered gas accumulation system” (BCGAS). However, the mechanism for the gas accumulation is controversial. With an integrated approach of thin-section petrography, ultra-violet fluorescence microscopy, fluid inclusion microthermometry, Raman microspectrometry, scanning electron microscopy, and X-ray diffractometry, we identified diagenetic trapping and evaluated the diagenetic history of sandstone reservoirs in the Yulin Gas Field in the central area, where structural, stratigraphic and/or sedimentary lithologic traps have not been found. It was revealed that three phases of diagenesis and hydrocarbon charging occurred, respectively, in the late Triassic, late Jurassic and at the end of the early Cretaceous. In the first two phases, acidic water entered the reservoir and caused dissolution and cementation, resulting in porosity increase. However, further subsidence and diagenesis, including compaction and cementation, markedly reduced the pore space. At the end of the early Cretaceous, the bulk of the gas migrated into the tight reservoirs, and the BCGAS trap was formed. In the updip portion of this system, cementation continued to occur due to low gas saturation and has provided effective seals to retain gas for a longer period of time than water block in the BCGAS. The mechanism for the gas entrapment was changed from water block by capillary pressure in the BCGAS to diagenetic sealing. The diagenetic seals in the updip portion of the sand body were formed after gas charging, which indicates that there is a large hydrocarbon exploration potential at the basin-centered area.  相似文献   

3.
The deeply buried reservoirs (DBRs) from the Lijin, Shengtuo and Minfeng areas in the northern Dongying Depression of the Bohai Bay Basin, China exhibit various petroleum types (black oil-gas condensates) and pressure systems (normal pressure-overpressure) with high reservoir temperatures (154–185 °C). The pressure-volume-temperature-composition (PVTX) evolution of petroleum and the processes of petroleum accumulation were reconstructed using integrated data from fluid inclusions, stable carbon isotope data of natural gas and one-dimensional basin modeling to trace the petroleum accumulation histories.The results suggest that (1) the gas condensates in the Lijin area originated from the thermal cracking of highly mature kerogen in deeper formations. Two episodes of gas condensate charging, which were evidenced by the trapping of non-fluorescent gas condensate inclusions, occurred between 29-25.5 Ma and 8.6–5.0 Ma with strong overpressure (pressure coefficient, Pc = 1.68–1.70), resulting in the greatest contribution to the present-day gas condensate accumulation; (2) the early yellow fluorescent oil charge was responsible for the present-day black oil accumulation in well T764, while the late blue-white oil charge together with the latest kerogen cracked gas injection resulted in the present-day volatile oil accumulation in well T765; and (3) the various fluorescent colors (yellow, blue-white and blue) and the degree of bubble filling (Fv) (2.3–72.5%) of the oil inclusions in the Minfeng area show a wide range of thermal maturity (API gravity ranges from 30 to 50°), representing the charging of black oil to gas condensates. The presence of abundant blue-white fluorescent oil inclusions with high Grain-obtaining Oil Inclusion (GOI) values (35.8%, usually >5% in oil reservoirs) indicate that a paleo-oil accumulation with an approximate API gravity of 39–40° could have occurred before 25 Ma, and gas from oil cracking in deeper formations was injected into the paleo-oil reservoir from 2.8 Ma to 0 Ma, resulting in the present-day gas condensate oil accumulation. This oil and gas accumulation model results in three oil and gas distribution zones: 1) normal oil reservoirs at relatively shallow depth; 2) gas condensate reservoirs that originated from the mixture of oil cracking gas with a paleo-oil reservoir at intermediate depth; and 3) oil-cracked gas reservoirs at deeper depth.The retardation of organic matter maturation and oil cracking by high overpressure could have played an important role in the distribution of different origins of gas condensate accumulations in the Lijin and Minfeng areas. The application of oil and gas accumulation models in this study is not limited to the Dongying Depression and can be applied to other overpressured rift basins.  相似文献   

