首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer   总被引:13,自引:4,他引:9  
There is currently a dearth of reliable thermobarometers for many hornblende and plagioclase-bearing rocks such as granitoids and amphibolites. A semi-empirical thermodynamic evaluation of the available experimental data on amphibole+plagioclase assemblages leads to a new thermometer based on the Aliv content of amphibole coexisting with plagioclase in silica saturated rocks. The principal exchange vector in amphiboles as a function of temperature in both the natural and experimental studies is \(\left( {Na\square _{ - 1} } \right)^A \left( {AlSi_{ - 1} } \right)^{T1}\) . We have analysed the data using 3 different amphibole activity models to calibrate the thermometer reactions 1. $$1. Edenite + 4 Quartz = Tremolite + Albite$$ 2. $$2. Pargasite + 4 Quartz = Hornblende + Albite.$$ The equilibrium relation for both (1) and (2) leads to the proposed new thermometer $$T = \frac{{0.677P - 48.98 + Y}}{{ - 0.0429 - 0.008314 ln K}} and K = \left( {\frac{{Si - 4}}{{8 - Si}}} \right)X_{Ab}^{Plag} ,$$ where Si is the number of atoms per formula unit in amphiboles, with P in kbar and T in K; the term Y represents plagioclase non-ideality, RTlnγab, from Darken's Quadratic formalism (DQF) with Y=0 for X ab>0.5 and Y=-8.06+25.5(1-X ab)2 for X ab<0.5. The best fits to the data were obtained by assuming complete coupling between Al on the T1 site and Na in the A site of amphibole, and the standard deviation of residuals in the fit is ±38°C. The thermometer is robust to ferric iron recalculation procedures from electron probe data and should yield temperatures of equilibration for hornblende-plagioclase assemblages with uncertainties of around ±75° C for rocks equilibrated at temperatures in the range 500°–1100° C. The thermometer should only be used in this temperature range and for assemblages with plagioclase less calcic than An92 and with amphiboles containing less than 7.8 Si atoms pfu. Good results have been attained on natural examples from greenschist to granulite facies metamorphic rocks as well as from a variety of mafic to acid intrusive and extrusive igneous rocks. Our analysis shows that the pressure dependence is poorly constrained and the equilibria are not suitable for barometry.  相似文献   

2.
The petrography, mineral chemistry and petrogenesis of a sample from the Weissenstein eclogite, Bavaria, Germany, has been investigated. The total mineral assemblage comprises garnet, clinopyroxeneI+II, quartz, amphiboleI+II, rutile, phengite, epidote/allanite, plagioclase, biotite, apatite, pumpellyite, titanite (sphene), zircon, alkali feldspar and calcite. Textural observations combined with geothermobarometry (Fe/Mg distribution between clinopyroxene/garnet and phengite/garnet; jadeite-content of omphacite, Si-content of phengite, and An-content of plagioclase) provide indications of two different stages in the metamorphic evolution of the rock. The main phengitequartz-eclogite mineral equilibration occurred at minimum P=13–17kbar, minimum T=620±50° C; the retrograde symplectite stage (clinopyroxeneII, amphiboleII, biotite, plagioclase) occurred at P total between 12 and 8.5 kbar. Reactions of the symplectite stage are:
  1. phengite (core) + Na2Oaq + CaOaq=phengite (rim) + biotite + plagioclase + K2Oaq + H2O
  2. phengite (core) + clinopyroxeneI + Na2Oaq=phengite (rim + biotite + plagioclase + amphiboleII + SiO2 + K2Oaq + CaOaq + H2O
  3. clinopyroxeneI + SiO2 + K2Oaq + H2O=clinopyroxeneII + plagioclase+amphiboleII + Na2Oaq + CaOaq
The phengite decomposition produces H2O, whereas the clinopyroxene decomposition consumes H2O. The estimated P-T-conditions for the Weissenstein eclogite are in the same order of magnitude as those for other eclogite bodies from the Alps and Caledonides believed to be related to subduction processes.  相似文献   

