首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》1988,3(6):591-600
The Sr isotope composition of formation waters is a sensitive indicator of diagenetic processes in the host sediments, mixing processes between different bodies of water, and the connectivity of hydrological systems. The87Sr/86Sr ratio of present seawater is constant worldwife, while formation waters in hydrocarbon reservoirs have various values, depending on the aforementioned effects, in most cases different from modern seawater. This forms the basis of anatural tracer technique for seawater injection projects, involving characterization of the87Sr/86Sr ratios and Sr contents of formation waters in the reservoir before injection commences, followed by monitoring of these parameters in the produced water as injection proceeds. This method is best suited to reservoirs in which the formation waters have low Sr concentrations and87Sr/86Sr ratios much higher or lower than seawater. Available data for reservoir formation waters suggest that breakthrough recognition could be expected at <10% seawater in many sandstone reservoirs, while the method would be less sensitive in carbonate reservoir or situations where the formation waters had interacted with evaporites, as the associated waters tend to have high Sr contents. In heterogeneous but well-mapped reservoirs, it may be possible to obtain information about flow paths/mechanismsbefore breakthrough. Combination with other chemical and isotopic tracers creates a very powerful tool, the Sr method acting as a safeguard should the batch of water containing the conventional tracers be overtaken by subsequently injected seawater. The Sr method could also be used for injection projects that were begun without the addition of tracers. A natural analogue of a water injection process is found in the Jurassic Lincolnshire Limestone aquifer in England, where rapidly moving fresh meteoric water mixes progressively with an older saline formation water. The87Sr/86Sr data enable quantitative modelling of this mixing process. The infiltrating fresh water becomes progressively modified by dissolution of detrital carbonate and calcite cement in the limestone, with depth becoming increasingly dominated by Sr derived from the more soluble detrital components. The saline formation water contains water molecules of meteoric origin and an87Sr/86Sr ratio much higher than Jurassic seawater or marine carbonate; the solute content has been influence by interaction of the water with non-carbonate phases.  相似文献   

2.
《Geochimica et cosmochimica acta》1999,63(13-14):1905-1925
Himalayan rivers have very unusual Sr characteristics and their budget cannot be achieved by simple mixing between silicate and carbonate even if carbonates are radiogenic. We present Sr, O, and C isotopic data from river and rain water, bedload, and bedrock samples for the western and central Nepal Himalaya and Bangladesh, including the monsoon season. Central Himalayan rivers receive Sr from several sources: carbonate and clastic Tethyan sediments, High Himalayan Crystalline (HHC) gneisses and granitoids with minor marbles, carbonates and metasediments of the Lesser Himalaya (LH), and Miocene-Recent foreland basin sediment from the Siwaliks group and the modern flood plain. In the Tethyan Himalaya rivers have dissolved [Sr] ≈ 6 μmol/l and 87Sr/86Sr ≈ 0.717, with a large contribution from moderately radiogenic carbonate. Rivers draining HHC gneisses are very dilute with [Sr] ≈ 0.2 μmol/l and 87Sr/86Sr ≈ 0.74. Lesser Himalayan streams also have low [Sr] ≈ 0.4 μmol/l and are highly radiogenic (87Sr/86Sr ≥ 0.78). Highly radiogenic carbonates of the LH do not contribute significantly to the Sr budget because they are sparse and have very low [Sr]. In large rivers exiting the Himalaya, Sr systematics can be modeled as a mixture between Tethyan rivers, where slightly radiogenic carbonates (mean 87Sr/86Sr ≈ 0.715) are the main source of Sr, and Lesser Himalaya waters, where extremely radiogenic silicates (>0.8) are the main source of Sr. HHC waters are less important because of their low [Sr]. Rivers draining the Siwaliks foreland basin sediments have [Sr] ≈ 4 μmol/l and 87Sr/86Sr ≈ 0.725. Weathering of silicates in the Siwaliks and the flood plain results in a probably significant radiogenic (0.72–0.74) input to the Ganges and Brahmaputra (G-B), but quantification of this flux is limited by uncertainties in the hydrologic budget. The G-B in Bangladesh show strong seasonal variability with low [Sr] and high 87Sr/86Sr during the monsoon. Sr in the Brahmaputra ranges from 0.9 μmol/l and 0.722 in March to 0.3 μmol/l and 0.741 in August. We estimate the seasonally weighted flux from the G-B to be 6.5 × 108 mol/yr with 87Sr/86Sr = 0.7295.  相似文献   

