首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two diamond bearing xenoliths found at Finsch Mine are coarse garnet lherzolites, texturally and chemically similar to the dominant mantle xenoliths in that kimberlite. A total of 46 diamonds weighing 0.053 carats have been recovered from one and 53 diamonds weighing 0.332 carats from the other. The diamonds are less corroded than diamonds recovered from the kimberlite. Geothermobarometric calculations indicate that the xenoliths equilibrated at 1,130° C and pressures 50 kb which is within the diamond stability field; this corresponds to depths of 160 km and would place the rocks on a shield geotherm at slightly greater depths than most coarse garnet lherzolites from kimberlite. The primary minerals in the two rocks are very similar to each other but distinctly different to the majority of mineral inclusions in Finsch diamonds. This suggests a different origin for the diamonds in the kimberlite and the diamonds in the xenoliths although the equilibration conditions for both suites are approximately coincident and close to the wet peridotite solidus.  相似文献   

2.
The water content and D/H ratio of pairs of phlogopite and richterite in kimberlite samples were measured. The water contents of both minerals were lower than the formula content. On the basis of D/H ratios of the pair, phlogopite and richterite can not be regarded as a simple equilibrium product with respect to hydrogen isotope exchange. It seems impossible to estimate D/H ratio of the mantle water through D/H ratios of the hydrous silicate pairs.  相似文献   

3.
Summary The phase relations of K-richterite, KNaCaMg5Si8O22(OH)2, and phlogopite, K3Mg6 Al2Si6O20(OH)2, have been investigated at pressures of 5–15 GPa and temperatures of 1000–1500 °C. K-richterite is stable to about 1450 °C at 9–10 GPa, where the dp/dT-slope of the decomposition curve changes from positive to negative. At 1000 °C the alkali-rich, low-Al amphibole is stable to more than 14 GPa. Phlogopite has a more limited stability range with a maximum thermal stability limit of 1350 °C at 4–5 GPa and a pressure stability limit of 9–10 GPa at 1000 °C. The high-pressure decomposition reactions for both of the phases produce relatively small amounts of highly alkaline water-dominated fluids, in combination with mineral assemblages that are relatively close to the decomposing hydrous phase in bulk composition. In contrast, the incongruent melting of K-richterite and phlogopite in the 1–3 GPa range involves a larger proportion of hydrous silicate melts. The K-richterite breakdown produces high-Ca pyroxene and orthoenstatite or clinoenstatite at all pressures above 4 GPa. At higher pressures additional phases are: wadeite-structured K2SiVISiIV 3O9 at 10 GPa and 1500 °C, wadeite-structured K2SiVISiIV 3O9 and phase X at 15 GPa and 1500 °C, and stishovite at 15 GPa and 1100 °C. The solid breakdown phases of phlogopite are dominated by pyrope and forsterite. At 9–10 GPa and 1100–1400 °C phase X is an additional phase, partly accompanied by clinoenstatite close to the decomposition curve. Phase X has variable composition. In the KCMSH-system (K2CaMg5Si8O22(OH)2) investigated by Inoue et al. (1998) and in the KMASH-system investigated in this report the compositions are approximately K4Mg8Si8O25(OH)2 and K3.7Mg7.4Al0.6Si8.0O25(OH)2, respectively. Observations from natural compositions and from the phlogopite-diopside system indicate that phlogopite-clinopyroxene assemblages are stable along common geothermal gradients (including subduction zones) to 8–9 GPa and are replaced by K-richterite at higher pressures. The stability relations of the pure end member phases of K-richterite and phlogopite are consistent with these observations, suggesting that K-richterite may be stable into the mantle transition zone, at least along colder slab geotherms. The breakdown of moderate proportions of K-richterite in peridotite in the upper part of the transition zone may be accompanied by the formation of the potassic and hydrous phase X. Additional hydrogen released by this breakdown may dissolve in wadsleyite. Therefore, very small amounts of hydrous fluids may be released during such a decomposition. Received April 10, 2000; revised version accepted November 6, 2000  相似文献   

4.
Whole rock analyses are presented for nine garnet peridotite, two garnet pyroxenite, one garnet free peridotite and two highly altered garnet peridotite xenoliths from South African kimberlite pipes. Garnets from eight of these samples have also been chemically analysed, while olivine compositions in the twelve fresh samples have been estimated by X-ray diffraction. The chemistry and mineralogy of these specimens are compared with the results of previous studies, and the controversies concerning the petrogenesis of these xenoliths are discussed in detail.  相似文献   