4.
Calcite veins and cements occur widely in Carboniferous and Permian reservoirs of the Hongche fault zone, northwestern Junggar Basin in northwest China. The calcites were investigated by fluid inclusion and trace-element analyses, providing an improved understanding of the petroleum migration history. It is indicated that the Hongche fault behaved as a migration pathway before the Early Cretaceous, allowing two oil charges to migrate into the hanging-wall, fault-core and footwall reservoirs across the fault. Since the Late Cretaceous, the Hongche fault has been sealed. As a consequence, meteoric water flowed down only into the hanging-wall and fault-core reservoirs. The meteoric-water incursion is likely an important cause for degradation of reservoir oils. In contrast, the footwall reservoirs received gas charge (the third hydrocarbon event) following the Late Cretaceous. This helps explain the distribution of petroleum across the fault. This study provides an example of how a fault may evolve as pathway and seal over time, and how reservoir diagenetic minerals can provide clues to complex petroleum migration histories.  相似文献   

5.
The Basque–Cantabrian Basin (NE Spain) has been considered one of the most interesting areas for hydrocarbon exploration in the Iberian Peninsula since the 60th to 70th of last century. This basin is characterized by the presence of numerous outcrops of tar sands closely associated with fractures and Triassic diapirs. The aims of this work is to establish the diagenetic evolution of the Upper Cretaceous reservoir rocks with special emphasis in the emplacement of oil and their impact on reservoir quality. The studied rocks are constituted of carbonates and sandstones that contain massive quantities of bitumen filling vugs and fractures.Petrographic results indicate that the carbonate rocks from Maestu outcrops are bioclastic grainstones and wackestones, whereas the tar sandstones from Atauri and Loza outcrops are dominated by quartzarenites and subordinated subarkoses. The paragenetic sequence of the main diagenetic phases and processes include, pyrite, bladed and drusy calcite cement, calcite overgrowths, silicification of bioclasts and microcrystalline rhombic dolomite cement, and first stage of oil emplacement, blocky calcite cement, coarse crystalline calcite cement, calcitized dolomite, calcite veins, saddle dolomite and stylolites filled by the second phase of oil entrance. Together with the above mentioned diagenetic alterations, the arenites are affected by early kaolinitization of feldspars and the scarce formation of clay rim and epimatrix of illite. All sandstones and dolomitized carbonate rocks show high intercrystalline and intergranular porosity which is full by biodegraded hydrocarbons (solid bitumen). The biodegradation affects alkanes, isoprenoids and partially hopanes and steranes saturated hydrocarbons. Aromatics hydrocarbons, like naphthalenes, phenanthrenes, dibenzothiophenes and triaromatics are also affected by biodegradation. Results indicate that the first HC emplacement corresponds to early stage of calcite and dolomite cementation, and the second and more important emplacement is related to fracturation processes resulting in the formation of excellent reservoirs.  相似文献   

6.
Upper Carboniferous sandstones are one of the most important tight gas reservoirs in Central Europe. We present data from an outcrop reservoir analog (Piesberg quarry) in the Lower Saxony Basin of Northern Germany. This field-based study focuses on the diagenetic control on spatial reservoir quality distribution.The investigated outcrop consists of fluvial 4th-order cycles, which originate from a braided river dominated depositional environment. Westphalian C/D stratigraphy, sedimentary thicknesses and exposed fault orientations (NNW-SSE and W-E) reflect tight gas reservoir properties in the region further north. Diagenetic investigations revealed an early loss of primary porosity by pseudomatrix formation. Present day porosity (7% on average) and matrix permeability (0.0003 mD on average) reflect a high-temperature overprint during burial. The entire remaining pore space is occluded with authigenic minerals, predominantly quartz and illite. This reduces reservoir quality and excludes exposed rocks as tight gas targets. The correlation of petrographic and petrophysical data show that expected facies-related reservoir quality trends were overprinted by high-temperature diagenesis. The present day secondary matrix porosity reflects the telogenetic dissolution of mesogenetic ankerite cements and unstable alumosilicates.Faults are associated with both sealed and partially sealed veins near the faults, indicating localized mass transport. Around W-E striking faults, dissolution is higher in leached sandstones with matrix porosities of up to 26.3% and matrix permeabilities of up to 105 mD. The dissolution of ankerite and lithic fragments around the faults indicates focused fluid flow. However, a telogenetic origin cannot be ruled out.The results of this work demonstrate the limits of outcrop analog studies with respect to actual subsurface reservoirs of the greater area. Whereas the investigated outcrop forms a suitable analog with respect to sedimentological, stratigraphic and structural inventory, actual reservoirs at depth generally lack telogenetic influences. These alter absolute reservoir quality values at the surface. However, the temperature overprint and associated diagenetic modification, which caused the unusually low permeability in the studied outcrop, may pose a reservoir risk for tight gas exploration as a consequence of locally higher overburden or similar structural positions.  相似文献   

