首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
林中达 《大气科学进展》2013,30(4):1224-1234
The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45°N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS’s axis (type A), while the second type is related to the weakened westerly within the EAJS’s axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A (B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS’s axis jumps from 40°N to 55°N (50°N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China.  相似文献   

2.
The interannual variation of the East Asian upper-tropospheric westerly jet(EAJ) significantly affects East Asian climate in summer. Identifying its performance in model prediction may provide us another viewpoint,from the perspective of uppertropospheric circulation,to understand the predictability of summer climate anomalies in East Asia. This study presents a comprehensive assessment of year-to-year variability of the EAJ based on retrospective seasonal forecasts,initiated from1 May,in the five state-of-the-art coupled models from ENSEMBLES during 1960–2005. It is found that the coupled models show certain capability in describing the interannual meridional displacement of the EAJ,which reflects the models' performance in the first leading empirical orthogonal function(EOF) mode. This capability is mainly shown over the region south of the EAJ axis. Additionally,the models generally capture well the main features of atmospheric circulation and SST anomalies related to the interannual meridional displacement of the EAJ. Further analysis suggests that the predicted warm SST anomalies in the concurrent summer over the tropical eastern Pacific and northern Indian Ocean are the two main sources of the potential prediction skill of the southward shift of the EAJ. In contrast,the models are powerless in describing the variation over the region north of the EAJ axis,associated with the meridional displacement,and interannual intensity change of the EAJ,the second leading EOF mode,meaning it still remains a challenge to better predict the EAJ and,subsequently,summer climate in East Asia,using current coupled models.  相似文献   

3.
Using ERA-40 reanalysis daily data for the period 1958-2002,this study investigated the effect of transient eddy(TE) on the interannual meridional displacement of summer East Asian subtropical jet(EASJ) by conducting a detailed dynamical diagnosis.The summer EASJ axis features a significant interannual coherent meridional displacement.Associated with such a meridional displacement,the TE vorticity forcing anomalies are characterized by a meridional dipole pattern asymmetric about the climatological EASJ axis.The TE vorticity forcing anomalies yield barotropic zonal wind tendencies with a phase meridionally leading the zonal wind anomalies,suggesting that they act to reinforce further meridional displacement of the EASJ and favor a positive feedback in the TE and time-mean flow interaction.However,The TE thermal forcing anomalies induce baroclinic zonal wind tendencies that reduce the vertical shear of zonal wind and atmospheric baroclinicity and eventually suppress the TE activity,favoring a negative feedback in the TE and time-mean flow interaction.Although the two types of TE forcing tend to have opposite feedback roles,the TE vorticity forcing appears to be dominant in the TE effect on the time-mean flow.  相似文献   

4.
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH) and the East Asian westerly jet(EAJ) in summer on interannual timescales. The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward) extension of the WNPSH and the southward(northward) shift of the EAJ, which is consistent with the general correspondence between their variations. The out-of-phase configuration includes the residual cases. We find that the in-phase configuration manifests itself as a typical meridional teleconnection. For instance, there is an anticyclonic(cyclonic) anomaly over the tropical western North Pacific and a cyclonic(anticyclonic) anomaly over the mid-latitudes of East Asia in the lower troposphere. These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ. By contrast, for the out-of-phase configuration, the mid-latitude cyclonic(anticyclonic) anomaly is absent, and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension. Correspondingly, significant rainfall anomalies move northward to North China and the northern Korean Peninsula. Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO, with strong and significant sea surface temperature(SST) anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter. This is sharply different from the in-phase configuration, for which the tropical SSTs are not a necessity.  相似文献   