5.
Water partitioning between mantle minerals from peridotite xenoliths   总被引:1,自引:1,他引:1  
The speciation and amount of water dissolved in nominally anhydrous silicates comprising eight different mantle xenoliths has been quantified using synchrotron micro-FTIR spectroscopy. Samples studied are from six geographic localities and represent a cross-section of the major upper mantle lithologies from a variety of tectonic settings. Clinopyroxene contains between 342 and 413 ppm H2O. Orthopyroxene, olivine and garnet contain 169–201, 3–54 and 0 to <3 ppm H2O, respectively. Pyroxenes water contents and the distribution of water between ortho- and clinopyroxene is identical regardless of sample mineralogy (D watercpx/opx = 2.1 ± 0.1). The total water contents of each xenolith are remarkably similar (113 ± 14 ppm H2O). High-resolution spectroscopic traverses show that the concentration and speciation of hydrous defects dissolved in each phase are spatially homogeneous within individual crystals and identical in different crystals interspersed throughout the xenolith. These results suggest that the amount of water dissolved in the silicate phases is in partial equilibrium with the transporting melt. Other features indicate that xenoliths have also preserved OH signatures of equilibrium with the mantle source region: Hydroxyl stretching modes in clinopyroxene show that garnet lherzolites re-equilibrated under more reducing conditions than spinel lherzolites. The distribution of water between pyroxenes and olivine differs according to xenolith mineralogy. The distribution of water between clinopyroxene and olivine from garnet peridotites (D watercpx/oliv(gnt) = 22.2 ± 24.1) is a factor of four greater than mineral pairs from spinel-bearing xenoliths (D watercpx/oliv(sp) = 88.1 ± 47.8). Such an increase in olivine water contents at the spinel to garnet transition is likely a global phenomenon and this discontinuity could lead to a reduction of the upper mantle viscosity by 0.2–0.7 log units and a reduction of its electrical resistivity by a factor of 0.5–0.8 log units.  相似文献   

6.
Dislocations decorated by hematite and magnetite have been observed optically in the olivine grains of undeformed or highly annealed peridotite xenoliths from Hawaii and Baja California ( 5 × 105 cm–2). The observed structures include loops, low-angle boundaries, and structures produced by multiple cross-glide of [100] screws. Loops are almost invariably parallel to (001). Simple arrays of parallel dislocations lie predominantly in (100), (010) and (001) with dislocation lines subparallel to low-index directions. [100] screws pinned to (100) boundaries are frequently seen to bow out on (001). Preliminary electron petrography has confirmed that all dislocations are decorated.  相似文献   

7.
Micas from coarse granular Iherzolites in S. African kimberlites may be separated into two groups; those showing primary textural relationships with coexisting silicates and those with secondary, alteration relationships with other silicates. Primary-textured micas form a tight cluster with a mean composition from 10 coarse garnet lherzolites of: SiO2 41.0, TiO2 0.18, Al2O3 13.5, Cr2O3 0.82, total Fe as FeO 2.60, MnO 0.02, MgO 26.0, NiO 0.22, CaO 0.01, BaO 0.29, Na2O 0.31, K2O 10.0, Rb2O 0.028, Cl 0.08, F 0.43 wt%. Primary-textured micas in aggregates with clinopyroxene have higher TiO2 and four specimens which look similar to the primary group but have textural ambiguities have still higher TiO2Micas with secondary textures have wide ranges of composition which may be correlated with details of the textural parageneses. Micas from kelyphitic rims around garnets tend to be Cr-rich while those from veinlets are Cr-poor. Both groups tend to have higher FeO and TiO2 than the primary group. Micas produced by alteration of, or filling veinlets through, orthopyroxene have a wide compositional range which overlaps that of the primary-textured micas, especially for harzburgite specimens.The primary-textured micas show a positive correlation with coexisting pyroxenes for MgO/(MgO + FeO) and TiO2, but not for Cr2O3. Secondary-textured micas do not show correlations with coexisting pyroxenes for any elements.The ‘primary-metasomatic’ micas described by Harte and Gurney (1975) and metasomatic and other micas described by Boettcher et al. (1979) and Boettcher and O'neil (1979) are richer in FeO and TiO2 than the present primary-textured micas, and are attributed to crystallization from fractionated fluids.  相似文献   

