首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Cretaceous to low-Tertiary sequence of interbedded pelites, cherts, basic and acidic volcanics and calcareous lenses has been metamorphosed by an Oligocene event. A complete intergradational metamorphic sequence is exposed in the Ouégoa destrict. The following metamorphic zones have been recognised: — (1) lowest-grade rocks consisting of quartz-sericite phyllites and pumpellyite metabasalts (2) lawsonite zone, characterized by the association of lawsonite and albite (3) epidote zone, characterised by epidote-omphacite-sodic hornblendealmandine bearing metabasalts and epidote-albite-almandine-glaucophane bearing metasediments; calcareous metasediments may also carry omphacite. The epidote and lawsonite zones are separated by a narrow belt of transitional rocks. Garnets occur in metasediments throughout the lawsonite zone as rare tiny crystals (<0.03 mm diam.). Garnets first appear in metabasalts in lawsonite-epidote transitional rocks. Garnets are widespread and abundant in epidote-zone metasediments and metabasalts. 45 garnets from rocks representative of all lithologies and metamorphic grades have been analysed with an electron-probe microanalyser. The garnets were consistently zoned. Garnets in lawsonite and low-grade epidote zones show a “bell-type” zoning with cores enriched in Mn relative to Fe and rims enriched in Fe, Mg and frequently Ca. Garnets from high-grade epidote-zone metapelites and metabasalts show, in addition, a shallow oscillatory zoning with complimentary variations in Mn and Fe equivalent to 5 mole- % spessartine and almandine. The Fe-for-Mn substitutional zoning, believed to be caused by a diffusion/saturation effect similar to that of the Rayleigh fractional model (Hollister, 1966), appears to have had superimposed on it the effects of parent-rock chemistry and metamorphic grade which control in a complex manner the composition of the cores and the rims of garnets. Garnets from different rock types and metamorphic grade are compositionally distinct. Garnets from lawsonite-zone rocks, irrespective of parent-rock chemistry appear to be spessartine. Garnets from epidote-zone metaigneous rocks and most metasediments are almandine. Garnets from epidote-zone metasediments with bulk-rock compositions which are manganiferous, or have high oxidation ratios, or both, may be spessartine-rich. Garnets from metabasalts are consistently more pyropic in both core and rim compositions than garnets from pelitic metasediments; the pyrope content of cores and rims of garnets from equivalent rock types and mineral assemblages increases with increasing metamorphic grade. Cores of garnets from epidote-zone pelites are richer in grossular than garnets from lower-grade pelites. The reaction which brings almandine garnet into Ouégoa district blueschist assemblages simultaneously with the replacement of lawsonite by epidote involves components of chlorites and sodic amphiboles and can be represented by the following simplified equation: ferroglaucophane+Fe-rich chlorite+lawsonite → glaucophane+Mg-rich chlorite+epidote+almandine.  相似文献   

2.
Fine grained rodingite‐like rocks containing epidote, clinozoisite, garnet, chlorite, phengite and titanite occur within antigorite serpentinite boudins from the high‐pressure metamorphic Maksyutovo Complex in the Southern Urals. Pseudomorphs after lawsonite, resorption of garnet by chlorite and phengite and stoichiometry suggest the reaction lawsonite + garnet + K‐bearing fluid → clinozoisite + chlorite + phengite, and define a relic assemblage of lawsonite + garnet + chlorite + titanite ± epidote as well as a later post‐lawsonite assemblage of clinozoisite + phengite + chlorite + titanite. The reaction lawsonite + titanite → clinozoisite + rutile + pyrophyllite + H2O delimits the maximum stability of former lawsonite + titanite to pressures >13 kbar. P–T conditions of 18–21 kbar/520–540 °C result, if the average chlorite, Mg‐rich garnet rim and average epidote compositions are used as equilibrium compositions of the former lawsonite assemblage. These estimates indicate a similar depth of formation but lower temperatures to those recorded in nearby eclogites. The metamorphic conditions of the lawsonite assemblage are considerably higher than previously suggested and, together with published structural data, support a model in which a normal fault within the Maksyutovo complex acted as the major transport plane of eclogite exhumation. The maximum Si content of phengite and minimum Fe content in clinozoisite constrain the metamorphic conditions of the later pseudomorph assemblage to be >4.5 kbar and <440 °C. Rb–Sr isotopic dating of the pseudomorph assemblage results in a formation age of 339 ± 6 and 338 ± 5 Ma, respectively. These results support the recent exhumation models for this complex.  相似文献   