3.
The isotopic composition of Sr has been measured in 73 formation-water samples from Paleozoic strata in the Illinois basin; 87Sr/86Sr ratios range from 0.7079 to 0.7108. With the exception of four samples, the waters are more radiogenic than corresponding Paleozoic sea-water values. The relatively narrow range of slightly elevated 87Sr/86Sr rations is uniformly distributed in waters throughout the stratigraphic column and in Silurian waters across the basin. Isotopic analyses of core samples from reservoir rocks show an absence of water-rock Sr isotopic equilibration. Basin lithology and analyses of detrital rock units indicate that clay minerals in shales and in quartz sandstone matrices represent the only significant source of radiogenic Sr for the waters. Silurian and Devonian water show a two-component mixing relation which suggests that they comprise a single hydrogeological system that evolved when radiogenic water from New Albany shales entered Silurian-Devonian carbonate rocks and mixed with marine interstitial water. Regional migration of the waters and associated petroleum within the Silurian-Devonian strata, proposed in other studies, is consistent with the Sr isotopic data. Under favorable circumstances subsurface waters are capable of retaining a Sr isotopic recor of their evolution.  相似文献   

4.
锶同位素地层学在碎屑岩成岩研究中的应用   总被引:15,自引:0,他引:15  
基于同一地质历史时期海水的锶同位素组成为一定值的锶同位素地层学基本原理,可将锶同位素地层学用于碎屑岩成岩作用研究,以评价海相和非海相对成岩作用的影响.三个不同类型的研究实例说明:1)海相碎屑岩成岩流体的锶同位素组成的演化途径有较好的规律性,陆相影响随成岩作用的进行而增加,相对晚期的碳酸盐胶结物的87Sr/86Sr比值通常高于相对早期的碳酸盐胶结物,变化的本底值即为同期海水的锶同位素组成,该数值为一定值;2)有沉积期深源锶和非同期海相影响的陆相碎屑岩中,碳酸盐胶结物的锶同位素比值可能低于大陆淡水,但埋藏成岩过程中相对晚期的碳酸盐胶结物的87Sr/86Sr比值仍高于相对早期的碳酸盐胶结物;3)当深部流体影响碎屑岩的整个成岩过程时,深源锶的烙印可以抹掉或减少不同成岩阶段不同程度陆相影响造成的各种碳酸盐胶结物之间锶同位素组成的差别,使各种碳酸盐胶结物都具有很低的87Sr/86Sr比值,因而缺乏其它沉积盆地中常见的相对晚期碳酸盐胶结物87Sr/86Sr比值高于早期胶结物的一般模式。  相似文献   

5.
The role of silicate and carbonate weathering in contributing to the major cation and Sr isotope geochemistry of the headwaters of the Ganga-Ghaghara-Indus system is investigated from the available data. The contributions from silicate weathering are determined from the composition of granites/ gneisses, soil profiles developed from them and from the chemistry of rivers flowing predominantly through silicate terrains. The chemistry of Precambrian carbonate outcrops of the Lesser Himalaya provided the data base to assess the supply from carbonate weathering. Mass balance calculations indicate that on an average ∼ 77% (Na + K) and ∼ 17% (Ca + Mg) in these rivers is of silicate origin. The silicate Sr component in these waters average ∼40% and in most cases it exceeds the carbonate Sr. The observations that (i) the87Sr/86Sr and Sr/Ca in the granites/gneisses bracket the values measured in the head waters; (ii) there is a strong positive correlation between87Sr/86Sr of the rivers and the silicate derived cations in them, suggest that silicate weathering is a major source for the highly radiogenic Sr isotope composition of these source waters. The generally low87Sr/86Sr (< 0.720) and Sr/Ca (∼ 0.2 nM/ μM) in the Precambrian carbonate outcrops rules them out as a major source of Sr and87Sr/86Sr in the headwaters on a basin-wide scale, however, the high87Sr/86Sr (∼ 0.85) in a few of these carbonates suggests that they can be important for particular streams. The analysis of87Sr/86Sr and Ca/Sr data of the source waters show that they diverge from a low87Sr/86Sr and low Ca/Sr end member. The high Ca/Sr of the Precambrian carbonates precludes them from being this end member, other possible candidates being Tethyan carbonates and Sr rich evaporite phases such as gypsum and celestite. The results of this study should find application in estimating the present-day silicate and carbonate weathering rates in the Himalaya and associated CO2 consumption rates and their global significance.  相似文献   