3.
The equilibrium between spinel lherzolite and garnet lherzolite has been experimentally determined in the CaO-MgO-Al2O3-SiO2 system between 800° and 1,100° C. In confirmation of earlier work and predictions from thermodynamic data, it was found that theP-T slope of the reaction was close to zero, the equilibrium ranging from 16.1 kb at 800° C to 18.7 kb at 1,100° C (±0.3 kb). The addition of Cr2O3 to the system raised the stability field of spinel to higher pressures. It was found that the pressure at which both garnet and spinel could exist with olivine+orthopyroxene+clinopyroxene in the system CMAS ?Cr2O3 could best be described by the empirical relationship: $$P = P^{\text{O}} + \alpha X_{{\text{Cr}}}^{s{\text{p}}} $$ whereP 0 is the equilibrium pressure for the univariant reaction in the Cr2O3-free system,α is a constant apparently independent of temperature with a value of 27.9 kilobars, andX Cr sp is the mole fraction of chromium in spinel. Use was made of the extensive literature on Mg-Fe2+ solid solutions to quantitatively derive the effect of Fe2+ on the equilibrium. The effect of other components (Fe3+, Na) was also considered. The equilibrium can be used as a sensitive geobarometer for rocks containing the five phases ol+opx+cpx+gt+sp, and thus provides the only independent check presently available for the more widely applicable geobarometer which uses the alumina content of orthopyroxene in equilibrium with garnet.  相似文献   

4.
A series of basaltic compositions and compositions within the simple system CaO-MgO-FeO-Al2O3-SiO2 have been crystallized to garnetclinopyroxene bearing mineral assemblages in the range 24–30 kb pressure, 750°–1,300° C temperature. Microprobe analyses of coexisting garnet and clinopyroxene show that K D(Fe2+/MgG+/Fe2+/MgCpx) for the Fe-Mg exchange reaction between coexisting garnet and clinopyroxene is obviously dependent upon the Ca-content and apparently independent of the Mg/(Mg+Fe) content of the clinopyroxene and garnet. The Ca-effect is believed to be due to a combination of non-ideal Ca-Mg substitutions in the garnet and clinopyroxene. Our data and interpretation reconciles previous inconsistencies in the temperature dependence of K D ? values determined in experimental studies of simple systems, complex basalt, grospydite and garnet peridotite compositions. Previous differences between the effect of pressure upon K Das predicted from simple system theory (Banno, 1970), and that observed in experiments on multicomponent natural rock compositions (Råheim and Green, 1974a) can now be resolved. We have determined K Das a function of P, T, and X Gt Ca (grossular) and derived the empirical relation $$T\left( {^\circ {\text{K}}} \right) = \frac{{3104X_{{\text{Ca}}}^{{\text{Gt}}} + 3030 + 10.86P\left( {{\text{kb}}} \right)}}{{\ln K_{\text{D}} + 1.9034}}$$ . This empirical relationship has been applied to garnet-clinopyroxene bearing rocks from a wide range of geological environments. The geothermometer yields similar estimates for garnet-clinopyroxene equilibration for neighbouring rocks of different composition and different K Dvalues. In addition, temperature estimates using the above relationship are more consistent with independent temperature estimates based on other geothermometers than previous estimates which did not correct for the Ca-effect. An alternative approach to the above empirical geothermometer was attempted using regular solution models to derive Margules parameters for various solid solutions in garnets and clinopyroxenes. The derived Margules parameters are broadly consistent with those determined from binary solution studies, but caution must be exercised in interpreting them in terms of actual thermodynamic properties of the relevant crystalline solid solutions because of the assumptions which necessarily have to be made in this approach.  相似文献   

