首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strontium isotopic data suggest that the classic eclogite-facies rocks of western south Norway described by Eskola (1921) formed from several parental materials in a variety of environments. Mineral separates from essentially basic, bi-minerallic (clinopyroxene and garnet) eclogites that occur as lens-shaped masses within high grade gneisses (country rock eclogites) have Sr87/Sr86 values that range from 0.704 for fine-grained varieties to 0.716 for coarse-grained, orthopyroxene-bearing varieties. These high, varied ratios contrast with the very low, restricted ratios (0.701 to 0.704) of similar minerals from ultrabasic, garnet-clinopyroxene-orthopyroxene-olivine assemblages (garnet peridotites) that occur as lenses within large peridotite bodies. The eclogite-facies metamorphism that generated the garnet peridotites may have occurred in the mantle. However, the metamorphism that generated at least the more radiogenic country-rock eclogites must have occurred in the crust. The high Sr87/Sr86 ratios of these eclogites could be generated either by forming them from crustal parental rocks or by contaminating mantle-derived parental rocks with radiogenic strontium from the country rocks. If this contamination occurred after intrusion and before eclogite-facies metamorphism, a rather contrived history must be postulated that involves intrusion, contamination accompanied by hydration, subsequent dehydration, and finally eclogite-facies metamorphism. These processes could have occurred within the long, complicated history of the enclosing country rocks. Alternatively, if the contamination occurred during eclogite-facies metamorphism, the presence of some hydrous fluid appears to be required to transport the radiogenic strontium from the enclosing country rocks. The eclogites with the highest Sr87/Sr86 ratios are also the most coarse-grained and it is possible that the presence of some intergranular fluid enabled these eclogites to recrystallize to a much larger grain size than would have been possible in a totally anhydrous environment. The garnet peridotites and fine-grained country rock eclogites may have formed from mantle material in the crust but escaped contamination by radiogenic strontium as a result of their position in a dry environment in the crust.Lamont-Doherty Geological Observatory Contribution No. 2443  相似文献   

2.
The 87Sr/86Sr ratios for a series of ultramafic rocks from the Lake Chatuge region range from 0.7023 to 0.7047, suggesting a direct upper mantle source and precluding a multiple differentiation origin for these alpine-type rocks. Higher 87Sr/86Sr ratios (0.7058–0.7068) for serpentinized rocks from this suite apparently reflect the influx of radiogenic 87Sr from the surrounding gneisses and schists during serpentinization.  相似文献   

3.
Twenty representative rocks ranging from lamprophyric to granitic composition, from the Spanish Peaks igneous Complex, south-central Colorado, were analyzed for Sr isotopic compositions and their concentrations of K, Rb, Sr and Ba. The various igneous rocks from this Cenozoic complex do not have a comagmatic relationship from the evidence of their Sr isotopic compositions. Due to the generally low Sr87/Sr86 isotopic ratios, the possibility of the highly radiogenic underlying Precambrian basement as the source of magma generation can be ruled out. The sources for the magmas of this igneous complex must be in the upper mantle or the lower crust. Model calculations using elemental distribution coefficients and assumed mantle materials suggest that the abundant lamprophyric magmas in this region could be derived from a phlogopite-bearing hornblende peridotite by a small degree of partial melting (<5%) at lower pressure environment (<50 km). Other possibilities for lamprophyric magma generation were also examined. The slightly higher Sr87/Sr86 ratios observed in the granitic rocks are interpreted as reflecting the nature of this source-the lower crust. Alternatively, they may suggest a limited contamination of the original liquid by upper crustal material. For the entire igneous complex, mixing of two independent magmas, lymprophyric and granitic, is suggested to be the mechanism responsible for the complicated and diverse chemical characteristics.  相似文献   

4.
Strontium isotopic studies of kimberlites reveal no significant differences between the respective whole-rock Sr87/Sr86 ratios of fissure and pipe kimberlites. Kimberlites from the Swartruggens fissure (calcareous micaceous kimberlite) have Sr87/Sr86 ratios of from 0.709 to 0.716, whilst those from the Wesselton pipe have Sr87/Sr86 ratios of from 0.708 to 0.715. Other kimberlites range from 0.706 to 0.715. Samples are considered to be late Cretaceous to early Tertiary and thus the ratios are approximately initial ratios. The Sr87/Sr86 ratios bear no relation to the Rb or Sr content of individual kimberlite bodies. The high initial ratios are not due to bulk assimilation of granitic material in either a kimberlite or carbonatitic magma. Rb-Sr data for garnet peridotites and eclogite xenoliths in kimberlite are not compatible with production of kimberlite by eclogite fractionation from a melt derived from garnet lherzolite. The Sr isotopic composition of kimberlite is compatible with partial melting of garnet mica peridotite. The isotopic composition of liquids formed by partial melting of this rock can be modified by (i) gross contamination with material of low Sr87/Sr86 ratio or (ii) selective diffusion of material of high Sr87/Sr86 ratio into kimberlitic fluids.  相似文献   