6.
《Applied Geochemistry》1998,13(4):463-475
Strontium isotope ratios were measured on 13 rock, 18 leachate and 28 pore-water samples from the Milk River aquifer, the confining argillaceous formations, and the glacial till mantling the recharge area. Strontium isotope ratios (87Sr/86Sr) of pore waters from the aquifer, confining units, and the glacial till ranged from 0.7069 to 0.7082. The 87Sr/86Sr ratios in aquifer pore waters decrease with increasing distance from the aquifer recharge area, and this is interpreted to be the result of mixing and water–rock interaction within the aquifer.The solute composition of the recharging groundwater is modified by the local lithology, causing distinct geochemical patterns along different flow paths within the aquifer. Whole-rock 87Sr/86Sr ratios indicate that the shales and till are generally more radiogenic than the aquifer sandstone. The authigenic carbonate cements and rock-forming minerals comprising the major lithologic units had little apparent influence on the pore-water Sr chemistry. Carbonate cement leachates from the till and the aquifer sandstone are more radiogenic than those from the confining shale formations. Feldspar separates from the aquifer sandstone have relatively radiogenic Sr isotope ratios, whereas bentonites from the Milk River and Colorado Shale Formations have whole-rock and leachate Sr isotope ratios that are relatively unradiogenic. Ratios of most Milk River aquifer pore waters are lower than those of any leachates or whole rocks analyzed, except the bentonites.The 87Sr/86Sr ratios of exchangeable Sr in the bentonites are similar to ratios found in the more evolved pore waters. Simple rock–water interaction models calculated for the whole-rock, leachate, and exchangeable-ion/pore-water pairs indicate that ion exchange with bentonite clays within the Milk River and Colorado Shale Formations appears to influence the isotopic evolution of the pore-water Sr in each of these units.  相似文献   

7.
The 87Sr/86Sr ratios of evaporitic carbonates and sulphates from Miocene sediment cored in the Mediterranean Sea show a depletion of 87Sr when compared to the isotopic composition of the Miocene contemporaneous marine strontium: 0.70803 versus 0.70936. The arrival into the evaporitic environment of strontium brought by continental waters can explain this difference. The variation of the 87Sr/86Sr ratios is, nevertheless, noticeable only when the influence of the continental waters is already well marked. This is proved when one compares the results obtained with strontium, to the results of isotopic analysis made on oxygen, carbon, sulphur and hydrogen taken from the same samples.  相似文献   

8.
Carbonate, largely in the form of dolomite, is found throughout the host rocks and ores of the Nchanga mine of the Zambian Copperbelt. Dolomite samples from the hanging wall of the mineralization show low concentrations of rare-earth elements (REE) and roof-shaped, upward convex, shale-normalized REE patterns, with positive Eu*SN anomalies (1.54 and 1.39) and marginally negative Ce anomalies (Ce*SN 0.98,0.93). In contrast, dolomite samples associated with copper and cobalt mineralization show a significant rotation of the REE profile, with HREE enrichment, and La/LuSN ratios <1 (0.06–0.42). These samples also tend to show variable but predominantly negative Eu*SN and positive cerium anomalies and an upwardly concave MREE distribution (Gd-Er). Malachite samples from the Lower Orebody show roof-tile-normalized REE patterns with negative europium anomalies (Eu*SN 0.65–0.80) and negative cerium anomalies (Ce*SN 0.86–0.9). The carbonate 87Sr/86Sr signature correlates with the associated REE values. The uppermost dolomite samples show Neoproterozoic seawater-like 87Sr/86Sr ratios ranging from 0.7111 to 0.7116, whereas carbonate from Cu–Co mineralized samples show relatively low concentrations of strontium and more radiogenic 87Sr/86Sr, ranging between 0.7136–0.7469. The malachite samples show low concentrations of strontium, but give a highly radiogenic 87Sr/86Sr of 0.7735, the most radiogenic 87Sr/86Sr ratio. These new data suggest that the origin and timing of carbonate precipitation at Nchanga is reflected in the REE and Sr isotope chemistry. The upper dolomite samples show a modified, but essentially seawater-like signature, whereas the rotation of the REE profile, the MREE enrichment, the development of a negative Eu*SN anomaly and more radiogenic 87Sr/86Sr suggests the dolomite in the Cu–Co mineralized samples precipitated from basinal brines which had undergone significant fluid–rock interaction. Petrographic, REE, and 87Sr/86Sr data for malachite are consistent with the original sulfide Lower Orebody being subject to a later oxidizing event.  相似文献   