5.
6.
Aluminous parageneses containing gedrite, cordierite, garnet, staurolite, biotite, sillimanite, kyanite, quartz or spinel plus corundum are found as dark colored lenses in the polymetamorphic, multideformed Archean complex at Ajitpura in northwest peninsular India. Staurolite, like kyanite, is a relict phase of earlier metamorphism and is excluded as a paragenetic mineral in view of its incompatibility with quartz and gedrite and its lower X Mg values than for garnet of the assemblage. Its stability here is attributed to zinc content of up to 3 wt%. The XMg in other ferromagnesian minerals decreases in the order: cordierite, biotite, gedrite, garnet, as found elsewhere in high grade rocks.The textural criteria and systematic partitioning of Fe and Mg in the ferromagnesian phases, excluding staurolite, indicate attainment of equilibrium during the second metamorphism. From tie line configurations in the phase diagrams, X Mg ratios in the constituent minerals, and other petrographic criteria, it is suggested that gedrite — cordierite-garnet — sillimanite — biotite assemblage has been produced by the reactions: Biotite+Sillimanite+Quartz = Cordierite+Garnet+K-feldspar+Vapor (1) and Biotite+Sillimanite+Quartz = Cordierite +Gedrite+K-feldspar+Vapor (2) which occurred during partial melting of the rocks at fixed P and T conditions.By isothermal P-X(Fe-Mg) sections it has been demonstrated that release of FeO, SiO2 and other components modified the composition of the reactant biotite presumably by the substitution FeSi2 Al, whereby reaction 1 was replaced by reaction 2. Cordierite with higher X Mg was produced with gedrite instead of with garnet, whose X Mg is less than X Mg of gedrite. Reaction 2 has been tentatively located in T-P space from the intersection of some continuous loops in the P-X(Fe-Mg) diagram at 700°C and also by other constraints. The discontinuous reaction 2 is located about 1–2 kilobars higher than reaction 1, which implies that it is difficult to distinguish between effects of pressure and those of melting on the X Mg ratios of the reaction phases.The P-T calibrations of garnet — cordierite, garnet — biotite and garnet — plagioclase equilibria and the calibrations from other dehydration curves give temperatures near 700°C and pressure (assuming ) about 6 kilobars.  相似文献   

7.
Hydrothermal reversal experiments have been performed on the upper pressure stability of paragonite in the temperature range 550–740 ° C. The reaction $$\begin{gathered} {\text{NaAl}}_{\text{3}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{1 0}}} ({\text{OH)}}_{\text{2}} \hfill \\ {\text{ paragonite}} \hfill \\ {\text{ = NaAlSi}}_{\text{2}} {\text{O}}_{\text{6}} + {\text{Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}} \hfill \\ {\text{ jadeite kyanite vapour}} \hfill \\ \end{gathered}$$ has been bracketed at 550 ° C, 600 ° C, 650 ° C, and 700 ° C, at pressures 24–26 kb, 24–25.5 kb, 24–25 kb, and 23–24.5 kb respectively. The reaction has a shallow negative slope (? 10 bar °C?1) and is of geobarometric significance to the stability of the eclogite assemblage, omphacite+kyanite. The experimental brackets are thermodynamically consistent with the lower pressure reversals of Chatterjee (1970, 1972), and a set of thermodynamic data is presented which satisfies all the reversal brackets for six reactions in the system Na2O-Al2O3-SiO2-H2O. The Modified Redlich Kwong equation for H2O (Holloway, 1977) predicts fugacities which are too high to satisfy the reversals of this study. The P-T stabilities of important eclogite and blueschist assemblages involving omphacite, kyanite, lawsonite, Jadeite, albite, chloritoid, and almandine with paragonite have been calculated using thermodynamic data derived from this study.  相似文献   