3.
Glaucophane-lawsonite facies blueschists representing a metamorphosed sequence of basic igneous rocks, cherts and shales have been investigated northeast of the district of Tav?anli in Northwest Turkey. Sodic amphiboles are rich in magnesium reflecting the generally high oxidation states of the blueschists. Lawsonite has a very uniform composition with up to 2.5 wt.% Fe2O3. Sodic pyroxenes show an extensive range of compositions with all the end-members represented. Chlorites are uniform in their Al/(Al+Fe+Mg) ratio but show variable Fe/ (Fe+Mg) ratios. Garnets from metacherts are rich in spessartine (>50%) whereas those from metabasites are largely almandine. Pistacite rich epidote is found in metacherts coexisting with lawsonite. Phengites are distinctly higher in their Fe, Mg and Si contents than those from greenschist facies. Hematites with low TiO2 are ubiquitous in metacherts. Fe2+/Mg partitioning between chlorite and sodic amphibole is strongly controlled by the calcium content of the sodic amphibole and ranges from 1.1 for low calcium substitution to 0.8 for higher calcium substitution. The Al/Fe3+ partition coefficient between sodic amphibole and sodic pyroxene is 2.1. A model system has been constructed involving projections from lawsonite, iron-oxide and quartz onto a tetrahedron with Na, Al, Fe2+ and Mg at its apices. Calcite is treated as an indifferent phase. The model system illustrates the incompatibility of the sodic pyroxene with chlorite in the glaucophanelawsonite facies; this assemblage is represented by sodic amphibole. Sodic amphibole compositions are plotted in terms of coexisting ferromagnesian minerals. Five major areas on the sodic amphibole compositional field are delineated, each associated with one of the following minerals: chlorite, stilpnomelane, talc, almandine, deerite.  相似文献   

4.
The chemistry and phase relations of calcic and sodic amphiboles in the Ouégoa blueschists are investigated. The first appearance of sodic amphiboles is controlled by bulkrock chemistry. Sodic amphibole appears first in weakly-metamorphosed pumpellyite metabasalts prior to the crystallization of lawsonite but does not crystallize in pelitic schists until the middle of the lawsonite zone; sodic amphibole continues as an apparently stable phase in rocks of all bulk compositions into, and throughout, the highest-grade rocks in the district. Calcic amphibole is widespread in metabasalts of the lawsonite and epidote zones and also occurs in metasediments of appropriate composition. Coexisting pairs of calcic and sodic amphiboles are common in metabasalts but they have also been found in some metasediments. A grunerite-riebeckite pair is described.Electron-probe analyses of 120 amphiboles from representative rock-types are presented in graphical form. Sodic amphiboles show an increased Mg/(Mg+Fe) ratio with increasing metamorphic grade. Sodic amphiboles in pelitic schists are ferroglaucophane in the lawsonite zone and crossite and glaucophane in the epidote zone. Sodic amphiboles in metabasalts are iron-rich crossites in weakly-metamorphosed rocks and more-magnesian crossites and glaucophanes in the lawsonite and epidote zones. The abrupt increase in Mg/(Mg+Fe) ratio in sodic amphiboles at the epidote isograd is attributed to the crystallization of epidote and almandine which take the place of lawsonite and spessartine of the lawsonite zone. Calcic amphiboles are fibrous actinolites in the lawsonite zone and grade with increasing Al and Na/Ca ratio into prismatic blue-green hornblendes (barroisites) in the upper epidote zone. In calcic amphiboles, increasing metamorphic grade effects the coupled substitution of (Na+Al) for (Ca+Mg) and a small increases in Fe/Mg ratio; octahedrally and tetrahedrally coordinated Al increases in an approximately 11 ratio. Both the calcic and the sodic amphiboles show an increase in A-site occupancy with increasing metamorphic grade. In two-amphibole assemblages Ti, Mn and K are concentrated in the calcic amphibole.The textural and chemical relations between coexisting calcic and sodic amphiboles are discussed. If the calcic and sodic amphiboles are an equilibrium pair then the data collected from the Ouégoa amphiboles gives a picture of a very asymmetric solvus in the system glaucophane-actinolite-hornblende, i.e. steep-sided to glaucophane and with a gentle slope to the calcic amphibole field; there is no indication of any termination of the solvus under the pressure-temperature conditions of crystallization of the Ouégoa schists.  相似文献   

5.
The Igarapé Bahia gold deposit has developed from weathering of a near-vertical hydrothermal Cu (Au) mineralization zone. The unweathered bedrock composed of chlorite schists is mainly metamorphosed basalts, pyroclastic and clastic sedimentary rocks and iron formation. Contents and Fe/(Fe + Mg) ratios of chlorites increase from distal country rock towards the mineralization zone, which can be attributed to different water/rock ratios and locations in a hydrothermal system. In the hydrothermal system high salinity fluids convected through basin-floor rocks, stripping metals from the recharge zones with precipitation in discharge zones. The chlorite with lower Fe/(Fe + Mg) ratios indicates alteration by relatively unreacted Mg-rich fluids, occurring within recharge zones. By contrast, the chlorite with higher Fe/(Fe + Mg) ratios in the mineralization zone formed from solutions rich in Fe, Mn, Au, Cu, H2S and SiO2 within a discharge zone. The iron formation could also be formed within the discharge zone or on the basin floor from the Fe-rich fluids. The distal country rock with less chlorite content is a hydrothermal product at low water/rock ratios whereas the proximal country rock and the host rock with more chlorite content formed at high water/rock ratio conditions. The Al(IV) contents of chlorites indicate that the formation temperatures of these rocks range from 204 to 266 °C, with temperatures slightly increasing from distal country rock towards the mineralization zone.  相似文献   