9.
The 87Sr/86Sr ratios and strontium concentrations for thirty-three samples of marine carbonate rocks of Middle Triassic to Early Jurassic age have been determined. The samples were collected from four measured sections in the areas of Val Camonica in northern Italy. The strontium concentrations vary from 40 to 7000 ppm. Most of the samples are calcitic limestones containing less than 10% of non-carbonate residues. Dolomitic samples and those containing appreciable non-carbonate residues have significantly diminished strontium concentrations. 87Sr/86Sr ratios of the carbonate phases of these rocks appear to be unaffected by dolomitization and by the presence of non-carbonate minerals. The average 87Sr/86Sr ratios of the formations vary systematically in a stratigraphic sense. The ratio increased from Early Anisian to Early-Middle Ladinian, declined during Late Ladinian and Carnian, rose again during the Norian and then declined throughout the Late Norian (Rhaetian), Hettangian, Sinemurian and Pliens-bachian ages. The average 87Sr/86Sr ratios, relative to 0.7080 for the Eimer and Amend standard, are: Anisian: 0.70805 ± 00019; Early Ladinian: 0.7085 ± 0.00038; Late Ladinian: 0.70791 ± 0.00013; Carnian: 0.70776 ± 0.00015; Norian and Rhaetian: 0.70791 ± 0.00014; Hettangian: 0.70762 ± 0.00021; Sinemurian: 0.7070 ± 0.00038; Pliensbachian: 0.7070 ± 0.00015. These variations reflect changes in the isotopic composition of Sr entering the oceans in early Mesozoic time due to varying rates of weathering and erosion of young volcanic rocks (low 87Sr/86Sr) and old granitic rocks (high 87Sr/86Sr). The data presented in this report contribute to a growing body of information regarding the changes that have occurred in the 87Sr/86Sr ratio of the oceans in Phanerozoic time.  相似文献   

10.
《Applied Geochemistry》2002,17(3):285-300
Strontium and particularly 87Sr/86Sr ratios in stream water have often been used to calculate weathering rates in catchments. Nevertheless, in the literature, discharge variation effects on the geochemical behavior of Sr are often omitted or considered as negligible. A regular survey of both Sr concentrations and Sr isotope ratios of the Strengbach stream water draining a granite (Vosges mountains, France) has been performed during one year. The results indicate that during low water flow periods, waters contain lower Sr concentrations and less radiogenic Sr isotope ratios (Sr=11.6 ppb and 87Sr/86Sr=0.7246 as an average, respectively) than during high water flow periods (Sr= 13 ppb and 87Sr/86Sr=0.7252 as an average, respectively). This is contrary to expected dilution processes by meteoric waters which have comparatively lower Sr isotopic ratios and lower Sr concentrations. Furthermore, 87Sr/86Sr ratios in stream water behave in 3 different ways depending on moisture and on hydrological conditions prevailing in the catchment. During low water flow periods (discharge < 9 l/s), a positive linear relationship exists between Sr isotope ratio and discharge, indicating the influence of radiogenic waters draining the saturated area during storm events. During high water flow conditions, rising discharges are characterized by significantly less radiogenic waters than the recession stages of discharge. This suggests a large contribution of radiogenic waters draining the deep layers of the hillslopes during the recession stages, particularly those from the more radiogenic north-facing slopes. These results allow one to confirm the negligible instantaneous incidence of rainwater on stream water chemistry during flood events, as well as the existence in the catchment of distinct contributive areas and reservoirs. The influence of these areas or reservoirs on the fluctuations of Sr concentrations and on Sr isotopic variations in stream water depends on both moisture and hydrological conditions. Hence, on a same bedrock type, 87Sr/86Sr ratios in surface waters can be related to flow rate. Consequently, discharge variations must be considered as a pre-requisite when using Sr isotopes for calculating weathering rates in catchments, particularly to define the range of variations of the end-members.  相似文献   