8.
The system MgO-Al2O3-SiO2(MAS) comprises 88–90% of the bulk composition of an average peridotite. The MAS ternary is thus a suitable starting point for exploring peridotite phase relations in multicomponent natural systems. The basic MAS phase relations may be treated in terms of the reactions (see list of symbols etc).
  1. py (in Gt)=en (in Opx)+mats (in Opx),
  2. en (in Opx)+sp (in Sp)=mats (in Opx)+fo (in Ol), and
  3. py (in Gt)+fo (in Ol)=en (in Opx)+sp (in Sp).
Extensive reversed phase equilibria data on these three reactions by Danckwerth and Newton (1978), Perkins et al. (1981), and Gasparik and Newton (1984) employing identical experimental methods in the same laboratory have been used by us to deduce the following internally consistent thermodynamic data applying the technique of linear programming:ΔH 298(1) 0 = 2536 J, ΔS 298(1) 0 =? 6.064 J/K;ΔH 298(2) 0 = 29435 J, ΔS 298(2) 0 = 8.323 J/K; andΔH 298(3) 0 =?26899 J, ΔS 298(3) 0 =?14.388 J/K.These data are also found to be consistent with results of calorimetry. Figure 2 shows the calculated phase relations based on our thermodynamic data; they are consistent with the phase equilibria experiments. Successful extension of the MAS phase relations to multicomponent peridotites pivots on the extent to which the effects of the “non-ternary” (i.e. other than MAS) components can be quantitatively handled. Particularly hazardous in this context is Cr2O3, although it barely makes up 0.2 to 0.5 wt% of such rocks. This is because Cr+3 fractionates extremely strongly into Sp. This study focuses on the peridotite phase relations in the MgO-Al2O3-SiO2-Cr2O3 (MASCr) quaternary. Thermodynamic calculations of the MASCr phase relations have been accomplished by using ΔH 298 0 and ΔS 298 0 values for the reactions (1) through (3) indicated above, in conjunction with data on thermodynamic mixing properties of
  1. binary Sp (sp-pc) crystalline solution (Oka et al. 1984),
  2. ternary Opx (en-mats-mcts) crystalline solution (this study), and
  3. binary Gt (py-kn) crystalline solution (this study).
The results are shown in P-T projections (Figs. 3a and b) and isobaric-isothermal sections of MASCr in a projection through the component fo onto the SiO2-Al2O3-Cr2O3 ternary (Figs. 4a and b). The most important results of this work may be summarized as follows:
  1. With increasing incorporation of Cr+3 into Sp and Gt, the X mats isopleths of the reactions (1) and (2) are shifted to higher temperatures (Fig. 3a); simultaneously, the spinel-peridotite to garnet-peridotite phase transition is moved to higher pressures (Fig. 3b).
  2. At identical P and T, the X mats values of Opx coexisting in equilibrium with Ol and Sp is strongly dependent upon the X pc value in the latter phase (Figs. 4a and b). Accurate correction for the composition of Sp is, therefore, a necessary precondition for geothermometry of the spinelperidotites.
  3. The discrepant temperatures reported by Sachtleben und Seck (1981, Fig. 5) from the spinel-peridotites of the Eifel area (systematically too high temperatures as a function of X pc in Sp) are demonstrated to be the result of ignoring the nonideality in the chromian spinels.
  相似文献   

9.
The crystal structure and site preference of Co2+ in a synthetic Co1.10Mg0.90SiO4 olivine have been determined from single crystal X-ray diffraction data collected on an automatic diffractometer. The R factor is 0.044 for 612 reflections. The site occupancies are: Ml site: Co 0.730±0.006; Mg 0.270; M2 site: Co 0.370, Mg 0.630. The Gibbs free energy change, ΔG° for the ion-exchange reaction between M1 and M2 sites is ?4.06 kcals/mole, assuming ideal mixing at each set of sites. This energy may be called ‘site preference energy’ of Co2+ in olivine. The strong preference of Co2+ for the M1 site can be quantitatively explained by two competing forces: preference of ions larger than Mg2+ for the M2 site and stronger covalent bonding of transition metal ions at the M1 site. For Fe2+, Mg2+, these two effects nearly neutralize each other, explaining the lack of considerable cation-ordering in Fe-Mg olivines.  相似文献   

10.
Experiments on the join Al2SiO5-“Mn2SiO5” of the system Al2O3-SiO2-MnO-MnO2 in the pressure/temperature range 10–20 kb/900–1050° C with gem quality andalusite, Mn2O3, and high purity SiO2 as starting materials and using /O2-buffer techniques to preserve the Mn3+ oxidation state had following results: At 20 kb/1000°C orange-yellow kyanite mixed crystals are formed. The kyanite solid solubility is limited at about (Al1.88Mn 0.12 3+ )SiO5 and, thus, equals approximately that on the join Al2SiO5-“Fe2SiO5” (Langer and Frentrup, 1973) indicating that there is no Jahn-Teller stabilisation of Mn3+ in the kyanite matrix. 5 mole % substitution causes the kyanite lattice constants a o, b o, c o, and V o to increase by 0.015, 0.009, 0.014 Å, and 1.6 Å3, resp., while α, β, γ, remain unchanged. Between 10 and 18 kb/900°C, Mn3+-substituted, strongly pleochroitic (emeraldgreen-yellow) andalusitess (viridine) was obtained. At 15 kb/900°C, the viridine compositional range is about (Al1.86Mn 0.14 3+ )SiO5-(Al1.56Mn 0,44 3+ )SiO5. Thus, Al→Mn3+ substitutional degrees are appreciably higher in andalusite than in kyanite, proving a strong Jahn-Teller effect of Mn3+ in the andalusite structure, which stabilises this structure type at the expense of kyanite and sillimanite and, thus, enlarges its PT-stability range extremely. 17 mole % substitution cause the andalusite constants a o, b o, c o, and V o to increase by 0.118, 0.029, 0.047 Å and 9.4 Å3, resp. At “Mn2SiO5”-contents smaller than about 7 mole %, viridine coexists with Mn-poor kyanite. At “Mn2SiO5”-concentrations higher than the maximum kyanite or viridine miscibility, braunite (tetragonal, ideal formula Mn2+Mn3+[O8/Si04]), pyrolusite and SiO2 were found to coexist with the Mn3+-saturated ky ss or and ss, respectively. In both cases, braunites were Al-substituted (about 1 Al for 1 Mn3+). Pure synthetic braunites had the lattice constants a o 9.425, c o, 18.700 Å, V o 1661.1 Å3 (ideal compn.) and a o 9.374, c o 18.593 Å3, V o 1633.6 Å3 (1 Al for 1 Mn3+). Stable coexistence of the Mn2+-bearing phase braunite with the Mn4+-bearing phase pyrolusite was proved by runs in the limiting system MnO-MnO2-SiO2.  相似文献   