6.
Semi‐pelitic rocks ranging in grade from the prehnite–pumpellyite to the greenschist facies from south‐eastern Otago, New Zealand, have been investigated in order to evaluate the reactions leading to formation and breakdown of stilpnomelane. Detrital grains of mica and chlorite along with fine‐grained authigenic illite and chlorite occur in lower‐grade rocks with compactional fabric parallel to bedding. At higher grades, detrital grains have undergone dissolution, and metamorphic phyllosilicates have crystallized with preferred orientation (sub)parallel to bedding, leading to slaty cleavage. Stilpnomelane is found in metapelites of the pumpellyite–actinolite facies and the chlorite zone of the greenschist facies, but only rarely in the biotite zone of the greenschist facies. Illite or phengite is ubiquitous, whereas chlorite occurs only rarely with stilpnomelane upgrade of the pumpellyite‐out isograd. Chemical and textural relationships suggest that stilpnomelane formed from chlorite, phengite, quartz, K‐feldspar and iron oxides. Stilpnomelane was produced by grain‐boundary replacement of chlorite and by precipitation from solution, overprinting earlier textures. Some relict 14 Å chlorite layers are observed by TEM to be in the process of transforming to 12 Å stilpnomelane layers. The AEM analyses show that Fe is strongly partitioned over Mg into stilpnomelane relative to chlorite (KD≈2.5) and into chlorite relative to phengite (KD≈1.9). Modified A′FM diagrams, projected from the measured phengite composition rather than from ideal KAl3Si3O10(OH)2, are used to elucidate reactions among chlorite, stilpnomelane, phengite and biotite. In addition to pressure, temperature and bulk rock composition, the stilpnomelane‐in isograd is controlled by variations in K, Fe3+/Fe2+, O/OH and H2O contents, and the locus of the isograd is expected to vary in rocks of different oxidation states and permeabilities. Biotite, quartz and less phengitic muscovite form from stilpnomelane, chlorite and phengite in the biotite zone. Projection of bulk rock compositions from phengite, NaAlO2, SiO2 and H2O reveals that they lie close to the polyhedra defined by the A′FM minerals and albite. Other extended A′FM diagrams, such as one projected from phengite, NaAlO2, CaAl2O4, SiO2 and H2O, may prove useful in the evaluation of other low‐grade assemblages.  相似文献   

7.
Polymetamorphic rocks of Sifnos (Greece) have been investigated by Rb-Sr, K-Ar, and fission track methods. Critical mineral assemblages from the northern and southernmost parts of Sifnos include jadeite+quartz+3T phengite, and omphacite+garnet +3T phengite, whereas the central part is characterized by the assemblage albite+chlorite+epidote+2M 1 phengite.K-Ar and Rb-Sr dates on phengites (predominantly 3T) of the best preserved high P/itTmetamorphic rocks from northern Sifnos gave concordant ages around 42 m.y., indicating a Late Lutetian age for the high P/T metamorphism. Phengites (2M 1+3T) of less preserved high P/T assemblages yielded K-Ar dates between 48 and 41 m.y. but generally lower Rb-Sr dates. The higher K-Ar dates are interpreted as being elevated by excess argon.K-Ar and Rb-Sr ages on 2M 1 phengites from central Sifnos vary between 24 and 21 m.y. These ages date a second, greenschist-facies metamorphism which overprinted the earlier high-pressure metamorphic rocks.  相似文献   

8.
The compositions of metamorphic pyroxenes from blueschists in northern New Caledonia are investigated. Aegerine-augite occurs in siliceous metasediments and aegerine in some low-grade sodic basic schists. Calcic metamorphic pyroxene (omphacite and chloromelanite) appears first in metabasalts in higher grades of the lawsonite zone and is widespread in metamorphosed igneous rocks and quartzofeldspathic gneisses of the epidote zone. Omphacites in basic rocks have higher Mg∶Fe ratios and are less jadeitic than omphacites from adjacent interbedded quartzofeldspathic gneisses. With increasing metamorphic grade pyroxenes become more jadeitic and diopsidic at the expense of their acmite component. Elemental partitioning between coexisting pyroxenes, garnets and amphiboles from in situ regional metamorphic rocks is generally regular, suggesting equilibrium crystallization. Omphacite appears to be a stable phase within blueschist facies over a temperature range of at least 350° to 550° C. The “eclogitic” assemblage almandine-omphacite is stable within the earth's crust in metamorphosed sediments and igneous rocks over a temperature range of 400° to at least 550° C. No estimate of absolute pressures involved in metamorphism in the Ouégoa district can yet be made.  相似文献   