11.
Carbonate rocks and natural waters exhibit a wide range in the concentration and isotopic composition of strontium. This wide range and the quantifiable covariation of these parameters can provide diagnostic tools for understanding processes of fluid-rock interaction. Careful consideration of the uncertainties associated with trace element partitioning, sample heterogeneity and fluid-rock interaction mechanisms is required to advance the application of the trace element and isotope geochemistry of strontium to studies of diagenesis, goundwater evolution, ancient seawater chemistry and isotope stratigraphy. A principal uncertainty involved in the application of Sr concentration variations to carbonate systems is the large range of experimental and empirical results for trace element partitioning of Sr between mineral and solution. This variation may be a function of precipitation rate, mineral stoichiometry, crystal growth mechanism, fluid composition and temperature. Calcite and dolomite in ancient limestones commonly have significantly lower Sr concentrations (20–70 p.p.m.) than would be expected from published trace element distribution coefficient values and Sr/Ca ratios of most modern sedimentary pore waters. This discrepancy probably reflects the uncertainties associated with determining distribution coefficient values. As techniques improve for the analytical measurement and theoretical modelling of Sr concentration and isotopic variations, the petrological analysis of carbonate samples becomes increasingly important. The presence of even small percentages of non-carbonate phases with high Rb concentrations and high 87 Sr86 Sr values, such as clay minerals, can have significant effects on the measured 87 Sr/86 Sr values of carbonate rocks, due to the decay of 87Rb to 87 Sr. For example, a Permian marine limestone with 50 p.p.m. Sr and 1 p.p.m. Rb will have a present-day 87 Sr/86 Sr value that is >2 × 10?4 higher than its original value. This difference is an order of magnitude greater than the analytical uncertainty, and illustrates the importance of assessing the need for and accuracy of such corrections. A quantitative evaluation of the effects of water-rock interaction on Sr concentrations and isotope compositions in carbonates strengthens the application of these geochemical tracers. Geochemical modelling that combines the use of trace elements and isotopes can be used to distinguish between different mechanisms of water-rock interaction, including diffusive and advective transport of diagenetic constituents in meteoric pore fluids during the recrystallization of carbonate minerals. Quantitative modelling may also be used to construct diagnostic fluid-rock interaction trends that are independent of distribution coefficient values, and to distinguish between mixing of mineral end-members and fluid-rock interaction.  相似文献   

12.
The relationship between subglacial chemical weathering processes and the Sr isotope composition of runoff from Robertson Glacier, Alberta, Canada, is investigated. This glacier rests on predominantly carbonate bedrock of Upper Devonian age, but silicate minerals are also present. The provenance of solute in meltwaters is found to vary systematically with solute concentration and, by inference, subglacial water residence time. In dilute waters, the principal process of solute acquisition is calcite dissolution fueled by protons derived from the dissolution of CO2 and subsequent dissociation of carbonic acid. At higher solute concentrations, dolomite dissolution coupled to sulfide oxidation is more important. Sr concentration is found to increase with total solute concentration in two separate meltwater streams draining from the glacier, but 87Sr/86Sr only increases in the eastern melt stream. Carbonate and K-feldspar sources are shown to dominate the Sr content of the western stream, irrespective of concentration. They also dominate the Sr content of the eastern stream at low and intermediate concentrations, but at higher concentrations, muscovite (with high 87Sr/86Sr) is also an important Sr source. This reflects the outcrop of muscovite-bearing lithologies in the catchment of the eastern stream and an increase in the rate of weathering of K-silicates relative to that of carbonates as more concentrated solutions approach saturation with respect to carbonates. Nonstoichiometric release of 87Sr/86Sr and preferential release of Sr over K from freshly ground K-silicate surfaces may also occur. This may help to explain the radiogenic nature of runoff from distributed subglacial drainage systems, which are characterized by long water:rock contact times and water flow through environments in which crushing and grinding of bedrock are active processes.Although the exchangeable Sr in tills has higher 87Sr/86Sr than local carbonate bedrock, only the more concentrated meltwaters from the eastern stream display similarly high values. The most dilute waters, which probably transport the bulk of the dissolved Sr flux from the glacier, have 87Sr/86Sr characteristic of local carbonate bedrock. Thus, the results suggest that although enhanced weathering of silicate minerals containing radiogenic Sr (such as muscovite) does occur in glaciated carbonate terrains, it is unlikely to contribute to any enhanced flux of radiogenic Sr from glaciated continental surfaces to the oceans.  相似文献   