11.
Phase relations of pumpellyite, epidote, lawsonite, CaCO3, paragonite, actinolite, crossite and iron oxide are analysed on an Al-Ca-Fe3+ diagram in which all minerals are projected from quartz, albite or Jadeite, chlorite and fluid. Fe2+ and Mg are treated as a single component because variation in Fe2+/Mg has little effect on the stability of phases on the diagram. Comparison of assemblages in the Franciscan, Shuksan, Sanbagawa, New Caledonia, Southern Italian, and Otago metamorphic terranes reveals several reactions, useful for construction of a petrogenetic grid:
  1. lawsonite+crossite + paragonite = epidote+chlorite + albite + quartz + H2O
  2. lawsonite + crossite = pumpellyite + epidote + chlorite + albite+ quartz + H2O
  3. crossite + pumpellyite + quartz = epidote + actinolite + albite + chlorite + H2O
  4. crossite + epidote + quartz = actinolite + hematite + albite + chlorite + H2O
  5. calcite + epidote + chlorite + quartz = pumpellyite + actinolite + H2O + CO2
  6. pumpellyite + chlorite + quartz = epidote + actinolite + H2O
  相似文献   

12.
Komatiite-hosted disseminated Ni sulphide deposits in the Agnew-Wiluna greenstone belt occur both above and below the olivine isograd that was imposed on the greenstone sequence during the M2 metamorphic/deformation event. Deposits in the northern and central part of the belt and that are located below the isograd (Mount Keith, Honeymoon Well and West Jordan) have complex sulphide mineralogy and strongly zoned sulphide assemblages. These range from least-altered assemblages of pentlandite-pyrrhotite-chalcopyrite±pyrite to altered assemblages of pentlandite±chalcopyrite, pentlandite-heazlewoodite (or millerite), heazlewoodite (or millerite), and rarely to heazlewoodite-native Ni. Deposits to the south and that are above of the olivine isograd (Six Mile, Goliath North) are dominated by less complex magmatic assemblages with a lower proportion of weakly altered pentlandite±chalcopyrite assemblages. More altered assemblages are uncommon in these deposits and occur as isolated patches around the periphery of the deposits. The sulphide zonation is reflected by whole-rock reductions in S, Cu, Fe and Zn, whereas Ni, Pt and Pd and, with some exceptions, Co are conservative. The leaching of S, Cu, Fe and Zn from sulphide assemblages and the whole rock was initiated by highly reduced conditions that were produced during low fluid/rock ratio serpentinization. Consumption of H2O resulted in Cl, a component of the fluid, being concentrated sufficiently to stabilise iowaite as part of lizardite-rich assemblages. Once the rate of olivine hydration reactions declined and during and after expansion and associated fracturing of the ultramafic sequence allowed higher fluid access, a more fluid-dominated environment formed and new carbonate-bearing fluid gained access to varying extents to the ultramafic rock sequence. This drove Cl from iowaite (to form pyroaurite) and caused the sulphide assemblages to be altered from the original magmatic assemblages and compositions to those stable at the prevailing fO2 and fS2 conditions. Mass transfer was made possible via metal chloride complexes and H2S with fluids driven by deformation associated with the M2 metamorphism. Disseminated deposits in higher metamorphic grade terrains where olivine was stable during peak metamorphism did not undergo the metasomatism seen in the deposits in areas of lower metamorphic grade. Some minor leaching of S, Fe and Cu occurred around the periphery of the deposits during early, pre-M2 peak metamorphism, but once olivine stability was reached the driving force for the series of leaching reactions was exhausted. The effect of this process on the original magmatic sulphides is to induce significant variability in texture, mineralogy and bulk composition and to markedly reduce the Fe and S contents of the sulphide fraction (in extreme cases to zero for both elements), and to reduce the volume of the sulphide fraction per unit of Ni. These changes impact unfavourably on Ni sulphide recoveries and metallurgical characteristics of these Ni ores.  相似文献   