5.
The concentrations of rubidium and strontium and the isotopic composition of strontium have been determined in minerals separated from ultramaflc nodules occurring in late Tertiary and Quaternary basalts of wide geographic distribution. Clinopyroxene, orthopyroxene and olivine from each of three Iherzolite nodules show a relatively wide range of 87Sr/86Sr disequilibrium and none of the minerals is in isotopic equilibrium with its host basalt. In two cases there is a correlation between 87Sr/86Sr and 87Rb/86Sr ratios of the nodule minerals, indicating apparent isochron relationships which may represent relict mantle events. Clinopyroxene and olivine from each of two wehrlite nodules are not in isotopic equilibrium, although the magnitude of the disequilibrium is smaller than that observed in the Iherzolite nodules. None of these ultramafic nodules can be a crystal cumulate from its host basalt, and it is doubtful that any type of genetic relationship exists. The strontium isotopic disequilibrium between nodule minerals seems to be a primary feature inherited from past mantle histories.  相似文献   

6.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   

7.
Average 87Sr/86Sr ratios for lavas from Quaternary and Pleistocene volcanoes of the Kurile island arc, NW Pacific, decrease from 0.7035 in the south to 0.7032 in the north. The northern Kuriles are characterised by K2Oricher volcanics and by an older crust. Varying ratios show no simple relation to crustal thickness or geochemical indicators of crustal contamination. This is thought to reflect the immature character of the crust — its simatic composition, low Rb/Sr ratios and youthfulness. Older lavas from the Kuriles (Lower Tertiary, Miocene) have similar or slightly higher 87Sr/86Sr ratios; some have suffered slight alteration and possibly crustal contamination. Quaternary volcanics from the Kurile and Aleutian arcs have the lowest 87Sr/86Sr ratios of all circum-Pacific arcs and this may be ascribed to (a) the isotopic individuality of the landward North American plate and/or (b) the high degree of mechanical coupling between the Pacific and North American plates reducing the amount of subducted 87Sr-rich sediments and seawater. An isotopic boundary between island arcs is located in central Hokkaido. The primary basaltic magmas of the Kuriles were derived from mantle recently contaminated by radiogenic Sr. Subsequent fractionation to andesites and dacites occurred by closed-system fractional crystallization.  相似文献   

8.
Initial Sr87/Sr86 ratios and rubidium and strontium contents have been measured in 83 specimens from 8 suites of alkalic and ultrabasic rocks. The range of initial Sr87/Sr86 ratio observed and the number of specimens (in parentheses) analysed for each suite are: West Kimberley, Australia (8), 0.7125–0.7215; Jumilla, Spain (6), 0.7136–0.7158; Bearpaw Mountains, Montana (9), 0.7062–0.7086; Highwood Mountains, Montana (10), 0.7072–0.7087; Hopi Buttes, Arizona (8), 0.7038–0.7094; Leucite Hills, Wyoming (17), 0.7055–0.7070; Montana diatremes (13), 0.7034–0.7073; Navajo Province, Arizona and New Mexico (12), 0.7052–0.7099.The initial Sr87/Sr86 ratios of the West Kimberley and Jumilla rocks are the highest yet found in strontium-rich basic rocks. Some of the individual specimens from West Kimberley have initial ratios as high as some estimates of the present Sr87/Sr86 ratio of average crustal material. This is interpreted to mean that the West Kimberley and Jumilla rocks contain substantial amounts of radiogenic strontium, and possibly other elements, from a crustal source.  相似文献   

9.
The isotope-geochemical study of the Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed a lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment, magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429–0.70564) and lower 143Nd/144Nd(ɛNd(T) = 0.06–2.9) ratios in the volcanic rocks from the Central Koryak segment presumably reflect the contribution of enriched mantle source; the high positive ɛNd(T) and low 87Sr/86Sr ratios in the magmatic rocks from the Northern Koryak segment area indicate their derivation from isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of the Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: the higher heat flow beneath Kamchatka led to the crustal melting and contamination of mantle suprasubduction magmas by crustal melts. The cessation of suprasubduction volcanism in the Western Kamchatka segment of the continentalmargin belt was possibly related to the accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to the closure of the Ukelayat basin in the Oligocene time.  相似文献   