9.
The Southern Vanoise is localized in the internal part of the Western Alps, in the Briançonnais zone. In Vanoise the following units can be distinguished (Fig. 1): a pre-hercynian basement (micaschists, glaucophanites, basic rocks), a permian cover (micaschists) and a mesozoic-paleocene cover (carbonate rocks). This area has been affected by the alpine metamorphic event characterized here by high and intermediate pressure facies. The rocks paragenesis are often unbalanced.The paleozoic rocks (Table 1) contain mainly: quartz, albite, paragonite, phengite, blue amphibole, chlorite, green biotite, garnet (Table 2). These minerals were analysed by an electron microprobe (Tables 3, 4 and 5). Mineral composition is highly variable: glaucophane is zoned (Table 5), white micas are more or less substituted with phengite (3.22O3/FeO + MgO)<0.53] whereas the Al rich chlorites [(Al2O3/FeO + MgO)>0.6] are associated with the less substituted white micas (Si=3.2) (Tables 3 and 4). The phengites with a Si content 3.2 occur in rocks where the retromorphic evolution is the most pronounced and penetrative. A metamorphic evolution is characterized by the disappearance of glaucophane which corresponds to the appearance of Al rich chlorite and to the decrease of phengitic substitution.The samples analysis are plotted in the tetraedric diagram: K2O-Al2O3-Na2O, Al2O3-FeO, MgO, on which a special mathematical treatment was applied. This method calculates the location of rocks composition in the four minerals space. This location is internal when the per cent amounts of all four relevant minerals are positive, if any of them is negative, the point is external (Tables 6–9).In Southern Vanoise micaschists, 2 subfacies are successively present (Fig. 3):Subfacies I: glaucophane-chlorite-phengite (Si4+ 3.5)-paragonite. Then subfacies II: chlorite-albite-phengite (Si4+ 3.2)-paragonite.In basic rocks is found essentially: Subfacies III: glaucophane-garnet-phengite-paragonite or IV: glaucophane-garnet-phengite-albite. Then subfacies V: green biotite-chlorite-albite-paragonite.The assemblages I and II proceed through reaction: 2 glaucophane +1 paragonite+2 H2O4.2 albite + 1 chlorite.The assemblage V appears with reactions: 1.8 glaucophane +2 phengite0.4 chlorite+2 green biotite + 3.6 albite +0.4 H2O or 2 glaucophane +2 phengite +0.5 garnet+ 6 H2O2 green biotite +1 chlorite+4 albiteThese reactions are controlled by hydratation: the composition variation of phengite and associated chlorite during the metamorphic evolution determines the stability of some minerals (particularly the glaucophane in Na2O poor rocks).In same rocks the results of mathematical treatment is not consistent with the data (Tables 2, 6–9). This discrepancy corresponds to a desequilibrium between chlorite and phengite.These results imply a continuous metamorphic evolution between two stages (Fig. 6): a first stage (1) at 8 kb, 350 ° C; a second stage (2) at 2 to 3 kb, 400–450 ° C.  相似文献   

10.
Moderately manganiferous siliceous pelagites near Meyers Pass, Torlesse Terrane, South Canterbury, New Zealand, have been metamorphosed in the prehnite–pumpellyite facies. A conodont colour index measurement suggests T max in the range 190–300 °C. Porphyroblastic manganaxinite, manganoan pumpellyite, manganoan chlorite and trace spessartine-rich garnet and sphalerite have formed in an extremely fine-grained quartz–albite–berthierine–phengite–titanite groundmass. Porphyroblastic manganaxinite semischists and schists are distinctive rocks in prehnite–pumpellyite to lower-grade greenschist and blueschist facies of New Zealand and Japan. Mn in the manganoan pumpellyites substitutes for Ca in W sites. Total Fe/(Fe+Mg) ratios in chlorite are dependent on oxidation state, being ≤0.22 in red hematitic hemipelagites, and ≥0.61 in low-f O2 grey metapelagites. In the low-f O2 metapelagites, manganoan berthierine with little or no chlorite is inferred in the groundmass and iron-rich chlorite occurs as porphyroblasts and veinlets, whereas in the red rocks, Mg-rich chlorite occurs both in groundmasses and veinlets. Variably high Si in the manganoan chlorites correlates with evidence for contaminant phases. The Mn content of chlorite contributing to garnet growth is dependent on metamorphic grade; incipient spessartine indicates a saturation value of 6–8% MnO in chlorite in low-f O2 rocks at Meyers Pass. Lower MnO contents are recorded for otherwise analogous rocks with increasing metamorphic grade, but at a given grade coexisting chlorite and garnet are richer in Mn where f O2 is high. Manganaxinite and manganoan pumpellyite also contributed to reactions forming grossular–spessartine solid solutions. Formation of garnet in siliceous pelagites is dependent on both Mn and Ca content. The spessartine component increases with grade into the greenschist facies. Partial recrystallization of berthierine to chlorite and the growth of porphyroblastic patches of other minerals was facilitated by brittle fracture and access of fluids to an otherwise impermeable matrix; to this extent the very low-grade metamorphism was episodic.  相似文献   