13.
The partitioning of Fe and Mg between garnet and aluminous orthopyroxene has been experimentally investigated in the pressure-temperature range 5–30 kbar and 800–1,200° C in the FeO-MgO-Al2O3-SiO2 (FMAS) and CaO-FeO-MgO-Al2O3-SiO2 (CFMAS) systems. Within the errors of the experimental data, orthopyroxene can be regarded as macroscopically ideal. The effects of Calcium on Fe-Mg partitioning between garnet and orthopyroxene can be attributed to non-ideal Ca-Mg interactions in the garnet, described by the interaction term:W CaMg ga -W CaFe ga =1,400±500 cal/mol site. Reduction of the experimental data, combined with molar volume data for the end-member phases, permits the calibration of a geothermometer which is applicable to garnet peridotites and granulites: $$T(^\circ C) = \left\{ {\frac{{3,740 + 1,400X_{gr}^{ga} + 22.86P(kb)}}{{R\ln K_D + 1.96}}} \right\} - 273$$ with $$K_D = {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } \mathord{\left/ {\vphantom {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}$$ and $$X_{gr}^{ga} = (Ca/Ca + Mg + Fe)^{ga} .$$ The accuracy and precision of this geothermometer are limited by largerelative errors in the experimental and natural-rock data and by the modest absolute variation inK D with temperature. Nevertheless, the geothermometer is shown to yield reasonable temperature estimates for a variety of natural samples.  相似文献   

14.
The distribution of Fe3+ and Ga3+ between the two tetrahedral sites in three synthetic melilites has been studied by using 57Fe Mössbauer spectroscopy. In the melilite, (Ca2Ga2SiO7)50 (Ca2Fe3+GaSiO7)50 (mol %), the distribution of Fe3+ and Ga3+ in T1 and T2 sites is apparently random, which can be explained in terms of the electrostatic valence rule. However in the melilites, (Ca2MgSi2O7)52 (Ca2Fe3+GaSiO7)42 (Ca2Ga2SiO7)6 and (Ca2MgSi2O7)62 (Ca2Fe3+GaSiO7)36 (Ca2Ga2SiO7)2 (mol %), Fe3+ shows preference for the more ionic T1 site and Ga3+ for the more covalent T2 site. If the electronegativity of Ga3+ is assumed to be larger than that of Fe3+, the mode of distribution of Fe3+ and Ga3+ can be explained in terms of our previous hypothesis that a large electronegativity induces a stronger preference for the more covalent T2 site.  相似文献   