8.
新疆西克尔碧玄岩中的地幔橄榄岩包体   总被引:1,自引:4,他引:1  
在新疆西克尔地区发现了尖晶石相橄榄岩包体.这些包体的寄主岩石为碧玄岩,其K-Ar同位素年龄为19.76~21.90 Ma.岩相学和矿物化学研究表明西克尔橄榄岩包体具有典型的岩石圈地幔橄榄岩包体的特征.利用矿物温压计对包体的平衡温压进行估算,发现西克尔地幔橄榄岩包体的平衡温压为736~1017℃和1.7~2.2GPa,与西南天山托云地区晚白垩纪火山岩中尖晶石二辉橄榄岩包体(平衡温压为818~1113℃和1.5~2.0GPa)相比,具有温度明显偏低,而压力明显偏高的特点.这说明西克尔地区的地幔橄榄岩包体没有受到地幔热异常事件的影响,因此可以代表塔里木板块岩石圈地幔的原始性质.这对于研究塔里木盆地岩石圈地幔的热结构和地球化学特征以及塔里木盆地内大量幔源岩浆的成因具有重要意义.  相似文献   

9.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

10.
Rheology of the upper mantle: Inferences from peridotite xenoliths   总被引:1,自引:0,他引:1  
Stress estimates as a function of depth are obtained for peridotite xenoliths from the upper mantle of three types of tectonic environments by applying revised recrystallizedgrain-size paleopiezometry and pyroxene thermobarometry. The general increase in grain size with depth and hence decrease in deviatoric stress, observed previously, is confirmed but reversals in these trends are now established and remain enigmatic. Stresses and temperatures obtained are combined with a representative creep-flow law to calculate strainrate and viscosity profiles that appear to be physically reasonable. Profiles for the highthermal-gradient rift/ridge environments show a complexity that is interpreted as.a rheological discontinuity resulting from the emplacement of asthenospheric diapirs during late stages of continental rifting. Profiles for broad continental extension zones (C.E.Z.), believed to be most representative of oceanic upper mantle, fluctuate between 50 and 80 km, with a general small increase in strain rate and decrease in viscosity with depth; deepest samples apparently come from the base of the lithosphere. Profiles for the infracratonic mantle of southern Africa show nearly a uniform increase in strain rate to values greater than 10−14/sec, and a decrease in viscosity to lower than 1021 poise, at a depth of 230 km. These profiles may transect the mechanically defined lithosphere—asthenosphere transition at about 200 km and, if so, there is no evidence for a mechanical discontinuity at the boundary. This observation, coupled with evidence that the sense of shear is homogeneous for all mantle profiles constructed, clearly favors a model whereby lithospheric plates are dragged by thermal convection of the asthenosphere below. Sea-floor spreading rates and relative plate-velocity estimates are consistent with this interpretation but do not independently permit a definitive choice between the two favored models advanced to explain the driving force for plate motions.  相似文献   