11.
In this study, we have deduced the thermal history of the subducting Neotethys from its eastern margin, using a suite of partially hydrated metabasalts from a segment of the Nagaland Ophiolite Complex (NOC), India. Located along the eastern extension of the Indus‐Tsangpo suture zone (ITSZ), the N–S‐trending NOC lies between the Indian and Burmese plates. The metabasalts, encased within a serpentinitic mélange, preserve a tectonically disturbed metamorphic sequence, which from west to east is greenschist (GS), pumpellyite–diopside (PD) and blueschist (BS) facies. Metabasalts in all the three metamorphic facies record prograde metamorphic overprints directly on primary igneous textures and igneous augite. In the BS facies unit, the metabasalts interbedded with marble show centimetre‐ to metre‐scale interlayering of lawsonite blueschist (LBS) and epidote blueschist (EBS). Prograde HP/LT metamorphism stabilized lawsonite + omphacite (XJd = 0.50–0.56 to 0.26–0.37) + jadeite (XJd = 0.67–0.79) + augite + ferroglaucophane + high‐Si phengite (Si = 3.6–3.65 atoms per formula unit, a.p.f.u.) + chlorite + titanite + quartz in LBS and lawsonite + glaucophane/ferroglaucophane ± epidote ± omphacite (XJd = 0.34) + chlorite + phengite (Si = 3.5 a.p.f.u.) + titanite + quartz in EBS at the metamorphic peak. Retrograde alteration, which was pervasive in the EBS, produced a sequence of mineral assemblages from omphacite and lawsonite‐absent, epidote + glaucophane/ferroglaucophane + chlorite + phengite + titanite + quartz through albite + chlorite + glaucophane to lawsonite + albite + high‐Si phengite (Si = 3.6–3.7 a.p.f.u.) + glaucophane + epidote + quartz. In the PD facies metabasalts, the peak mineral assemblage, pumpellyite + chlorite + titanite + phengitic white mica (Si = 3.4–3.5 a.p.f.u.) + diopside appeared in the basaltic groundmass from reacting titaniferous augite and low‐Si phengite, with prehnite additionally producing pumpellyite in early vein domains. In the GS facies metabasalts, incomplete hydration of augite produced albite + epidote + actinolite + chlorite + titanite + phengite + augite mineral assemblage. Based on calculated TM(H2O), T–M(O2) (where M represents oxide mol.%) and PT pseudosections, peak PT conditions of LBS are estimated at ~11.5 kbar and ~340 °C, EBS at ~10 kbar, 325 °C and PD facies at ~6 kbar, 335 °C. Reconstructed metamorphic reaction pathways integrated with the results of PT pseudosection modelling define a near‐complete, hairpin, clockwise PT loop for the BS and a prograde PT path with a steep dP/dT for the PD facies rocks. Apparent low thermal gradient of 8 °C km?1 corresponding to a maximum burial depth of 40 km and the hairpin PT trajectory together suggest a cold and mature stage of an intra‐oceanic subduction zone setting for the Nagaland blueschists. The metamorphic constraints established above when combined with petrological findings from the ophiolitic massifs along the whole ITSZ suggest that intra‐oceanic subduction systems within the Neotethys between India and the Lhasa terrane/the Karakoram microcontinent were also active towards east between Indian and Burmese plates.  相似文献   