7.
The hydrocarbon migration and accumulation of the Suqiao deep buried-hill zone, in the Jizhong Subbasin, the Bohai Bay Basin, eastern China, was investigated from the perspective of paleo-fluid evidence by using fluid inclusions, quantitative fluorescence techniques (QGF), total scanning fluorescence method (TSF) and organic geochemical analysis. Results show that the current condensate oil-gas reservoirs in the study area once were paleo-oil reservoirs. In addition, the reservoirs have experienced at least two stages of hydrocarbon charge from different sources and/or maturities. During the deposition of the Oligocene Dongying Formation (Ed), the deep Ordovician reservoirs were first charged by mature oils sourced from the lacustrine shale source rocks in the fourth member of Shahejie and Kongdian Formations (Es4+Ek), and then adjusted at the end of Ed period subsequently by virtue of the tectonic movement. Since the deposition of the Neogene Minghuazhen Formation (Nm), the reservoirs were mainly charged by the gas that consisted of moderate to high-maturity condensate and wet gas sourced from the Es4+Ek lacustrine shale source rocks and mature coal-derived gas sourced from the Carboniferous-Permian (C-P) coal-bearing source rocks. Meanwhile, the early charged oil was subjected to gas flushing and deasphalting by the late intrusion of gas. The widely distributed hydrocarbon inclusions, the higher QGF Index, and FOI (the frequency of oil inclusions) values in both gas-oil and water zone, are indicative of early oil charge. In addition, combined with the homogenization temperatures of the fluid inclusions (<160 °C) and the existence of solid-bitumen bearing inclusions, significant loss of the n-alkanes with low carbon numbers, enrichments of heavier components in crude oils, and the precipitation of asphaltene in the residual pores suggest that gas flushing may have played an important role in the reservoir formation.  相似文献   

8.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

9.
The Jiaolai Basin (Fig. 1) is an under-explored rift basin that has produced minor oil from Lower Cretaceous lacustrine deltaic sandstones. The reservoir quality is highly heterogeneous and is an important exploratory unknown in the basin. This study investigates how reservoir porosity and permeability vary with diagenetic minerals and burial history, particularly the effects of fracturing on the diagenesis and reservoir deliverability. The Laiyang sandstones are tight reservoirs with low porosity and permeability (Φ < 10% and K < 1 mD). Spatial variations in detrital supply and burial history significantly affected the diagenetic alterations during burial. In the western Laiyang Sag, the rocks are primarily feldspathic litharenites that underwent progressive burial, and thus, the primary porosity was partially to completely eliminated as a result of significant mechanical compaction of ductile grains. In contrast, in the eastern Laiyang Sag, the rocks are lithic arkoses that were uplifted to the surface and extensively eroded, which resulted in less porosity reduction by compaction. The tectonic uplift could promote leaching by meteoric water and the dissolution of remaining feldspars and calcite cement. Relatively high-quality reservoirs are preferentially developed in distributary channel and mouth-bar sandstones with chlorite rims on detrital quartz grains, which are also the locations of aqueous fluid flow that produced secondary porosity. The fold-related fractures are primarily developed in the silt–sandstones of Longwangzhuang and Shuinan members in the eastern Laiyang Sag. Quartz is the most prevalent fracture filling mineral in the Laiyang sandstones, and most of the small-aperture fractures are completely sealed, whereas the large-aperture fractures in a given set may be only partially sealed. The greatest fracture density is in the silt–sandstones containing more brittle minerals such as calcite and quartz cement. The wide apertures are crucial to preservation of the fracture porosity, and the great variation in the distribution of fracture-filling cements presents an opportunity for targeting fractures that contribute to fluid flow.  相似文献   