11.
The diamondiferous Letlhakane kimberlites are intruded into the Proterozoic Magondi Belt of Botswana. Given the general correlation of diamondiferous kimberlites with Archaean cratons, the apparent tectonic setting of these kimberlites is somewhat anomalous. Xenoliths in kimberlite diatremes provide a window into the underlying crust and upper mantle and, with the aid of detailed petrological and geochemical study, can help unravel problems of tectonic setting. To provide relevant data on the deep mantle under eastern Botswana we have studied peridotite xenoliths from the Letlhakane kimberlites. The mantle-derived xenolith suite at Letlhakane includes peridotites, pyroxenites, eclogites, megacrysts, MARID and glimmerite xenoliths. Peridotite xenoliths are represented by garnet-bearing harzburgites and lherzolites as well as spinel-bearing lherzolite xenoliths. Most peridotites are coarse, but some are intensely deformed. Both garnet harzburgites and garnet lherzolites are in many cases variably metasomatised and show the introduction of metasomatic phlogopite, clinopyroxene and ilmenite. The petrography and mineral chemistry of these xenoliths are comparable to that of peridotite xenoliths from the Kaapvaal craton. Calculated temperature-depth relations show a well-developed correlation between the textures of xenoliths and P-T conditions, with the highest temperatures and pressures calculated for the deformed xenoliths. This is comparable to xenoliths from the Kaapvaal craton. However, the P-T gap evident between low-T coarse peridotites and high-T deformed peridotites from the Kaapvaal craton is not seen in the Letlhakane xenoliths. The P-T data indicate the presence of lithospheric mantle beneath Letlhakane, which is at least 150 km thick and which had a 40mW/m2 continental geotherm at the time of pipe emplacement. The peridotite xenoliths were in internal Nd isotopic equilibrium at the time of pipe emplacement but a lherzolite xenolith with a relatively low calculated temperature of equilibration shows evidence for remnant isotopic disequilibrium. Both harzburgite and lherzolite xenoliths bear trace element and isotopic signatures of variously enriched mantle (low Sm/Nd, high Rb/Sr), stabilised in subcontinental lithosphere since the Archaean. It is therefore apparent that the Letlhakane kimberlites are underlain by old, cold and very thick lithosphere, probably related to the Zimbabwe craton. The eastern extremity of the Proterozoic Magondi Belt into which the kimberlites intrude is interpreted as a superficial feature not rooted in the mantle. Received: 19 March 1996 / Accepted: 16 October 1996  相似文献   

12.
The chemical compositions of garnets from 58 eclogite, 72 peridotite and 4 pyroxenite xenoliths in kimberlites have been estimated from their unit cell edge length and refractive indices. The samples studied were obtained from 17 kimberlite occurrences and include all those of known source which remain in the famous Williams (1932) collection which is stored at the University of Cape Town. Every suitable sample available to the authors has been examined.A gap in the range of garnet volume percentages occurs in the samples studied between approximately 15 and 30%. Garnet peridotites characteristically have <15% garnet and eclogites >30% garnet. Very rare exceptions occur. Our collection contains no eclogites with olivine and only one with orthopyroxene. All but two of the peridotite-pyroxenite group contain orthopyroxene. The garnets from the peridotites and pyroxenites plot on a pyrope-almandine-uvarovite triangle in a narrow band with a remarkably constant almandine/uvarovite ratio. Garnets from the eclogites are plotted on a pyrope-almandine-grossularite triangle and have a wide spread of compositions. These fall into 4 groups viz. eclogite I, eclogite II, kyanite eclogite and corundum eclogite.The reasons for the differences in garnet chemistry are considered and a tentative evolutionary scheme suggested by partial melting of the garnet peridotite which is assumed to occur in the upper mantle. Recent models of upper mantle composition and the genesis of garnet-bearing xenoliths in kimberlite are briefly and critically examined.S.A. UMP Publication No. 9.  相似文献   

13.
夏萍  徐义刚 《地球化学》2006,35(1):27-40
滇东南马关地区新生代钾质玄武岩携带的幔源包体为研究该地区上地幔性质提供了物质基础。分析表明,全岩及单矿物中的玄武质组分与M gO含量之间均有很好的负相关性,与世界尖晶石二辉橄榄岩的变化趋势一致,表明橄榄岩包体代表了成分均一的上地幔经不同程度部分熔融后的残余;绝大多数包体亏损LREE及除U、Th以外的其他不相容元素,SrN-d同位素组成单一(87Sr8/6Sr=0.7022~0.7029,Nεd=9.5~12.3),显示了M ORB型地幔的成分特点。相对亏损橄榄岩(Fo>90)的平衡温度(928~959℃)低于饱满型橄榄岩F(o<90,956~1110℃)。这些特征表明,马关橄榄岩包体很可能代表了MORB型软流圈地幔底辟上涌、减压熔融后新增生的岩石圈地幔。  相似文献   