10.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

11.
新疆坡北镁铁-超镁铁质杂岩体由一个辉长岩体以及二十多个超镁铁质侵入体组成,其中坡一超镁铁质岩体稀有气体同位素组成揭示存在地幔柱的贡献。坡北杂岩体西端的坡一、坡四、坡十和坡十四等几个超镁铁质岩体的稀有气体同位素对比分析结果表明,岩浆矿物的3He/4He值(0.26~2.79Ra)分布于地壳与地幔值之间,较高的20Ne/22Ne和较低的21Ne/22Ne值分布于Ne质量分馏线(MFL)和L-K线之间,40Ar/36Ar=295~598。3He/4He与40Ar/36Ar比值揭示坡北杂岩体西端不同超镁铁质岩体形成过程中地幔(柱)、地壳和大气组分的贡献不同,岩体成因也可能不同。其中,坡一岩体具有地幔柱作用的贡献,其他三个岩体的岩石圈地幔及地壳流体组分的贡献较大。岩浆地幔源区由深部地幔柱物质叠加俯冲流体交代的岩石圈地幔物质所组成,大气与地壳物质组分可能由俯冲再循环洋壳带入到岩浆地幔源区以及围岩物质的混入。  相似文献   

12.
New analyses of K, Rb, Sr and Ba contents and the 87Sr86Sr ratios of eight amphiboles, one phlogopite, two diopsides and one host alkalic basalt for an amphibole are reported: The samples are mostly inclusions in alkalic basalts and occur in association with peridotite inclusions. Two of the samples are from alpine-type peridotite bodies — one from the Etang de Lhers massif in the French Pyrenees and the other from the Finero massif in the Ivrea zone in northern Italy. The kaersutites come from the following localities: Hoover Dam, Arizona; Deadman Lake, California; Massif Central, France; Queensland; Spring Mountain, New South Wales.The data indicate that kaersutitic amphiboles are genetically unrelated to their host basalts. The isotopic and trace element data of these amphiboles further strengthens the suggestion of BASU and MURTHY (1977) that kaersutites play a significant role in ocean ridge basalt genesis. In addition, pargasitic amphibole with higher 87Sr86Sr ratios, if present, may be important in the source regions of alkalic basalts.The bulk amphibole lherzolite from Lherz has the KRbratio and 87Sr86Sr ratio appropriate for source material of ridge tholeiites. If the diopside and the amphibole in this rock had isotopically equilibrated under upper mantle conditions, the data show the time of last equilibration to be approximately 735 m.y., in contrast to the young emplacement age of the ultramafic massif.The coexisting phlogopite and diopside in the spinel lherzolite inclusion from Kilbourne Hole, New Mexico, show, surprisingly, isotopic equilibration under upper mantle conditions despite their drastically different RbSr ratios. The data show that the phlogopite must have formed very recently in the upper mantle. This phlogopite also has a high KRb ratio (1133), contrary to the commonly held view that mantle phlogopites have low KRb ratios. The coexisting diopside shows high K content (778 ppm) and a lower KRb ratio than the phlogopite. This phlogopite lherzolite has trace elemental and isotopic characteristics that may be adequate for the origin of alkalic basalts upon partial melting.  相似文献   

13.
Some rocks of the Onverwacht Group, South Africa, have been analyzed for Rb and Sr concentrations and Sr isotopie composition. These rocks include volcanic rocks, layered ultramafic differentiates and cherty sediments. Whole rock data indicate that the Rb-Sr isotopie systems in many samples were open and yield no reasonable isochron relationships. However, the data of mineral separates from a basaltic komatiite define a good isochron of t = 3.50 ± 0.20 (2δ) b.y. with an initial Sr87/Sr86 ratio of 0.70048 ± 5(2δ). The orthodox interpretation of this age is the time of the low grade metamorphism. Since the basaltic komatiite is stratigraphically lower than the Middle Marker Horizon (dated as 3.36 ± 0.07 b.y. Hurley et al., 1972), and since it is commonly found that volcanism, sedimentary deposition, metamorphism and igneous intrusion in many Archean greenstone-granite terrain all took place in a relatively short time interval (less than 100 m.y.), it is reasonable to assume that the age of 3.50 b.y. might also represent the time of initial Onverwacht volcanism and deposition. The initial Sr87/Sr86 ratio obtained above is important to an understanding of the Sr isotopic composition of the Archean upper mantle. If the komatiite represents a large degree of partial melt (40–80 per cent) of the Archean upper mantle material, then the initial ratio obtained from the metamorphic komatiite should define an upper limit for the Sr isotopic composition of the upper mantle under the African crustal segment.  相似文献   