10.
The physical mechanisms responsible for hydrocarbon migration in carrier beds are well understood. However, secondary migration is one of poorly understood facets in petroleum system. The Carboniferous Donghe sandstone reservoir in the Tarim Basin's Hudson oilfield is an example of a secondary (or unsteady) reservoir; that is, oil in this reservoir is in the process of remigration, making it a suitable geologic system for studying hydrocarbon remigration in carrier beds. Experimental methods including grains containing oil inclusions (GOI), quantitative grain fluorescence (QGF) and quantitative grain fluorescence on extract (QGF-E) -- together with the results from drilling, logging and testing data -- were used to characterize the nature of oil remigration in the Donghe sandstone. The results show that (1) significant differences exist between paleo- and current-oil reservoirs in the Donghe sandstone, which implies that oil has remigrated a significant distance following primary accumulation; (2) due to tectonic inversion, oil remigration is slowly driven by buoyancy force, but the oil has not entered into the trap entirely because of the weak driving force. Oil scarcely enters into the interlayers, where the resistance is relatively large; (3) the oil-remigration pathway, located in the upper part of the Donghe sandstone, is planar in nature and oil moving along this pathway is primarily distributed in those areas of the sandstone having suitable properties. Residual oil is also present in the paleo-oil reservoirs, which results in their abnormal QGF-E. A better understanding of the characteristics of oil remigration in the Donghe sandstone in the Hudson oilfield can contribute to more effective oil exploration and development in the study area.  相似文献   

11.
The Upper Triassic Xujiahe Formation in the northwestern Sichuan Basin, China, is a typical tight gas sandstone reservoir that contains natural fractures and has an average porosity of 1.10% and air permeability less than 0.1 md because of compaction and cementation. According to outcrops, cores and image logs, three types of natural fractures, namely, tectonic, diagenetic and overpressure-related fractures, have developed in the tight gas sandstones. The tectonic fractures include small faults, intraformational shear fractures and horizontal shear fractures, whereas the diagenetic fractures mainly include bed-parallel fractures. According to thin sections, the microfractures also include tectonic, diagenetic and overpressure-related microfractures. The diagenetic microfractures consist of transgranular, intragranular and grain-boundary fractures. Among these fractures, intraformational shear fractures, horizontal shear fractures and small faults are predominant and significant for fluid movement. Based on the Monte Carlo method, these intraformational shear fractures and horizontal shear fractures improve the reservoir porosity and permeability, thus serving as an important storage space and primary fluid-flow channels in the tight sandstones. The small faults may provide seepage channels in adjacent layers by cutting through layers. In addition, these intragranular and grain-boundary fractures increase the connectivity of the tight gas sandstones by linking tiny pores. The tectonic microfractures improve the seepage capability of the tight gas sandstones to some extent. Low-dip angle fractures are more abundant in the T3X3 member than in the T3X2 and T3X4 members. The fracture intensities of the sandstones in the T3X3 member are greater than those in the T3X2 and T3X4 members. The fracture intensities do not always decrease with increasing bed thickness for the tight sandstones. When the bed thickness of the tight sandstones is less than 1.0 m, the fracture intensities increase with increasing bed thickness in the T3X3 member. Fluid inclusion evidence and burial history analysis indicate that the tectonic fractures developed over three periods. The first period was at the end of the Triassic to the Early Jurassic. The tectonic fractures developed during oil generation but before the matrix's porosity and permeability reduced, which suggests that these tectonic fractures could provide seepage channels for oil migration and accumulation. The second period was at the end of the Cretaceous after the matrix's porosity and permeability reduced but during peak gas generation, which indicates that gas mainly migrated and accumulated in the tectonic fractures. The third period was at the end of the Eogene to the Early Neogene. The tectonic fractures could provide seepage channels for secondary gas migration and accumulation from the Upper Triassic Xujiahe Formation into the overlying Jurassic Formation.  相似文献   