14.
Primary carbonates in peridotite xenoliths from the East African Rift in northeastern Tanzania occur as intergranular patches with accessory minerals (olivine and spinel), as patches with accessory magmatic minerals (nepheline), and as round monomineralic inclusions in primary olivine grains. All are characterized by calcitic compositions (Ca/Ca + Mg + Fe from 0.83 to 0.99), extremely low SiO2 + Al2O3 + Na2O + K2O, low trace element abundance [total rare-earth element (REE) abundance <25 ppm], uniform extinction, and lack of reaction textures with the host xenolith. Calculated Fe–Mg exchange coefficients between carbonate and primary olivine indicate disequilibrium in most samples. Combined with the lack of significant reaction textures, this suggests that the carbonates were introduced shortly before or during eruption of the host magma. A global compilation of electron microprobe analyses of mantle-derived carbonates (in xenoliths, xenocrysts, and megacrysts) reveals compositional clusters near end member calcite, end member magnesite, and stoichiometric dolomite. Eutectic liquid compositions are less common, suggesting that many carbonate inclusions reported worldwide may be crystalline precipitates. Likewise, the calcites in this study are not interpreted to represent quenched carbonatitic melts, but are interpreted instead to be crystalline cumulates from such melts. These inferences are consistent with recent experiments, which show that carbonatitic melts cannot become more calcitic than CaCO3∼80 wt%. Low trace element abundance may be a diagnostic feature of cumulate carbonate, and in combination with petrography and major element composition, serve to distinguish it from quenched carbonated liquid. Received: 30 July 1999 / Accepted: 5 February 2000  相似文献   

15.
Mantle xenoliths brought to the surface by kimberlite magmas along the south-western margin of the Kaapvaal craton in South Africa can be subdivided into eclogites sensu stricto, kyanite eclogites and orthopyroxene eclogites, all containing omphacite, and garnet clinopyroxenites and garnet websterites characterised by diopside. Texturally, chemically (major elements) and thermally, we observe an evolution from garnet websterites (TEG = 742–781 °C) towards garnet clinopyroxenites (TEG = 715–830 °C) and to eclogites (TEG = 707–1056 °C, mean value of 913 °C). Pressures calculated for orthopyroxene-bearing samples suggest upper mantle conditions of equilibration (P = 16–33 kb for the garnet websterites, 18 kb for a garnet clinopyroxenite and 23 kb for an opx-bearing eclogite). The overall geochemical similarity between the two groups of xenoliths (omphacite-bearing and diopside-bearing) as well as the similar trace element patterns of clinopyroxenes and garnet suggest a common origin for these rocks. Recently acquired oxygen isotope data on garnet (δ18Ognt = 5.25–6.78 ‰ for eclogites, δ18Ognt = 5.24–7.03 ‰ for garnet clinopyroxenites) yield values ranging from typical mantle values to other interpreted as resulting from low-temperature alteration or precursors sea-floor basalts and associated rocks. These rocks could then represent former magmatic oceanic rocks that crystallised from a same parental magma as plagioclase free diopside-bearing and plagioclase-bearing crustal rocks. During subduction, these oceanic rock protoliths equilibrated at mantle depth, with the plagioclase-bearing rocks converting to omphacite and garnet-bearing lithologies (eclogites sensu largo), whereas the plagioclase-free diopside-bearing rocks converted to diopside and garnet-bearing lithologies (garnet websterites and garnet clinopyroxenites).  相似文献   

16.
REE abundances in minerals from spinel peridotite xenoliths from West Germany, the south-western U.S. and Mongolia decrease in the order clinopyroxene > orthopyroxene > olivine > spinel. While clinopyroxenes are similar in absolute chondrite-normalized concentrations to those known from other studies, orthopyroxenes and olivines are significantly lower in LREE although comparable in HREE. Spinels are much lower in all REE than any previously reported values and are completely negligible for the REE budget of peridotites.Partition coefficients for most orthopyroxene/clinopyroxene pairs increase systematically from La to Lu. Olivine/clinopyroxene and spinel/clinopyroxene partition coefficients increase from the intermediate rare earth elements to Lu and normally are higher for La compared to Sm.The application of Nagasawa's (1966) elastic lattice model suggests that all heavy but only minor amounts of the light REE substitute into structural positions of orthopyroxene and olivine.Significant differences between orthopyroxene/clinopyroxene partition coefficients for various xenoliths may be assigned to dependences upon equilibration temperature and bulk chemistry.Apart from grain surface contaminations, fluid inclusions which are practically always present in mantle minerals, can highly concentrate light rare earth elements and thus may be responsible for unexpectedly high concentrations of incompatible elements frequently reported for mantle olivines or orthopyroxenes.  相似文献   