14.
G.G. Pe  A. Gledhill 《Lithos》1975,8(3):209-214
Isotopic ratios of strontium in 9 volcanic rocks from the south-eastern part of the Hellenic arc range from 0.7037 to 0.7075. Within individual series of differentiation, there seems to be a correlation between Sr87/Sr86 and K2O/SiO2.All strontium isotope data for the Hellenic arc are reviewed. Comparable (but slightly smaller) ranges of Sr isotope ratios are found in other island arcs with continental basement. To explain the high values of Sr87/Sr86 ratio for the Hellenic arc, a selective addition of Sr87 from the wall rock, and a process of assimilation involving water, perhaps from subducted sediments, are suggested. Since closely-spaced individual volcanic centres of similar ages have very different Sr isotope ratios, and since the range of Sr isotopic composition in individual centres is quite large, the variation is unlikely to be due to primary variation in mantle composition.  相似文献   

15.
Pleistocene and Recent lavas from the Sunda arc range from those showing affinities with the island arc tholeiitic series, through a spectrum of calc-alkaline to high-K alkaline rocks. The tholeiitic rocks have relatively low 87Sr86Sr ratios averaging 0–7043; the calc-alkaline rocks show a wide range (from 0.7038 to 0.7059, averaging 0.7048); the high-K alkaline rocks average 0.7045. A rhyolitic ignimbrite from Sumatra has an 87Sr86Sr ratio of 0.7139.The relationship between 87Sr86Sr and major and trace element geochemistry is variable and complex. Lavas from the same volcano sometimes show significant differences in 87Sr86Sr despite close geochemical relationships. Rocks of the calc-alkaline suite show a regular decrease in 87Sr86Sr from West Java to Bali and there is some evidence for increasing 87Sr86Sr with increasing depth to the Benioff zone. Calc-alkaline and tholeiitic rocks from the Sunda arc have significantly higher 87Sr86Sr ratios than those from other island arcs, except from those arcs where continental crustal involvement has been inferred (e.g. New Zealand).A model of 87Sr enrichment due to isotopic equilibration of oceanic crust with sea water and disequilibrium melting in the slab and/or mantle is favoured to explain the Sr isotopic composition of the tholeiitic and normal calc-alkaline lavas. Calc-alkaline lavas with high 87Sr86Sr ratios are best explained by either sialic contamination, or the presence of alkali basalt as a component of the downgoing slab. The Sr isotopic data for the high-K alkaline lavas suggest a mantle origin. The high 87Sr86Sr ratio in the Lake Toba rhyolite implies a crustal origin.  相似文献   