12.
Rocks of the greenschist facies in eastern Otago, New Zealand, have been investigated in an area some thirteen to sixteen kilometers wide and sixty-five kilometers long extending northeastwards approximately normal to the boundary of the schist with lower grade rocks. Quartzo-feldspathic schists predominate but greenschists and metacherts occur sporadically throughout the area. At the southwestern edge of the area schists are in the chlorite zone, slightly above the high-grade limit of pumpellyite. Metamorphic grade increases toward the northeast into the biotite zone which occupies about half the terrane studied and is believed to be everywhere little advanced in metamorphic grade past that of the biotite isograd. Some 130 mineral specimens have been partially analysed with the electron probe. Results derived from these data as well as other mineralogical investigation are as follows: Albite contains a maximum of 1% anorthite plus orthoclase in epidote-bearing rocks from all parts of the area.Compositions of epidotes range from 12% to 32% Ca2Fe3(SiO4)3(OH), but most lie between 15% and 20%, a compositional field thought by Strens (1965) and Holdaway (1965) to occupy a miscibility gap in the epidote series. Zoning in some epidotes suggests a history of early growth of small, sparse iron-rich epidotes, and later growth of relatively large amounts of iron-poor epidote probably caused by breakdown of prehnite and/or pumpellyite. Muscovites vary widely in celadonite content; but the composition shows little if any dependence on metamorphic grade within the area studied. Most tend to be celadonite-rich, and in this respect are similar in composition to muscovites from rocks of the glaucophane-schist facies.Chlorites range widely in Mg/Fe; but Al/Mg+Fe is relatively uniform. Chlorites associated with actinolite tend to have higher Mg/Fe than those associated with stilpnomelane. Following the classification of Foster (1962) most chlorites are brunsvigite and some are ripidolite. Textural and chemical relations between biotite and coexisting minerals demonstrate that, contrary to some previous suggestions, biotite is not a relict mineral. An alteration product of chlorite bears strong resemblance to biotite, and previous misidentification of this mineral as biotite has caused much confusion regarding the distribution and metamorphic significance of biotite in Otago schists.An attempt to determine the reaction producing biotite is not successful. Possibly biotitebearing rocks have slightly higher biotite component than rocks of the chlorite zone. All newly formed amphibole found in eastern Otago is pale green, Al- and Na-poor actinolite. One of the chemical conditions necessary for the formation of actinolite in schists of eastern Otago is a relatively high Mg/Fe+Al ratio.Stilpnomelane is an integral part of assemblages in which it occurs, being developed under conditions of relatively low and in rocks with a high Fe/Mg + Al ratio. The present highly oxidized state of all stilpnomelane observed in this study is probably not a primary feature of the mineral but developed after metamorphism.Porphyroblastic garnets are accessory constituents in about half the quartzo-feldspathic schists collected from the biotite zone but are extremely rare in specimens of the same lithology from the chlorite zone. Either a garnet-producing reaction began in quartzo-feldspathic schists at about the biotite isograd, or rocks of biotite zone tend to have slightly higher garnet component than those of the chlorite zone. Composition of the garnets ranges widely, extremes being: 77% spess., 18% gross., 5% alm.; 25% spess., 50% gross., 25% alm.; 15% spess., 30% gross., 55% alm. Most of the variation in composition is controlled by host rock composition, but garnets at higher grade tend to have lower spessartine content. The garnets are zoned; generally Mn decreases and Fe increases from core to rim.For the most part chemical equilibrium among different grains and minerals was closely approached over distances of at least a few millimeters. However, profound disequilibrium exists within some individual grains, such as a zoned garnet which over a distance of only 15 microns ranges in spessartine content from 77% in the core to 35% on the rim.This report is a condensed version of part of the author's Ph.D. thesis (Brown, 1966), University of California, Berkeley.  相似文献   

13.
Phase relations of biotite and stilpnomelane in the greenschist facies   总被引:1,自引:0,他引:1  
Phase relations of biotite and stilpnomelane and associated silicate minerals have been studied in rocks of the greenschist facies, chiefly from Otago, New Zealand and western Vermont, but also from Scotland, Minnesota-Michigan iron range, and northwest Washington. That stilpnomelane in the greenschicht facies crystallizes initially with nearly all iron in the ferrous state is indicated by chemical analyses, high p-T experiments, and phase relationships. Alteration of stilpnomelane after metamorphism not only oxidizes iron but leaches potassium; corrections for both effects must be made in using analyses of brown stilpnomelane in studies of phase relations. Two discontinuous reactions which produce biotite at the biotite isograd have been identified:
  1. muscovite+stilpnomelane+actinolite→ biotite+chlorite+epidote
  2. chlorite+microcline→ biotite+muscovite. Biotite produced by the first of these reactions has a limited range of variation in Fe/Mg. As grade advances within the biotite zone more magnesian and ferruginous biotites become stable in consequence of the two continuous reactions:
  3. muscovite+actinolite+chlorite→ biotite (Mg-rich)+epidote
  4. muscovite+stilpnomelane→ biotite (Fe-rich)+chlorite.
Stilpnomelane is stable in muscovite-free rocks throughout the biotite zone, and even up to the grade at which hornblende becomes stable. Phengitic muscovite is stable throughout the biotite zone in New Zealand and thus apparently does not contribute to the formation of biotite until a higher grade is reached.  相似文献   

14.
Metasediments in the southern Grossvenediger area (Tauern Window, Austria) were studied along a cross-section through rocks of increasing metamorphic grade from the margin of the Tauern Window in the south to the base of the Upper Schieferhülle, including the Eclogite Zone, in the north. In the southern part of the cross-section there is no evidence for a pre-late Alpine metamorphic history in the form of high-pressure relics or pseudomorphs. Mineral assemblages are characterized by the stability of tremolite + calcite, biotite + calcite and biotite + chlorite + calcite. In the northern part a more complete Alpine metamorphic evolution is preserved. Primary high-pressure assemblages are dolomite + quartz, tremolite + zoisite, zoisite + dolomite + quartz + phengite I and probably tremolite + dolomite + phengite I. Secondary, post-kinematic assemblages [tremolite + calcite, talc + calcite, phengite II + chlorite + calcite (+ quartz), biotite + chlorite + calcite, biotite + zoisite + calcite] formed as a result of the dominant late Alpine metamorphic overprint. The occurrence of biotite + zoisite + calcite is confined to the northernmost area and defines a biotite–zoisite–calcite isograd. P–T estimates based on standard thermobarometric techniques and on stability relationships of tremolite + calcite + dolomite + quartz and zoisite give consistent results. P–T conditions of the main Tertiary metamorphic overprint were 525° C, P= 7.5 ± 1 kbar in the northern part of the cross-section. The southern part was metamorphosed at lower temperatures of 430–470° C. The Si-content of phengites from this area is almost as high as that of phengites from the Eclogite Zone (Simax= 3.4 pfu). Pressures > 10 kbar at 420° C are suggested by phengite barometry according to Massone & Schreyer (1987). In the absence of high-pressure relics or pseudomorphs, these phengites, which lack late Alpine re-equilibration, are the only record that rocks of the southern part probably also experienced an early non-eclogitic high-pressure metamorphism.  相似文献   