12.
The Ordovician is the most important exploration target in the Tabei Uplift of the Tarim Basin, which contains a range of petroleum types including solid bitumen, heavy oil, light oil, condensate, wet gas and dry gas. The density of the black oils ranges from 0.81 g/cm3 to 1.01 g/cm3 (20 °C) and gas oil ratio (GOR) ranges from 4 m3/m3 to 9300 m3/m3. Oil-source correlations established that most of the oils were derived from the Mid-Upper Ordovician marine shale and carbonate and that the difference in oil properties is mainly attributed to hydrocarbon alteration and multi-stage accumulation. In the Tabei Uplift, there were three main periods of hydrocarbon accumulation in the late Caledonian stage (ca. 450–430 Ma), late Hercynian stage (ca. 293–255 Ma) and the late Himalayan stage (ca. 12–2 Ma). The oil charging events mainly occurred in the late Caledonian and late Hercynian stage, while gas charging occurred in the late Hercynian stage. During the late Caledonian stage, petroleum charged the reservoirs lying east of the uplift. However, due to a crustal uplifting episode in the early Hercynian (ca. 386–372 Ma), most of the hydrocarbons were transformed by processes such as biodegradation, resulting in residual solid bitumen in the fractures of the reservoirs. During the late Hercynian Stage, a major episode of oil charging into Ordovician reservoirs took place. Subsequent crustal uplift and severe alteration by biodegradation in the west-central Basin resulted in heavy oil formation. Since the late Himalayan stage when rapid subsidence of the crust occurred, the oil residing in reservoirs was exposed to high temperature cracking conditions resulting in the production of gas and charged from the southeast further altering the pre-existing oils in the eastern reservoirs. A suite of representative samples of various crude oils including condensates, lights oils and heavy oils have been collected for detailed analysis to investigate the mechanism of formation. Based on the research it was concluded that the diversity of hydrocarbon physical and chemical properties in the Tabei Uplift was mainly attributable to the processes of biodegradation and gas washing. The understanding of the processes is very helpful to predict the spatial distribution of hydrocarbon in the Tabei Uplift and provides a reference case study for other areas.  相似文献   

13.
The Daniudi Gas Field is a typical large-scale coal-generated wet gas field located in the northeastern Ordos Basin that contains multiple Upper Paleozoic gas-bearing layers and considerable reserves of gas. Based on integrated analysis of reservoir petrology, carbonate cement C–O isotope, geochemistry of source rocks and HC gas and numerical basin modeling, a comprehensive study focusing on the formation of low permeability reservoirs and gas generation process uncovers a different gas accumulation scene in Daniudi Gas Field. The gas accumulation discovered was controlled by the reservoir permeability reduction and gas generation process, and can be divided into two distinct stages by the low permeability reservoir formation time: before the low permeability reservoir formation, the less matured gas was driven by buoyancy, migrated laterally towards NE and then accumulated in NE favorable traps during Late Triassic to early Early Cretaceous; after the low permeability reservoir formation, highly matured gas was driven by excessive pressure, migrated vertically and accumulated in-situ or near the gas-generating centers during early to late Early Cretaceous. The coupling relationship between reservoir diagenetic evolution and gas generation process controlled on gas accumulation of the Daniudi Gas Field. This study will aid in understanding the gas accumulation process and planning further E&D of the Upper Paleozoic super-imposed gas layers in the whole Ordos Basin and other similar super-imposed low permeability gas layer basins.  相似文献   