17.
Dislocation structures in naturally deformed olivine from garnet peridotite xenoliths from South African kimberlites have been studied by electron microscopy. The substructure consists mainly of straight subboundaries of dislocations with Burgers vectors [001]. Most of the dislocations have both edge and screw components, and the slip planes are mainly (100). The dislocation density between the subboundaries is low.The slip planes in olivine are discussed in relation to the olivine structure. The observed dislocation structures seem to indicate that the large difference in strain rate between natural and experimental deformation will produce a difference in the slip mechanisms.The nature of the deformation lamellae visible in optical microscope is discussed.  相似文献   

18.
Peridotite xenoliths erupted by alkali basaltic volcanoes in the western Pannonian Basin can be divided into two fundamentally contrasting groups. Geochemical characteristics of the abundant protogranular, porphyroclastic and equigranular nodules suggest that these samples originate from an old consolidated and moderately depleted lithospheric mantle domain. In contrast, the geochemical features of the worldwide rare, but in the Pannonian Basin relatively abundant, poikilitic xenoliths attest to a more complex evolution. It has been argued that the origin of the peculiar texture and chemistry may be intimately linked to melt/rock reactions at successively decreasing liquid volumes in a porous melt flow system. The most likely site where such reactions can take place is the asthenosphere–lithosphere boundary. In this context, poikilitic xenoliths may provide petrological and geochemical evidence for reactions between magmatic liquids issued from the uprising asthenosphere and the solid mantle rocks of the lithosphere. These reactions are important agents of the thermal erosion of the lithosphere; thus, they could have considerably contributed to the thinning of the lithosphere in the Pannonian region. We suggest that in the Pannonian Basin, there could be a strong relation between the unusual abundance of poikilitic mantle xenoliths and the strongly eroded lithosphere.  相似文献   

19.
Phlogopite micas from nodules in South African kimberlites were analyzed for major elements with the electron microprobe and for volatile contents by high temperature mass spectrometry. The micas are from primary- (deformed) and secondary- (undeformed) textured grains in perodotite xenoliths, glimmerites, MARID (mica-amphibole-rutile-ilmenite-diopside) suite nodules and a mica megacryst. The major element and volatile contents of micas exhibiting these modes of occurrence overlap to a greater extent than indicated in previous studies. Concentrations of volatile species occupying structurally defined crystallographic sites (H2O, F, Cl) are greater for many of the micas than predicted on the basis of the mica formula, particularly for the glimmerite and MARID suite samples. A correlation exists between micas with tetrahedral and octahedral cation deficiencies and those with excess H2O, F and Cl. Substitution of H+ for tetrahedral and possibly octahedral cations may be responsible for the excess H2O in these micas. Except for one sample, the major element and volatile data for the peridotite, glimmerite and MARID suite micas indicate that they crystallized at oxygen fugacities below the quartz-fayalite-magnetite buffer. F and K2O are in the correct proportion in the micas to provide the source for these elements in alkali basalts, but not in mid-ocean ridge basalts. Kaersutite amphibole is a more likely source of potassium and fluorine in mid-ocean ridge basalts.  相似文献   

20.
 One diamond-bearing and eight graphite-bearing eclogite xenoliths are described from the Bellsbank kimberlites, Cape Province, South Africa. Graphite mostly occurs as discrete grains which are commonly in the form of tabular prisms. Diamond is octahedral. Both Group I and Group II eclogite varieties are represented by the graphite-bearing specimens, while the single diamond-bearing eclogite is of the Group I variety. The carbon isotopic composition of the graphite varies from δ13C=−7‰ to δ13C=−2.8‰. This is within the range of carbon isotopic compositions for inclusion-free diamonds in kimberlite from this locality, suggesting that the carbon for the eclogites as well as some of the kimberlite diamonds are derived from the same source. The present day Nd isotopic compositions of clinopyroxene from three graphite-bearing xenoliths are slightly higher than the bulk earth estimate. Sr isotopic compositions of the clinopyroxene in these xenoliths vary from 87Sr/86Sr=0.703 to 87Sr/86Sr=0.706. This could be due to derivation of the xenoliths from a protolith with variable 87Sr/86Sr isotopic composition or could be the result of mixing between a low-Sr, high 87Sr/86Sr component and a high Sr, low 87Sr/86Sr component. Received: 1 June 1994/Accepted: 6 March 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号