首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mount Morgan Au-Cu pyritic sulphide deposit occurs in a north-northwest trending belt of Middle Paleozoic volcanic rocks located in south-central Queensland. This volcanic belt forms part of the Yarrol Basin in the Northern New England Fold Belt of the East Australian Tasman Geosyncline. The host rocks for the deposit are a normal sequence of rhyolitic and dacitic tuff that have a north-northwest regional strike and easterly dips of 20° to 30°. The tuff contains thin units of cert, jasperoid and carbonate rocks.  相似文献   

2.
Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz‐adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein‐centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10?3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27–0.06 × 10?3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10?3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks.  相似文献   

3.
The Igarapé Bahia gold deposit has developed from weathering of a near-vertical hydrothermal Cu (Au) mineralization zone. The unweathered bedrock composed of chlorite schists is mainly metamorphosed basalts, pyroclastic and clastic sedimentary rocks and iron formation. Contents and Fe/(Fe + Mg) ratios of chlorites increase from distal country rock towards the mineralization zone, which can be attributed to different water/rock ratios and locations in a hydrothermal system. In the hydrothermal system high salinity fluids convected through basin-floor rocks, stripping metals from the recharge zones with precipitation in discharge zones. The chlorite with lower Fe/(Fe + Mg) ratios indicates alteration by relatively unreacted Mg-rich fluids, occurring within recharge zones. By contrast, the chlorite with higher Fe/(Fe + Mg) ratios in the mineralization zone formed from solutions rich in Fe, Mn, Au, Cu, H2S and SiO2 within a discharge zone. The iron formation could also be formed within the discharge zone or on the basin floor from the Fe-rich fluids. The distal country rock with less chlorite content is a hydrothermal product at low water/rock ratios whereas the proximal country rock and the host rock with more chlorite content formed at high water/rock ratio conditions. The Al(IV) contents of chlorites indicate that the formation temperatures of these rocks range from 204 to 266 °C, with temperatures slightly increasing from distal country rock towards the mineralization zone.  相似文献   

4.
The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia   总被引:4,自引:0,他引:4  
The Batu Hijau porphyry Cu---Au deposit lies in southwest Sumbawa Island, Indonesia. It is a world-class porphyry Cu deposit in an island are setting, and is typical of this deposit type in most features, including igneous association, morphology, hydrothermal alteration and mineralisation style.The region was not previously recognised as a porphyry Cu province; disseminated Cu sulphides were first recognised in float samples in southwest Sumbawa in 1987. Associated stream sediment sampling identified a broad area of anomalous Au and Cu in an area of greater than 5 km2 around Batu Hijau, including 169 ppb Au in BLEG samples and 580 ppm Cu in stream silts 1 km from the deposit. Mineralisation in bedrock at surface contains > 0.1 wt % Cu and > 0.1 ppm Au over an area of 0.6 km × 1.2 km, including a zone 300 m × 900 m containing > 0.3 wt % Cu. Areas with elevated Mo (> 30 ppm) form a distinctive annulus around this Cu-rich zone.Batu Hijau mineralisation is hosted in a tonalite intrusive complex, and diorite and metavolcanic wallrocks. There are no post-mineralisation igneous intrusions or breccia pipes within the deposit. The main tonalite intrusion forms a stock in the centre of the deposit, where it generally displays intensely pervasive potassic (biotite with magnetite-quartz) alteration and hosts most of the higher grade mineralisation. Younger tonalite dykes intruding the centre of this stock are generally less altered and mineralised than the older tonalite.The core zone of potassic alteration grades outward into extensive propylitic alteration (chlorite-epidote), with both variably overprinted by widespread fracture controlled intermediate argillic alteration (sericite-chlorite), and minor phyllic (sericite-pyrite) and sodic (albite) alteration. Argillic (sericite-kaolinite) and advanced argillic (kaolinite-alunite-pyrophyllite) assemblages occur near surface.Copper and Au grades within the orebody show a positive correlation with quartz stockwork intensity, although disseminated Cu sulphides are also common. Chalcopyrite and bornite are the principle hypogenal minerals, with minor chalcocite. Oxidation extends to a depth of 5 m to 85 m below surface across the deposit, and is underlain by weak supergene mineralisation. Drill testing of the deposit down to 650 m below surface reveals a single cylindrical to conical orebody of 334 million tonnes grading 0.8 wt % Cu and 0.69 gm per tonne Au; the depth extent of mineralisation is unknown.  相似文献   