13.
The isotopic composition of strontium in surface water in continental basins is determined primarily by the geology of the basin and to a lesser extent by climatic conditions. Consequently, the 87Sr/86Sr ratios of brines in such basins can change only as a result of changes in the geology or climate. This principle of isotope geology was studied by analysis of a suite of non-marine carbonate rocks from the Flagstaff Formation (Palaeocene-Eocene) of Utah. The samples were collected from a section in Fairview Canyon of Sanpete County. They include both limestone and dolomite and were selected to have low non-carbonate residues. The concentrations of strontium in calcites averages 383 ± 128 p.p.m., while those of dolomites increase from 354 ± 74 p.p.m. in the lower 43 m of section to a maximum of 2259 p.p.m. higher up. The increase in the strontium content of dolomite is interpreted as evidence for a change from steady-state to progressively more evaporitic conditions. Two dolomites have isotopic compositions of oxygen expressed as δ18O = -2.75‰ (relative to the PDB standard) and are enriched in 18O relative to two calcites whose average δ18O value is -9.9‰. The 87Sr/86Sr ratios of the carbonate minerals range from 0.70890 to 0.71260. These values are clearly greater than the 87Sr/86Sr ratio of marine carbonates of Early Eocene age which is 0.70744. The variation of the 87Sr/86Sr ratio in this section of the Flagstaff Formation is real and reflects the occurrence of geological events which changed the isotopic composition of Sr entering Lake Flagstaff. The non-carbonate fractions of six carbonate rocks and one sandstone fit a straight line on the strontium mixing diagram in co-ordinates of initial 87Sr/86Sr and 1/Sr concentration. These results suggest that the isotopic composition of strontium in Lake Flagstaff may have been modulated by periodic input of volcanogenic detritus of felsic composition.  相似文献   

14.
郑荣才  文华国  郑超  罗平  李国军  陈守春 《岩石学报》2009,25(10):2459-2468
研究了川东北普光气田下三叠统飞仙关组白云岩储层的岩石结构Sr的含量和Sr同位素组成,讨论了它的成因,飞仙关组优质储层为成岩期埋藏交代白云化作用的产物,来自岩石结构和Sr同位素和Sr含量的证据包括如下几个方面:(1)与准同生白云岩比较,埋藏白云岩的岩石结构和Sr同位素和Sr含量地球化学特征与前者有显著差别;(2)飞仙关组所有各类碳酸盐岩(或矿物)具有早三叠世海水Sr同位素组成特征,~(87)Sr/~(86)Sr比值变化范围为0.706588~0.708187,覆盖了全球早三叠世海水Sr同位素的变化范围(0.7076~0.7078),平均值0.707656与全球早三叠世平均值(0.707743)基本一致;(3)埋藏白云岩~(87)Sr/86Sr比值变化范围为0.707122~0.707419,平均值0.707421,都略低于全球早三叠世海水Sr同位素变化范围和平均值,但与已报道的川东北早三叠世飞仙关期海水Sr同位素变化范围(0.707330~0.707383)和平均值(0.707350)都非常接近,说明白云石化流体具有强烈的川东北地区早三叠世飞仙关期海水Sr同位素组成特征;(4)综合岩石结构、Sr同位素和Sr含量地球化学特征,证明飞仙关组白云岩储层为成岩期埋藏交代作用产物,白云石化流体来自地层中高Sr和高盐度的海源地层水.  相似文献   

15.
锶同位素已经成为全球海平面变化、造山运动、古气候和古环境等全球地质事件研究与对比的有效工具之一。本文以四川盆地东部地区早中三叠世蒸发岩的野外剖面和钻孔岩心为主要研究对象,测试了碳酸盐岩、硫酸盐岩和石盐岩的锶同位素组成,并建立了相应的锶同位素演化曲线。研究结果显示,碳酸盐岩的87Sr/86Sr值平均为0.707 895,硬石膏岩的87Sr/86Sr值平均为0.708 174,石盐岩的87Sr/86Sr值平均为0.708 177,同时碳酸盐岩的87Sr/86Sr值从早三叠世的0.707 413快速增加到中三叠世早期的0.708 515,而后呈现下降趋势。从总体上看,这些87Sr/86Sr值与全球早中三叠世同期的87Sr/86Sr值数据接近,说明四川盆地东部地区早中三叠世钾盐的物质来源大部分为海水,并沉积于海相沉积环境,同时由于火山...  相似文献   