15.
The equilibrium position of the reaction $$\begin{gathered} 1.5 KAlSi_3 O_8 + HCl = 0.5 KAl_3 Si_3 O_{10} (OH)_2 \hfill \\ + 3SiO_2 + KCl \hfill \\ \end{gathered} $$ has been located at 1 and 2 kb pressure and temperatures between 600° and 670° C using the Ag-AgCl buffer. These data can be combined with information on the dissociation of KC1, HC1 and H2O to determine species abundances in supercritical aqueous fluids in equilibrium with muscovite — K-feldspar — quartz assemblages. Chloride species become increasingly associated with increasingT, increasing total molality, (m tot or \(m_{Cl_{tot} } \) ), and decreasing \(P_{H_2 O} \) . Master variable diagrams indicate that the pH of the solutions may vary from near neutral to quite acid. Published data on the paragonite-albite-quartz reaction and exchange reactions involving feldspars and micas were included to calculate speciation in mica-feldspar-NaCl-KCl-HCl-H2O fluids at 2kb pressure and temperatures between 300° and 600° C. The data are not accurate enough to distinguish different feldspar structural states. Concentration gradients were calculated for individual species between K-feldspar+quartz, muscovite+quartz and andalusite+quartz assemblages at 500° C, 2 kb. Assuming that the proton diffuses most rapidly and that there are no [H+] gradients, the molality of the solution must vary 30-fold, with feldspar+quartz at the more concentrated side. The data on mica-feldspar-chloride equilibria are used to interpret the spacial distribution of micas, feldspar and quartz in microfolds. This distribution can be accounted for by pressure solution, due to the fact that non-hydrostatic pressure affects congruently dissolving minerals, auch as quartz, differently from minerals which dissolve incongruently, such as micas and feldspars. We postulate, that during folding at constant \(P_{H_2 O} \) ,T and \(m_{Cl - } \) , gradients in KC1 and SiO2 are created by stress differences between hinge and limb of a microfold, such that both migrate to the hinge area where quartz precipitates and muscovite is converted to K-felspar, thus accounting for the observed mineral distribution.  相似文献   

16.
An extensive humite‐bearing marble horizon within a supracrustal sequence at Ambasamudram, southern India, was studied using petrological and stable isotopic techniques to define its metamorphic history and fluid characteristics. At peak metamorphic temperatures of 775±73°C, based on calcite‐graphite carbon isotope thermometry, the mineral assemblages suggest layer‐by‐layer control of fluid compositions. Clinohumite + calcite‐bearing assemblages suggest XCO2 < 0.4 (at 700°C and 5 kbar), calcite + forsterite + K‐feldspar‐bearing assemblages suggest XCO2>0.9 (at 790°C); and local wollastonite + scapolite + grossular‐bearing zones formed at XCO2 of c. 0.3. Retrograde reaction textures such as scapolite + quartz symplectites after feldspar and calcite and replacement of dolomite + diopside or tremolite+dolomite after calcite+forsterite or calcite+clinohumite are indicative of retrogression under high XCO2 conditions. Calcite preserves late Proterozoic carbon and oxygen isotopic signatures and the marble lacks evidence for extensive retrograde fluid infiltration, while during prograde metamorphism the possible infiltration of aqueous fluids did not produce significant isotopic resetting. Isotopic zonation of calcite and graphite grains was likely produced by localized CO2 fluid infiltration during retrogression. Contrary to the widespread occurrence of humite‐marbles related to retrograde aqueous fluid infiltration, the Ambasamudram humite‐marbles record a prograde‐to‐peak metamorphic humite formation and retrogression under conditions of low XH2O.  相似文献   

17.
The Burro Mountain ultramafic complex, Monterey County, California, consists of dunites and peridotites which are partially or wholly serpentinized. Primary minerals in both rock types are olivine, enstatite, diopside, and picotite which upon alteration yield chrysotile, lizardite, brucite, magnetite, talc, tremolite, and carbonate. Electron microprobe analyses show that enstatite, En85.8 to En90.8, alters to “bastite” composed only of lizardite (5.0–12.0 weight percent FeO), whereas olivine, Fo90.8 to Fo91.6, forms lizardite+chrysotile+brucite with or without magnetite. The chrysotile ranges from 3.0 to 5.0 weight percent FeO, the brucite from 16.0 to 43.0 weight percent FeO. As Serpentinization proceeds, the alteration products are enriched in FeO relative to MgO. Serpentinization probably originates in a changing \(P_{O_2 }\)-T environment by two different reactions:
  1. (a)
    Olivine+enstatite+H2O+O2?Mg, Fe+2 chrysotile+Mg, Fe+3, Fe+2 lizardite with or without magnetite.  相似文献   