15.
Abstract Chloritoid-bearing metasedimentary rocks occur in close proximity to blueschists and eclogites in the Tertiary high-pressure metamorphic belt of northern New Caledonia. The typical assemblage of chloritoid-bearing rocks in the epidote zone is quartzchlorite-muscovite-garnet-chloritoid. In the omphacite zone, epidote is an additional member of the chloritoid-bearing assemblage. Paragonite is rare, plagioclase was not detected, and rutile and ilmenite are the Fe-Ti oxide phases. Chloritoid-glaucophane is not a common assemblage. Chloritoid-bearing rocks have relatively low (Ca+K+Na)/Al ratios and the chloritoids are relatively Mg-rich with Mg/ (Mg+Fe) up to about 0.4. A comparison of the mineral assemblages and mineral chemistry with experimental and computed phase equilibria suggest an upper temperature limit near 560° C in the omphacite zone and a minimum temperature limit near 450° C at 10 kbar. An empirical garnet-chlorite Fe-Mg exchange thermometer does not yield consistent results for the higher-grade rocks, suggesting T s ranging from 390 to 535° C in the omphacite zone and 420–465° C in the epidote zone. The distribution coefficient K D = (Fe/Mg)ctd/(Fe/Mg)chl for chloritoid and chlorite ranges from 3.9 to 6.4, values which are lower than those (=10) from lower greenschist facies rocks, but are near those of upper greenschist facies and albite-epidote amphibolite facies.  相似文献   

16.
The Sivrihisar Massif, Turkey, is comprised of blueschist and eclogite facies metasedimentary and metabasaltic rocks. Abundant metre‐ to centimetre‐scale eclogite pods occur in blueschist facies metabasalt, marble and quartz‐rich rocks. Sivrihisar eclogite contains omphacite + garnet + phengite + rutile ± glaucophane ± quartz + lawsonite and/or epidote. Blueschists contain sodic amphibole + garnet + phengite + lawsonite and/or epidote ± omphacite ± quartz. Sivrihisar eclogite and blueschist have similar bulk composition, equivalent to NMORB, but record different P–T conditions: ~26 kbar, 500 °C (lawsonite eclogite); 18 kbar, 600 °C (epidote eclogite); 12 kbar, 380 °C (lawsonite blueschist); and 15–16 kbar, 480–500 °C (lawsonite‐epidote blueschist). Pressures for the Sivrihisar lawsonite eclogite are among the highest reported for this rock type, which is rarely exposed at the Earth's surface. The distribution and textures of lawsonite ± epidote define P–T conditions and paths. For example, in some lawsonite‐bearing rocks, epidote inclusions in garnet and partial replacement of matrix epidote by lawsonite suggest an anticlockwise P–T path. Other rocks contain no epidote as inclusions or as a matrix phase, and were metamorphosed entirely within the lawsonite stability field. Results of the P–T study and mapping of the distribution of blueschists and eclogites in the massif suggest that rocks recording different maximum P–T conditions were tectonically juxtaposed as kilometre‐scale slices and associated high‐P pods, although all shared the same exhumation path from ~9–11 kbar, 300–400 °C. Within the tectonic slices, alternating millimetre–centimetre‐scale layers of eclogite and blueschist formed together at the same P–T conditions but represent different extents of prograde reaction controlled by strain partitioning or local variations in fO2 or other chemical factors.  相似文献   

17.
内蒙古头道桥地区出露了一套经高压变质形成的岩石组合。本次研究通过岩相学和矿物化学分析,根据矿物组合的不同,识别出蓝片岩、绿片岩两种不同类型的岩石类型。其中,蓝片岩的矿物组合为角闪石(蓝闪石、蓝透闪石)+绿帘石+钠长石+绿泥石+石英+赤铁矿±多硅白云母±方解石±榍石;绿片岩的矿物组合为绿泥石+钠长石+石英±绿帘石±角闪石(阳起石、镁角闪石、蓝透闪石、冻蓝闪石等)±多硅白云母±赤铁矿。确定了蓝片岩的峰期变质级别为绿帘-蓝闪片岩相,峰期变质温度为400~600℃,压力为1.2~1.4 GPa。绿片岩的峰期变质级别为绿帘-角闪岩相。结合前人研究成果,认为蓝片岩和绿片岩的形成与额尔古纳地块和兴安地块的碰撞拼合有关。  相似文献   