5.
East Asian summer climate is strongly affected by extratropical circulation disturbances.In this study,impacts of four atmospheric teleconnections over Eurasia on East Asian summer rainfall are investigated using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and Climatic Research Unit (CRU) land precipitation data during 1979-2009.The four teleconnections include the Scandinavian (SCA),the Polar/Eurasian (PEU),the East Atlantic/Western Russian (EAWR),and the circumglobal teleconnection (CGT).Moreover,the related changes of lower-tropospheric circulation are explored,specifically,the low pressure over northern East Asia (NEAL) and the subtropical high over the western North Pacific (WNPSH).The results presented are in the positive phase.The PEU and SCA induce significant negative anomalies in North China rainfall (NCR),while the CGT induces significant positive anomalies.In the past three decades,the PEU and SCA explain more than 20% of the variance in NCR,twice that explained by the CGT,suggesting a more important role of the former two teleconnections in NCR variation than the latter one.Meanwhile,the PEU and SCA reduce rainfall in Northeast China and South Korea,respectively,and the CGT enhances rainfall in Japan.The rainfall responses are attributed to the SCA-induced northward shift of the NEAL,and PEU-induced northward shift and weakening of the NEAL,respectively.For the CGT,the dipole pattern of rainfall anomalies between North China and Japan is affected by both westward extension of the NEAL and northwestward expansion of the WNPSH.In addition,the EAWR leads to an increase of sporadic rainfall in South China as a result of the eastward retreat of the WNPSH.  相似文献   

6.
利用1979—2010年逐月CMAP降水资料和NCEP/NCAR再分析资料集,通过定义夏季东亚急流位置指数,采用统计和动力诊断方法研究了东亚上空急流位置经向变化及其与东亚夏季气候的联系。所定义的东亚急流位置指数较好地反映了东亚上空急流位置的经向移动。结果表明:东亚上空急流经向位置的移动存在显著的年际变化,其主要周期为2~3 a和8 a。当夏季东亚急流位置偏北(南)时,从低纬到高纬,东亚地区降水异常主要呈现出偏多—偏少—偏多(偏少—偏多—偏少)的经向分布;相应地,气温则在副热带西太平洋地区偏低(高),我国华东、华北及日本地区气温偏高(低),西伯利亚东部较高纬地区气温偏低(高)。东亚上空急流经向位置异常年,异常环流随高度呈略有西倾的准正压结构。东亚上空急流经向位置的偏北(南)与由西太平洋—南海热带地区非绝热加热相关的经圈环流异常有关,亦与中纬度波扰能量东传有关,并由此可部分解释我国长江中下游至日本地区的气温异常偏高(低)。  相似文献   

7.
盛夏两类东亚高空西风急流北跳的动力过程   总被引:4,自引:2,他引:4  
林中达 《大气科学》2011,35(4):631-644
在气候态上,7月底东亚高空西风急流中心突然从40°N北跳到45°N以北.逐年统计分析显示此次急流北跳存在两类典型方式:急流北侧西风强度增强引起的北跳(第一类)和急流中心西风强度的减弱引起的北跳(第二类).本文基于1958年到2002年的NCEP/NCAR再分析资料,采用波活动通量诊断这两类典型北跳相应的动力过程,进一步...  相似文献   

8.
Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months. This study investigates the tropical Pacific sea surface temperature (SST) anomalies associated with meridional displacement of the monthly EAJS during the summer. The meridional displacement of the EAJS in June is significantly associated with the tropical central Pacific SST anomaly in the winter of previous years, while displacements in July and August are related to tropical eastern Pacific SST anomalies in the late spring and concurrent summer. The EAJS tends to shift southward in the following June (July and August) corresponding to a warm SST anomaly in the central (eastern) Pacific in the winter (late spring-summer). The westerly anomaly south of the Asian jet stream is a result of tropical central Pacific warm SST anomaly-related warming in the tropical troposphere, which is proposed as a possible reason for southward displacement of the EAJS in June. The late spring-summer warm SST anomaly in the tropical eastern Pacific, however, may be linked to southward displacement of the EAJS in July and August through a meridional teleconnection over the western North Pacific (WNP) and East Asia.  相似文献   

9.
ABSTRACT This study focuses on the intraseasonal variation of the East Asian summer monsoon (EASM) simulated by IAP AGCM 4.0, the fourth-generation atmospheric general circulation model recently developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. In general, the model simulates the intraseasonal evolution of the EASM and the related rain belt. Besides, the model also simulates the two northward jumps of the westem Pacific subtropical high (WPSH), which are closely related to the convective activities in the warm pool region and Rossby wave activities in high latitudes. Nevertheless, some evident biases in the model were found to exist. Due to a stronger WPSH, the model fails to simulate the rain belt in southern China during May and June. Besides, the model simulates a later retreat of the EASM, which is attributed to the overestimated land-sea thermal contrast in August. In particular, the timing of the two northward jumps of the WPSH in the model is not coincident with the observation, with a later jump by two pentads for the first jump and an earlier jump by one pentad for the second, i.e., the interval between the two jumps is shorter than the observation. This bias is mainly ascribed to a shorter oscillating periodicity of convection in the tropical northwestern Pacific.  相似文献   