18.
Ti-andradites were synthesized at a pressure of P(H2O)=3 kbar and temperatures of 700–800° C. Oxygen fugacities were controlled by solid state buffers (Ni/NiO; SiO2 + Fe/Fe2SiO4). The Fe2+-and Fe3+-distribution was determined by low temperature Mössbauer spectroscopy. The water content was measured by a solid's moisture analyzer. The chemical composition of the synthetic and the natural sample has been determined by electron microprobe. Ti-andradites from runs at high oxygen fugacities have Fe3+ on octahedral and tetrahedral sites; Ti-andradites from runs at low oxygen fugacities have tetrahedrally and octahedrally coordinated Fe2+ as well. These “reduced” garnets must also contain Ti3+ on octahedral sites. Charge balance is maintained due to substitution of O2? by (OH)? by two mechanisms: (SiO4)4? ? (O4H4)4? and (Fe3+O6)9? ? (Fe2+O5OH)9?. FTIR spectra of the synthetic samples do show the presence of structurally bound (OH)?. In a natural sample tetrahedrally and octahedrally coordinated Fe3+ are observed together with Fe2+ on all three cation sites of the garnet structure.  相似文献   

19.
 Calc-silicate granulites from Rayagada, north-central sector of Eastern Ghats granulite belt show a wide range of mineral assemblages and chemical compositions, which can be grouped as Gr. I (grossular- rich garnet-wollastonite-scapolite-calcite-clinopyroxene), Gr. II (andradite-rich garnet-scapolite-calcite-clinopyr- oxene), and Gr. III (scapolite-calcite-clinopyroxene-plagioclase) assemblages. Petrographic features suggest the following several reactions in the CaO–Al2O3–SiO2-vapor system: Mei+4Wo+Cal=3Grs+Qtz +2CO2, Mei+3Wo+2Cal=3Grs+CO2, Mei= 3An+Cal, Wo+CO2=Cal+Qtz, Mei+5Wo =3Grs+2Qtz+CO2, An+Wo=Grs+Qtz, Mei+ 5Cal+3Qtz=3Grs+6CO2, and the following reactions in the CaO–FeO–MgO–Al2O3–SiO2-vapor system: Cpxss+Scp+Wo=Grtss+Qtz+CO2, 4Hd+ 2Cal+O2=2Adr+2Qtz+2CO2, Cpxss+Scp= Grtss+Cal+Qtz. These reactions have been used to estimate peak T-X CO2 condition for these granulites. A maximum temperature of ∼920 °C has been calculated at an estimated pressure of 9 kbar. A T-X CO2 diagram shows an isobaric cooling from ∼920 °C to ∼815 °C. A range of X CO2 (0.50 at 920 °C to 0.25 at 815 °C) has been observed for Gr. I calc-silicate granulites based on the reaction sequences including coronal garnet-forming reactions. This sequence is suggestive of internal fluid buffering rather than external fluid influx and the differences in X CO2 conditions has been thought to be due to local buffering of fluid phases. Group II and Gr. III calc-silicate granulites, on the other hand, exhibit relatively lower temperature conditions. Received: 11 September 1995/Accepted: 20 June 1996  相似文献   

20.
Subsolidus phase relations on the join CaMgSi2O6-CaFe3+ AlSiO6-CaTiAl2O6 were studied by the ordinary quenching method at \(f_{O_2 } = 10^{ - 11} \) atm and 1,100°C. Crystalline phases encountered are clinopyroxeness (ss:solid solution) (Cpxss), melilite (Mel), perovskite (Pv), spinelss (Spss), magnetitess (Mtss) and anorthite (An). There is no Cpxss single phase field, and the following assemblages were found; Cpxss+Mel, Cpxss+Mel+Spss, Cpxss+Mel+Pv, Cpxss+Mel+Spss+Pv, Cpxss+Pv+Spss+An, Spss+Pv+Mel+An+Cpxss, Mel+Mtss+An+Spss+Cpxss+liquid and Mel+Mtss+An+Spss+Cpxss+Pv. Mössbauer spectral study revealed that Cpxss contains both Fe2+ and Fe3+ in the octahedral site, and it was confirmed that the CaFe3+ AlSiO6 content in the Cpxss at low \(f_{O_2 } \) is considerably less than that in the Cpxss crystallized in air, whereas the CaFe2+Si2O6 component increases. The maximum solubility of CaTlAl2O6 component in the Cpxss at low \(f_{O_2 } \) is higher than that in air. The decrease of CaFe3+ AlSiO6 in the Cpxss at low \(f_{O_2 } \) may cause increase of CaTial2O6 in the Cpxss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号