14.
从沉积环境背景出发,通过岩心观察、薄片鉴定和扫描电镜分析等方法对江汉盆地潜江凹陷马王庙地区古近系新沟嘴组下段储层成岩作用做了系统的研究.研究表明马王庙地区新下段沉积时期盆地处于干旱蒸发—氧化环境的Ⅰ型沉积环境和半干旱—潮湿弱氧化—弱还原环境的Ⅱ型沉积环境,相应地发育两种储层,经历了两种成岩类型,受其相应的地层水影响,成岩作用差异较大.Ⅰ型成岩作用以胶结作用更显著,对储层孔隙起破坏作用,其较好储层发育受断裂带控制;Ⅱ型成岩作用以溶解作用为主,对储层具有建设作用,成藏面积广,其储层物性相对较好.该认识为深入研究该区成岩作用规律奠定了基础,也有助于油区进一步勘探开发.  相似文献   

15.
The late Quaternary shallow-water carbonates have been altered by a variety of diagenetic processes, and further influenced by high-amplitude global and regional sea level changes. This study utilizes a new borehole drilled on the Yongxing Island, Xisha Islands to investigate meteoric diagenetic alteration in the late Quaternary shallowwater carbonates. Petrographic, mineralogical, stable isotopic and elemental data provide new insights into the meteoric diagenetic processes of the reef limestone. The results show the variation in the distribution of aragonite,high-Mg calcite(HMC) and low-Mg calcite(LMC) divides the shallow-water carbonates in Core SSZK1 into three intervals, which are Unit I(31.20–55.92 m, LMC), Unit II(18.39–31.20 m, aragonite and LMC) and Unit III(upper 18.39 m of core, aragonite, LMC and HMC). Various degrees of meteoric diagenesis exist in the identified three units. The lowermost Unit I has suffered almost complete freshwater diagenesis, whereas the overlying Units II and III have undergone incompletely meteoric diagenesis. The amount of time that limestone has been in the freshwater diagenetic environment has the largest impact on the degree of meteoric diagenesis. Approximately four intact facies/water depth cycles are recognized. The cumulative depletion of elements such as strontium(Sr),sodium(Na) and sulphur(S) caused by duplicated meteoric diagenesis in the older reef sequences are distinguished from the younger reef sequences. This study provides a new record of meteoric diagenesis, which is well reflected by whole-rock mineralogy and geochemistry.  相似文献   

16.
The discovery of deep (20,000 ft) gas reservoirs in eolian sandstone of the Upper Jurassic Norphlet Formation in Mobile Bay and offshore Alabama in the late 1970s represents one of the most significant hydrocarbon discoveries in the nation during the past several decades. Estimated original proved gas from Norphlet reservoirs in the Alabama coastal waters and adjacent federal waters is 7.462 trillion ft3 (Tcf) (75% recovery factor). Fifteen fields have been established in the offshore Alabama area. Norphlet sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in updip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition, resulted in reworking of the upper part of the Norphlet Formation. Norphlet reservoir sandstone is arkose and subarkose, consisting of a simple assemblage of three minerals, quartz, albite, and K-feldspar. The present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex. Important authigenic minerals include carbon ate phases (calcite, dolomite, Fe-dolomite, and breunnerite), feldspar (albite and K-feldspar), evaporite minerals (anhydrite and halite), clay minerals (illite and chlorite), quartz, and pyrobitumen. The abundance and distribution of these miner als varies significantly between onshore and offshore regions of Norphlet production. The lack of sufficient internal sources of components for authigenic minerals, combined with unusual chemical compositions of chlorite (Mg-rich), breunnerite, and some minor authigenic minerals, suggests that Louann-derived fluids influenced Norphlet diagenesis. In offshore Alabama reservoirs, porosity is dominantly modified primary poros ity. Preservation of porosity in deep Norphlet reservoirs is due to a combination of factors, including a lack of sources of cement components and lack of pervasive early cement, so that fluid-flow pathways remained open during burial. Below the dominantly quartz-cemented tight zone near the top of the Norphlet, pyrobitumen is a major contributor to reduction in reservoir quality in offshore Alabama. The highest reservoir quality occurs in those wells where the present gas water contact is below the paleohydrocarbon water contact. This zone of highest reservoir quality is between the lowermost occurrence of pyrobitumen and the present gas water contact.  相似文献   