16.
238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of cathodoluminescence and very low Mn (gener-ally<50 ppm) contents of the samples, it is thought that they contain information on the orig-inal sea water geochemistry. The results of isotopic analyses of these samples are presented interms of δ~(13)C and ~(87)Sr/~(86)Sr ratios versus geological time. The strontium data, consistent withother similar data based on samples from North America, Europe, Africa and other areas inAsia, support the notion of a global consistency in strontium isotope composition of marinecarbonates. The strontium data exhibit three intervals of relatively low ~(87)Sr/~(86)Sr ratios in thelate Middle Devonian to early Late Devonian, Early Carboniferous and Early Permian, corre-sponding to global eustatic high sea level stands. The lowest ~(87)Sr/~(86)Sr ratio recorded in theLate Permian was probably caused by substantial basalt eruptions in the Upper Yangtze Plat-form at the time. Three corresponding periods of relatively high δ~(13)C values at roughly the samethe intervals were caused by a relatively high rate of accumulation of organic carbon duringsea level rises at these times. The deposition of coal was probably responsible for the increaseof sea water δ~(13)C at other times. The δ~(13)C values drop dramatically near theDevonian/Carboniferous, Carboniferous/Permian and Permian/Triassic boundaries, con-sistent with other similar data, which further support the notion that geological time boundariesare associated with mass extinction and subsequent rejuvenation.  相似文献   

17.
Systematic shifts of oxygen isotopic compositions in the higher grade parts of the high temperature-low pressure Hercynian metamorphic sequence, exposed in the Trois Seigneurs Massif, have previously been explained as a result of an influx of surface-derived water during the prograde part of the metamorphic cycle. It has been suggested that this caused a regional lowering of 87Sr/86Sr in the metamorphic sequence. Mapping of strontium isotopic compositions across a 15 m meta-carbonate horizon in the higher grade pelite-psammite sequence shows that strontium isotopic compositions were homogenised over length scales of metres or less during the Hercynian metamorphism, which brought the carbonate and pelite-psammite to oxygen isotopic equilibrium with a common fluid. Comparison of model pre-Hercynian 87Sr/86Sr profiles across the carbonate (based on a depositional/diagenetic age of 450 Ma and initial 87Sr/86Sr ratio of 0.7086 given by 10 m length scale averaging) with the post-Hercynian 87Sr/86Sr profile (calculated from analysed 87Sr/86Sr and Rb/Sr compositions) implies strontium isotopic diffusion distances of ca. 0.4 m in the carbonate and ca. 7 m in the pelite-psammite. The limited Sr-isotopic diffusion distance of 0.4–0.7 m within the carbonate is compatible with pervasive oxygen-isotopic exchange over distances restricted to 4–15 m if fluid strontium concentrations were between 4 and 50 ppm. The strontium isotopic transport distances are not compatible with pervasive oxygen isotopic alteration over the observed 5 km regional scale. Either the flow was perfectly layer-parallel or, more probably, the regional-scale alteration of oxygen took place by fluid circulation in the brittle regime early in, or prior to, the Hercynian metamorphic event. Flow along cracks with incomplete diffusive exchange between fluid and wall rock would allow greater decoupling of oxygen and strontium isotopic transport than pervasive advective transport with local fluid-solid equilibrium.  相似文献   

18.
Filtered subglacial meltwater samples were collected daily during the onset of melt (May) and peak melt (July) over the 2011 melt season at the Athabasca Glacier (Alberta, Canada) and analyzed for strontium-87/strontium-86 (87Sr/86Sr) isotopic composition to infer the evolution of subglacial weathering processes. Both the underlying bedrock composition and subglacial water–rock interaction time are the primary influences on meltwater 87Sr/86Sr. The Athabasca Glacier is situated atop Middle Cambrian carbonate bedrock that also contains silicate minerals. The length of time that subglacial meltwater interacts with the underlying bedrock and substrate is a predominant determining factor in solute concentration. Over the course of the melt season, increasing trends in Ca/K and Ca/Mg correspond to overall decreasing trends in 87Sr/86Sr, which indicate a shift in weathering processes from the presence of silicate weathering to primarily carbonate weathering.Early in the melt season, rates of carbonate dissolution slow as meltwater approaches saturation with respect to calcite and dolomite, corresponding to an increase in silicate weathering that includes Sr-rich silicate minerals, and an increase in meltwater 87Sr/86Sr. However, carbonate minerals are preferentially weathered in unsaturated waters. During the warmest part of a melt season the discharged meltwater is under saturated, causing an increase in carbonate weathering and a decrease in the radiogenic Sr signal. Likewise, larger fraction contributions of meltwater from glacial ice corresponds to lower 87Sr/86Sr values, as the meltwater has lower water–rock interaction times in the subglacial system. These results indicate that although weathering of Sr-containing silicate minerals occurs in carbonate dominated glaciated terrains, the continual contribution of new meltwater permits the carbonate weathering signal to dominate.  相似文献   