10.
This study concerns atmospheric responses to the North Pacific subtropical front(NPSTF) in boreal spring over the period 1982–2014. Statistical results show that a strong NPSTF in spring can significantly enhance the East Asian jet stream(EAJS). Both transient eddy activity and the atmospheric heat source play important roles in this process. The enhanced atmospheric temperature gradient due to a strong NPSTF increases atmospheric baroclinicity, resulting in an intensification of transient eddy and convection activities. On the one hand, the enhanced transient eddy activities can excite an anomalous cyclonic circulation with a quasi-baraotropical structure in the troposphere to the north of the NPSTF. Accordingly, the related westerly wind anomalies around 30?N can intensify the component of the EAJS over the Northeast Pacific. On the other hand, an enhanced atmospheric heat source over the NPSTF, which is related to increased rainfall, acts to excite an anomalous cyclonic circulation system in the troposphere to the northwest of the NPSTF, which can explain the enhanced component of the EAJS over the Northwest Pacific. The two mechanisms may combine to enhance the EAJS.  相似文献   

11.
A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly.  相似文献   

12.
夏季东亚高空西风急流气候特征分析   总被引:2,自引:0,他引:2  
利用NCEP/NCAR全球再分析风场资料定义了西风急流强度指数和位置指数,然后利用EOF方法对西风急流进行了进一步的分析,分析了高空西风急流的空间分布特征,从强度和位置两方面分析了西风急流与东亚环流及其与海温的关系。分析表明: EOF第一模态反映了东亚高空急流的位置指数,第二模态反映了高空急流的强度指数。东亚高空急流与对流层大气环流包括南亚高压,西太平洋副热带高压,东亚夏季风存在着密切关系,其气候变化与热带副热带东太平洋、印度洋海温密切相关。  相似文献   

13.
This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transition occurred in the 1940s, with an enhanced SST in the North Pacific and reduced SST in the tropical eastern Pacific and South Indian Ocean. In agreement with these SST changes, a higher SLP was found in most parts of the Pacific, while a lower SLP was found in the North Pacific and most parts of the Indian Ocean. In this case, the EASM was largely enhanced with a southerly anomaly in the lower troposphere along the east coast of China. Correspondingly, there was less rainfall in the Yangtze River valley and more rainfall in northern and southern China. An opposite change was found when the PDO reversed its phase in the late 1970s. In the tropical Indian Ocean and western Pacific, however, the SST was enhanced in both the 1940s and 1970s. As a result, the western Pacific subtropical high (WPSH) tended to extend westward with a larger magnitude in the 1970s. The major features were reasonably reproduced by an atmospheric general circulation model (IAP AGCM4.0) prescribed with observed SST and sea ice. On the other hand, the westward extension of the WPSH was exaggerated in the 1970s, while it was underestimated in the 1940s. Besides, the spatial pattern of the simulated summer rainfall in eastern China tended to shift southward compared with the observation.  相似文献   

14.
储鹏  姚素香 《气象科学》2020,40(4):458-466
利用ERA-interim再分析资料和中国降水观测数据,分析了夏季东亚副热带西风急流的季节内变化以及对我国降水的可能影响,结果表明:亚洲地区夏季200 hPa纬向风在空间上主要表现为南北振荡和东西振荡特征,在时间上具有10~40 d的周期;在低频尺度(10~40 d)上,纬向风异常由西北先向东传播,到达东亚地区后再向南传播;伴随低频纬向风季节内演变,高原以北的急流中心向东和东南移动,急流轴也呈现南北振荡的特征;降水异常对200 hPa风场低频振荡有显著响应,在东亚地区,低频纬向风与低频降水南移,降水在黄淮地区出现,并逐渐移至长江及其以南地区;急流附近的低频西(东)风异常在其南侧形成负(正)切变涡度,对应我国东部地区位势高度的升高(降低),使得南亚高压东伸(西退),从而使我国东部雨带的位置发生显著变化。  相似文献   