17.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

18.
盐城凹陷天然气储层为成分成熟度很低的砂砾岩、砾状砂岩、砂岩和少量粉砂岩,砂岩类型主要为长石岩屑砂岩和少量岩屑长石砂岩。成岩矿物主要类型有粘土矿物、石英、钠长石、碳酸盐、硬石膏和石膏等。储层以次生孔隙发育为特点,以粒间孔隙和骨架颗粒溶孔最为发育,溶解作用发育程度与泥质岩在成岩过程中粘土矿物和有机质的演化关系极其密切。盐城天然气进入储层发生在始新世———新近纪,主要成藏期发生在4.5~10Ma。天然气储层成岩演化阶段处于晚成岩A亚期。储层性质明显地受到沉积相和成岩作用的影响。沉积物粒度较粗、厚度较大的河道砂的储集物性明显优于各种粒度较细、厚度较薄的席状砂体。  相似文献   

19.
Understanding the hydrocarbon accumulation pattern in unconventional tight reservoirs is crucial for hydrocarbon evaluation and oil/gas extraction from such reservoirs. Previous studies on tight oil accumulation are mostly concerned with self-generation or from source to reservoir rock over short distances. However, the Lucaogou tight oil in Jimusar Sag of Junggar Basin shows transitional feature in between. The Lucaogou Formation comprises fine-grain sedimentary rocks characterized by thin laminations and frequently alternating beds. The Lucaogou tight silt/fine sandstones are poorly sorted. Dissolved pores are the primary pore spaces, with average porosity of 9.20%. Although the TOC of most silt/fine sandstones after Soxhlet extraction is lower than that before extraction, they show that the Lucaogou siltstones in the area of study have fair to good hydrocarbon generation potential (average TOC of 1.19%, average S2 of 4.33 mg/g), while fine sandstones are relatively weak in terms of hydrocarbon generation (average TOC of 0.4%, average S2 of 0.78 mg/g). The hydrocarbon generation amount of siltstones, which was calculated according to basin modeling transformation ratio combined with original TOC based on source rock parameters, occupies 16%–72% of oil retention amount. Although siltstones cannot produce the entire oil reserve, they certainly provide part of them. Grain size is negatively correlated with organic matter content in the Lucaogou silt/fine sandstones. Fine grain sediments are characterized by lower deposition rate, stronger adsorption capacity and oxidation resistance, which are favorable for formation of high quality source rocks. Low energy depositional environment is the primary reason for the formation of siltstones containing organic matter. Positive correlation between organic matter content and clay content in Lucaogou siltstones supports this view point. Lucaogou siltstones appear to be effective reservoir rocks due to there relatively high porosity, and also act as source rocks due to the fair to good hydrocarbon generation capability.  相似文献   

20.
探讨川西坳陷中段沙溪庙组天然气成藏地质条件,为油气勘探提供理论依据。从油气的烃源条件、储集条件、保存条件及成藏组合方面入手,结合构造史以及岩心、地震及钻井等资料进行分析,结果表明川西坳陷中段处于生烃坳陷中心地带,烃源岩丰富,具备生烃能力。晚三叠世中、晚期发育冲积扇—河流沉积相带,储集条件良好,后期构造运动使断层裂缝系统较发育,有利于储集条件改善和油气富集。其上有压力封存箱和巨厚的砂泥岩互层,保存条件良好。川西坳陷中段新场—盐亭地区近EW向古隆起及龙门山前缘扩展变形带中的鸭子河—石板滩地区是油气勘探的有利地带。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号