16.
The Mesoarchean Nuasahi chromite deposits of the Singhbhum Craton in eastern India consist of a lower chromite-bearing ultramafic unit and an upper magnetite-bearing gabbroic unit. The ultramafic unit is a ∼5 km long and ∼400 m wide linear belt trending NNW-SSE with a general north-easterly dip. The chromitite ore bodies are hosted in the dunite that is flanked by the orthopyroxenite. The rocks of the ultramafic unit including the chromitite crystallized from a primitive boninitic magma, whereas the gabbro unit formed from an evolved boninitic magma. A shear zone (10–75 m wide) is present at the upper contact of the ultramafic unit. This shear zone consists of a breccia comprising millimeter- to meter-sized fragments of chromitite and serpentinized rocks of the ultramafic unit enclosed in a pegmatitic and hybridized gabbroic matrix. The shear zone was formed late synkinematically with respect to the main gabbroic intrusion and intruded by a hydrous mafic magma comagmatic with the evolved boninitic magma that formed the gabbro unit. Both sulfide-free and sulfide-bearing zones with platinum group element (PGE) enrichment are present in the breccia zone. The PGE mineralogy in sulfide-rich assemblages is dominated by minerals containing Pd, Pt, Sb, Bi, Te, S, and/or As. Samples from the gabbro unit and the breccia zone have total PGE concentrations ranging from 3 to 116 ppb and 258 to 24,100 ppb, respectively. The sulfide-rich assemblages of the breccia zone are Pd-rich and have Pd/Ir ratios of 13–1,750 and Pd/Pt ratios of 1–73. The PGE-enriched sulfide-bearing assemblages of the breccia zone are characterized by (1) extensive development of secondary hydrous minerals in the altered parts of fragments and in the matrix of the breccia, (2) coarsening of grain size in the altered parts of the chromitite fragments, and (3) extensive alteration of primary chromite to more Fe-rich chromite with inclusions of chlorite, rutile, ilmenite, magnetite, chalcopyrite, and PGE-bearing chalcogenides. Unaltered parts of the massive chromitite fragments from the breccia zone show PGE ratios (Pd/Ir = 2.5) similar to massive chromitite (Pd/Ir = 0.4–6.6) of the ultramafic unit. The Ir-group PGE (IPGE: Ir, Os, Ru) of the sulfide-rich breccia assemblages were contributed from the ultramafic–chromitite breccia. Samples of the gabbro unit have fractionated primitive mantle-normalized patterns, IPGE depletion (Pd/Ir = 24–1,227) and Ni-depletion due to early removal of olivine and chromite from the primitive boninitic magma that formed the ultramafic unit. Samples of the gabbro and the breccia zone have negative Nb, Th, Zr, and Hf anomalies, indicating derivation from a depleted mantle source. The Cu/Pd ratios of the PGE-mineralized samples of the breccia zone (2.0 × 103–3.2 × 103) are lower than mantle (6.2 × 103) suggesting that the parental boninitic magma (Archean high-Mg lava: Cu/Pd ratio ∼1.3 × 103; komatiite: Cu/Pd ratio ∼8 × 103) was sulfur-undersaturated. Samples of the ultramafic unit, gabbro and the mineralized breccia zone, have a narrow range of incompatible trace element ratios indicating a cogenetic relationship. The ultramafic rocks and the gabbros have relatively constant subchondritic Nb/Ta ratios (ultramafic rocks: Nb/Ta = 4.1–8.8; gabbro unit: Nb/Ta = 11.5–13.2), whereas samples of the breccia zone are characterized by highly variable Nb/Ta ratios (Nb/Ta = 2.5–16.6) and show evidence of metasomatism. The enrichment of light rare earth element and mobile incompatible elements in the mineralized samples provides supporting evidence for metasomatism. The interaction of the ultramafic fragments with the evolved fluid-rich mafic magma was key to the formation of the PGE mineralization in the Nuasahi massif.  相似文献   

17.
The Tabar–Lihir–Tanga–Feni (TLTF) islands of Papua New Guinea mainly comprise high-K calc-alkaline and silica undersaturated alkaline rocks that have geochemical features typical for subduction-related magmatism. Numerous sedimentary, mafic, and ultramafic xenoliths recovered from Tubaf seamount, located on the flank of Lihir Island, provide a unique opportunity to study the elemental and isotopic composition of the crust and mantle wedge beneath the arc and to evaluate their relationships to the arc magmatism in the region. The sedimentary and mafic xenoliths show that the crust under the islands is composed of sedimentary sequences and oceanic crust with Pacific affinity. A majority of the ultramafic xenoliths contain features indicating wide spread metasomatism in the mantle wedge under the TLTF arc. Leaching experiments reveal that the metasomatized ultramafic xenoliths contain discrete labile phases that can account for up to 50% or more of elements such as Cu, Zn, Rb, U, Pb, and light REE (rare-earth elements), most likely introduced in the xenoliths via hydrous fluids released from a subducted slab. The leaching experiments demonstrated that the light REE enrichment pattern can be more or less removed from the metasomatized xenoliths and the residual phases exhibit REE patterns that range from flat to light REE depleted. Sr–Nd isotopic data for the ultramafic residues show a coupled behavior of increasing 87Sr/86Sr with decreasing 143Nd/144Nd ratios. The labile phases in the ultramafic xenoliths, represented by the leachates, show decoupling between Sr and Nd with distinctly more radiogenic 87Sr/86Sr than the residues. Both leachates and residues exhibit very wide range in their Pb isotopic compositions, indicating the involvement of three components in the mantle wedge under the TLTF islands. Two of the components can be identified as Pacific Oceanic mantle and Pacific sediments. Some of the ultramafic samples and clinopyroxene separates, however, exhibit relatively low 206Pb/204Pb at elevated 207Pb/204Pb suggesting that the third component is either Indian Ocean-type mantle or Australian subcontinental lithospheric mantle. Geochemical data from the ultramafic xenoliths indicate that although the mantle wedge in the area was extensively metasomatized, it did not significantly contribute to the isotopic and incompatible trace element compositions of TLTF lavas. Compared to the mantle samples, the TLTF lavas have very restricted Pb isotopic compositions that lie within the Pacific MORB range, indicating that magma compositions were dominated by melts released from a stalled subducted slab with Pacific MORB affinity. Interaction of slab melts with depleted peridotitic component in the mantle wedge, followed by crystal fractionation most likely generated the geochemical characteristics of the lavas in the area. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Rubidium‐strontium and strontium isotope data for eight whole‐rock samples of granite varieties from the Encounter Bay area, South Australia, yield an isochron age of 487 ± 37 m.y. Two specimens of albitised granite, formed as a result of late‐stage metasomatic alteration of original megacrystic granite, conform to this isochron. These data support a genetic relation between granites and late‐stage metasomatic alteration as suspected from field, petrographical and geochemical studies. Eight samples from contiguous Kanmantoo Group metasedimentary rocks have an isochron age of 487 ± 60 m.y. Thus this metamorphic event is coincident with emplacement of the Encounter Bay Granite.