15.
Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over ther Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea,and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon.  相似文献   

16.
本文通过数值模拟,研究了有无东亚地形存在时,落基山地形作用对冬季北半球副热带西风急流的影响,分析了东亚大地形对落基山地形的调制作用。结果表明,东亚地形的存在能够完全抑制落基山地形对太平洋副热带急流的加强作用,使得落基山地形作用仅能加强其下游的大西洋副热带急流。主要原因是东亚大地形可抑制落基山地形北侧反气旋环流的发展,进而抑制中纬度太平洋地区经向温度梯度的加强。该结果有助于我们进一步理解北半球大地形强迫作用,及其相互调制作用对对流层天气和环流结构的影响。  相似文献   

17.
利用NCEP/DOE再分析资料,通过EOF分解、合成分析和线性回归等多种统计学方法,对年际时间尺度上冬季中东副热带西风急流(Middle East subtropical westerly Jet stream,MEJ)中心位置的变化进行研究,分析了MEJ中心位置的年际变化与大气环流的联系,找到了与MEJ中心位置相联系...  相似文献   

18.
用NCEP/NCAR月平均再分析资料对南亚高压和对流层上层西风急流的季节变化及盛夏两类型态进行对比。结果表明,南亚高压和西风急流中心都有从冬到夏的西移北进和从夏到冬的东退南撤,急流中心位于南亚高压中心北侧。东亚夏季风盛行期间南亚高压中心的北移提前于西风急流中心的北移,二者的强度呈反相的季节变化。一般情况下,伊朗高压对应西部急流型,青藏高压对应东部急流型。典型东、西部急流年份中高纬气温及高度场的差异表明气压梯度力强弱对比是急流东西型变化的主要原因,南亚高压的位置基本上决定了急流中心的型态,但由于南亚高压具有"趋热性",而急流的移动符合热成风的规律,因而二者的热力影响机制有所不同。  相似文献   

19.
聂锋  廖治杰  徐勇 《气象科学》2016,36(1):20-27
利用NCEP/NCAR再分析数据和中国台站降水资料研究冬季东亚高空副热带急流和温带急流协同变化特征及其与中国南方地区降水的关系,发现冬季东亚高原急流与温带急流同期反向协同变化特征最为显著。即高原急流增强,同时温带急流减弱(SW型)和高原急流减弱,同时温带急流增强(WS型)。当高原急流增强(减弱)而温带急流减弱(增强)时,中国南方地区降水显著增加(减少)。合成分析表明,不同急流协同变化型态下冷暖空气活动特征存在较大差异,高原急流与温带急流的反向协同变化可以真实反映与冬季中国南方地区降水相关联的冷暖空气活动特征,进而导致不同降水形态的产生。  相似文献   

20.
In previous statistical forecast models, prediction of summer precipitation along the Yangtze River valley and in North China relies heavily on its close relationships with the western Pacific subtropical high (WPSH), the blocking high in higher latitudes, and the East Asian summer monsoon (EASM). These relationships were stable before the 1990s but have changed remarkably in the recent two decades. Before the 1990s, precipitation along the Yangtze River had a significant positive correlation with the intensity of the WPSH, but the correlation weakened rapidly after 1990, and the correlation between summer rainfall in North China and the WPSH also changed from weak negative to significantly positive. The changed relationships present a big challenge to the application of traditional statistical seasonal prediction models. Our study indicates that the change could be attributed to expansion of the WPSH after around 1990. Owing to global warming, increased sea surface temperatures in the western Pacific rendered the WPSH stronger and further westward. Under this condition, more moisture was transported from southern to northern China, leading to divergence and reduced (increased) rainfall over the Yangtze River (North China). On the other hand, when the WPSH was weaker, it stayed close to its climatological position (rather than more eastward), and the circulations showed an asymmetrical feature between the stronger and weaker WPSH cases owing to the decadal enhancement of the WPSH. Composite analysis reveals that the maximum difference in the moisture transport before and after 1990 appeared over the western Pacific. This asymmetric influence is possibly the reason why the previous relationships between monsoon circulations and summer rainfall have now changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号