19.
Salt diapirs contain a few percent of anhydrite that accumulated as residue to form anhydrite cap rocks during salt dissolutions. Reported 87Sr/86Sr ratios of these salt-hosted and cap rock anhydrites in the Gulf Coast, U.S.A., indicate their derivation from Middle Jurassic seawater. However, a much wider range of 87Sr/86Sr ratios, incorporating a highly radiogenic component in addition to the Middle Jurassic component, has been found in several Gulf Coast salt domes. This wide range of 87Sr/86Sr ratios of anhydrite within the salt stocks records Sr contributions from both marine water and formation water that has equilibrated with siliciclastics. During cap rock formation this anhydrite either recrystallized in the presence of, or was cemented by, a low-Sr fluid with a Late Cretaceous seawter-type Sr isotope ratio or simply lost Sr during recrystallization. Later, the cap rock was invaded by warm saline brines with high Sr isotope ratios from which barite and metal sulfides were precipitated. Subsequently, low-salinity water hydrated part of the anhydrite bringing to six the total number of fluids that interacted througout the history of salt dome and cap rock growth. The progenitor of these salt diapirs, the Louann Formation, is generally thought to have formed from marine water evaporated to halite and, rarely, higher evaporite facies. Salt domes in the East Texas, North Louisiana, and Mississippi Salt Basins have 87Sr/86Sr and δ34S values that corroborate a Mid-Jurassic age for the mother salt. However, salt domes in the Houston and Rio Grande Embayments of the Gulf Coast Basin have 87Sr/86Sr ration ranging to values higher than both Middle Jurassic seawater and all Rb-free marine Phanerozoic rocks. These anomalous 87Sr/86Sr ratios are probably derived from radiogenic Sr-bearing fluids that equilibrated with siliciclastic rocks and invaded the salt either prior to, or during, diapirism. Potential sources of the radiogenic 87Sr component include clay and/or feldspar (located either in older units beneath the Louann Formation or younger units flanking the salt diapirs) and K-salts within the Louann evaporites. Because partial Sr exchange in anhydrite had to take place in a fluid medium, admittance of radiogenic 87Sr-bearing fluids into the salt may have led to diapirism by lowering the shear strength of the crystalline salt. The slight number of anomalous 87Sr/86Sr values in the interior basins indicates that anomalous values are related to areally discrete structural or stratigraphic controls that affected only the Gulf Coast Basin.  相似文献   

20.
The isotopic composition of Sr has been measured in brine samples from the Upper Jurassic Smackover Formation in southern Arkansas; 87Sr86Sr ratios range from 0.7071 to 0.7101. With one exception, the 32 Smackover brines contain Sr which is significantly more radiogenic than the Sr in Late Jurassic sea water, indicating sizable Sr contributions from detrital sources. Isotopic analyses of core samples from rock units associated with the brines and regional stratigraphic relationships suggest that the radiogenic Sr was released from detrital minerals in Bossier shale to interstitial fluids expelled from the underlying Louann Salt in the North Louisiana salt basin. These fluids migrated through the Bossier Formation updip to the South Arkansas shelf, where they entered the upper Smackover carbonate grainstone. The radiogenic fluids mixed with Sr-rich interstitial marine waters that had the isotopic composition of Late Jurassic sea water; mixing in variable proportions resulted in the random distribution pattern of variable 87Sr86Sr ratios that is observed in Smackover brines within the 5000 km2 study area. Isotopic analyses of nonskeletal carbonate grains and coexisting coarse calcspar cement from the upper Smackover grainstone imply that the grains were diagenetically stabilized in the presence of interstitial marine waters, whereas the calcspar cement is a relatively late diagenetic phase precipitated after the arrival of radiogenic fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号