The initial Sr87Sr86 ratio for the Encounter Bay Granite (0.719) is significantly higher than initial ratios for the Palmer (0.709) and Anabama (0.705) Granites from the same region and can be attributed to either remobilisation or incorporation of strontium from older crustal material in the intrusion. The apparent initial Sr87/Sr86 ratio for the Kanmantoo Group metasedimentary rocks (0.722) can not be distinguished from that for the Encounter Bay Granite within the analytical uncertainties. Compatability of ages and high initial Sr87Sr86 ratios suggest that the granites formed by remobilisation of associated crustal rock.  相似文献   

19.
Twelve whole-rock samples of volcanic rocks and a composite of 11 basanitoid samples from Ross Island and vicinity, Antarctica show a narrow range of 87Sr/86Sr ratios from 0.70305 to 0.70339. This range is consistent with a model of differentiation from a single parent magma, but the data allow a 30% variation in the 87Rb/86Sr ratio in the source region if the average ratio is less than 0.057 and if the source region has existed as a closed system for 1.5 b.y. Megacrysts of titaniferous augite, kaersutite, and anorthoclase are isotopically indistinguishable from the host volcanic rocks and therefore are probably cogenetic with the volcanic sequence. A single trachyte sample is isotopically distinct from the rest of the volcanic rocks and probably was contaminated with crustal strontium.Ultramafic and mafic nodules found in association with basanitoids and trachybasalts have 87Sr/86Sr ratios ranging from 0.70275 to 0.70575. Several of these nodules exhibit evidence of reaction with the melt and are isotopically indistinguishable from their hosts, but data for seven granulite-facies nodules show an apparent isochronal relationship. Although this isochron may be fortuitous, the resulting age of 158±22 m.y. is similar to ages reported for the voluminous Ferrar Dolerites, and suggests isotopic re-equilibration within the lower crust and upper mantle. These nodules are not genetically related to the Ferrar Dolerites, as evidenced by their lower initial 87Sr/86Sr ratios.Three ultramafic nodules are texturally and isotopically distinct from the rest of the analyzed nodules. These are friable, have larger 87Sr/86Sr ratios, and may represent a deeper sampling of mantle rock than the granulite-facies nodules. They were, however, derived at a shallower depth than the alkalic magma. Thus they are not genetically related to either the magma or the granulite-facies nodules.  相似文献   

20.
R.W Page  R.W Johnson 《Lithos》1974,7(2):91-100
Strontium isotope data for Quaternary volcanic rocks from six separate areas in Papua New Guinea suggest a subdivision into two broad groups. One group consists of island volcanoes that have lower Sr37/Sr38 ratios (0.7034–0.7043) and show isotopic homogeneity within each area sampled. Except for the St. Andrew Strait samples, it is considered that these rocks were produced from relatively homogeneous source regions in the upper mantle. Volcanoes of the second group (on the Papua New Guinea mainland) have generally a higher and wider range of Sr37/Sr36 ratios, compared to those of the first group. It is thought that the magmas of these mainland volcanoes were affected by different degrees of sialic crustal contamination, or were derived from heterogeneous sources in the upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号