18.
Xenoliths of metamorphic rocks with ferroglaucophane + albite + stilpnomelane + muscovite ± lawsonite ± pumpellyite are described fromn the rhylolitic tephra deposits of the Late Quaternary Phyriplaka Volcano, Milos, Aegean Island, Greece. The chemical bulk analyses reveal metabasaltic parent rocks with strongly modified chemical compositions. Unusual for common fresh basalt types is extreme Na2O combined with low K2O and rather low CaO. These are chemical characteristics of spilitic basalts. High iron in the bulk rock and very high Fe/Mg is probably the cause of extreme ferroglaucophane compositions. The metamorphic assemblages point to a high-p/low-T metamorphism in the pressure range 4–8 kb and with temperatures of about 350°C. Phyriplaka Volcano is likely to have only a shallow explosive center and ferroglaucophane rocks were ejected from the immediate basement of the island, which was uplifted after the metamorphic event.  相似文献   

19.
Phase relations of pumpellyite, epidote, lawsonite, CaCO3, paragonite, actinolite, crossite and iron oxide are analysed on an Al-Ca-Fe3+ diagram in which all minerals are projected from quartz, albite or Jadeite, chlorite and fluid. Fe2+ and Mg are treated as a single component because variation in Fe2+/Mg has little effect on the stability of phases on the diagram. Comparison of assemblages in the Franciscan, Shuksan, Sanbagawa, New Caledonia, Southern Italian, and Otago metamorphic terranes reveals several reactions, useful for construction of a petrogenetic grid:
  1. lawsonite+crossite + paragonite = epidote+chlorite + albite + quartz + H2O
  2. lawsonite + crossite = pumpellyite + epidote + chlorite + albite+ quartz + H2O
  3. crossite + pumpellyite + quartz = epidote + actinolite + albite + chlorite + H2O
  4. crossite + epidote + quartz = actinolite + hematite + albite + chlorite + H2O
  5. calcite + epidote + chlorite + quartz = pumpellyite + actinolite + H2O + CO2
  6. pumpellyite + chlorite + quartz = epidote + actinolite + H2O
  相似文献   

20.
Robust quantification of pressure (P)–temperature (T) paths for subduction-related HP/UHP metamorphic rocks is fundamental in recognizing spatial changes in both the depth of detachment from the down-going plate and the thermal evolution of convergent margin sutures in orogenic belts. Although the Chinese southwestern (SW) Tianshan is a well-known example of an accretionary metamorphic belt in which HP/UHP metabasites occur in voluminous host metasedimentary schists, information about the P–T evolution of these rocks in the eastern segment is limited, precluding a full understanding of the development of the belt as a whole. In this study at Kekesu in the eastern segment of the SW Tianshan, we use microstructural evidence and phase equilibrium modelling to quantify the peak and retrograde P–T conditions from two lawsonite-bearing micaschists and an enclosed garnet–epidote blueschist; for two of the samples we also constrain the late prograde P–T path. In the two micaschist samples, relics of prograde lawsonite are preserved in quartz inclusions in garnet, whereas in the metabasite, polymineralic aggregates included in garnet are interpreted as pseudomorphs after lawsonite. For garnet micaschist TK21, which is mainly composed of garnet, phengite/paragonite, albite, chlorite, quartz and relict lawsonite, with accessary rutile, titanite and ilmenite, the maximum P–T conditions for the peak stage are 18.0–19.0 kbar at 480–485°C. During initial exhumation, the retrograde P–T path passed through metamorphic conditions of 15.0–17.0 kbar at 460–500°C. For garnet–glaucophane micaschist TK33, which is mainly composed of garnet, glaucophane, phengite/paragonite, albite, chlorite, quartz, relict lawsonite and minor epidote, with accessary titanite, apatite, ilmenite and zircon, the maximum P conditions for the peak stage are >24.0 kbar at 400–500°C. During exhumation, the P–T path passed through metamorphic conditions of 17.5–18.5 kbar at 485–495°C and 14.0–17.5 kbar at 460–500°C. For garnet–epidote blueschist TK37, which is mainly composed of garnet, glaucophane, epidote, phengite, chlorite, albite and quartz, with accessary titanite, apatite, ilmenite, zircon and calcite, the prograde evolution passed through metamorphic conditions of ~20.0 kbar at ~445°C to Pmax conditions of ~21.5 kbar at 450–460°C and Tmax conditions of 19.5–21.0 kbar at 490–520°C. During exhumation, the rock passed through metamorphic conditions of 17.5–19.0 kbar at 475–500°C, before recording P–T conditions of <17.5 kbar at <500°C. These results demonstrate that maximum recorded pressures for individual samples vary by as much as 6 kbar in the eastern segment of the SW Tianshan, which may suggest exhumation from different depths in the subduction channel. Furthermore, the three samples record similar P–T paths from ~17.0 to 15.0 kbar, which suggests they were juxtaposed at a similar depth along the subduction interface. We compare our new results with published information from eclogites in the same area before considering the wider implications of these data for the orogenic development of the belt as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号