5.
Draa Sfar is a siliciclastic–felsic, volcanogenic massive sulphide (VMS) Zn–Pb–Cu deposit located 15 km north of Marrakesh within the Jebilet massif of the western Moroccan Meseta. The Draa Sfar deposit occurs within the Sarhlef series, a volcano-sedimentary succession that hosts other massive sulphide deposits (e.g., Hajar, Kettara) within the dominantly siliciclastic sedimentary succession of the lower Central Jebilet. At Draa Sfar, the footwall lithofacies are dominated by grey to black argillite, carbonaceous argillite and intercalated siltstone with localized rhyodacitic flows and domes, associated in situ and transported autoclastic deposits, and lesser dykes of aphanitic basalt and gabbro. Thin- to thick-bedded, black carbonaceous argillite, minor intercalated siltstone, and a large gabbro sill dominate the hanging wall lithofacies. The main lithologies strike NNE–SSW, parallel to a pronounced S1 foliation, and have a low-grade, chlorite–muscovite–quartz–albite–oligoclase metamorphic assemblage. The Draa Sfar deposit consists of two stratabound sulphide orebodies, Tazakourt to the south and Sidi M'Barek to the north. Both orebodies are hosted by argillite in the upper part of the lower volcano-sedimentary unit. The Tazakourt and Sidi M'Barek orebodies are highly deformed, sheet-like bodies of massive pyrrhotite (up to 95% pyrrhotite) with lesser sphalerite, galena, chalcopyrite, and pyrite. The Draa Sfar deposit formed within a restricted, sediment-starved, fault-controlled, anoxic, volcano-sedimentary rift basin. The deposit formed at and below the seafloor within anoxic, pelagic muds.The argillaceous sedimentary rocks that surround the Draa Sfar orebodies are characterized by a pronounced zonation of alteration assemblages and geochemical patterns. In the more proximal volcanic area to the south, the abundance of medium to dark green chlorite progressively increases within the argillite toward the base of the Tazakourt orebody. Chlorite alteration is manifested by the replacement of feldspar and a decrease in muscovite abundance related to a net addition of Fe and Mg and a loss of K and Na. In the volcanically distal and northern Sidi M'Barek orebody alteration within the footwall argillite is characterized by a modal increase of sericite relative to chlorite. A calcite–quartz–muscovite assemblage and a pronounced decrease in chlorite characterize argillite within the immediate hanging wall to the entire Draa Sfar deposit. The sympathetic lateral change from predominantly sericite to chlorite alteration within the footwall argillite with increasing volcanic proximity suggests that the higher temperature part of the hydrothermal system is coincident with a volcanic vent defined by localized rhyodacitic flow/domes within the footwall succession.  相似文献   

6.
The volcanogenic Woodlawn Cu‐Pb‐Zn sulphide mineralization occurs within a low‐grade metamorphosed sequence of Middle to Upper Silurian felsic volcanics and fine‐grained sedimentary rocks. Studies on a total of 234 rock samples from diamond drill holes have delineated zones of hydrothermally altered rocks extending more than ~500 m laterally from the main ore lens, at least ~100 m into the foot wall and up to ~200 m into the hanging wall. These altered rocks contain virtually no remnants of primary feldspars and ferromagnesian minerals, and they are variably chloritized, sericitized and silicified. Chlorite and disseminated sulphide minerals are most abundant in zone I, a restricted zone of intense alteration immediately around the main ore lens, whereas sericitic muscovite is most abundant in the relatively extensive zone II, further from the ore. Silicification is also a feature of volcanics well beyond the limits of observed phyllosilicate‐rich alteration zones. Chemical changes within the hydrothermally altered rocks include major enrichment of Fe, Mg, S, Si and H2O, more sporadic enrichment of Ag, Ba, Bi, Cd, Cu, Mn, Pb, Sn and Zn, and major depletion of Ca, Na and Sr. K is depleted in zone I and shows considerable variation, but no overall depletion or enrichment, in zone II.

Lithological, mineralogical and geochemical features around the Woodlawn orebody are basically similar to those associated with the younger, unmetamorphosed Kuroko deposits.  相似文献   

7.
The Kristineberg volcanic-hosted massive sulphide (VMS) deposit, located in the westernmost part of the Palaeoproterozoic Skellefte district, northern Sweden, has yielded 22.4 Mt of ore, grading 1.0% Cu, 3.64% Zn, 0.24% Pb, 1.24 g/t Au, 36 g/t Ag and 25.9% S, since the mine opened in 1941, and is the largest past and present VMS mine in the district. The deposit is hosted in a thick pile of felsic to intermediate and minor mafic metavolcanic rocks of the Skellefte Group, which forms the lowest stratigraphic unit in the district and hosts more than 85 known massive sulphide deposits. The Kristineberg deposit is situated lower in the Skellefte Group than most other deposits. It comprises three main ore zones: (1) massive sulphide lenses of the A-ore (historically the main ore), having a strike length of about 1,400 m, and extending from surface to about 1,200 m depth, (2) massive sulphide lenses of the B-ore, situated 100–150 m structurally above the A-ore, and extending from surface to about 1,000 m depth, (3) the recently discovered Einarsson zone, which occurs in the vicinity of the B-ore at about 1,000 m depth, and consists mainly of Au–Cu-rich veins and heavily disseminated sulphides, together with massive sulphide lenses. On a regional scale the Kristineberg deposit is flanked by two major felsic rock units: massive rhyolite A to the south and the mine porphyry to the north. The three main ore zones lie within a schistose, deformed and metamorphosed package of hydrothermally altered, dominantly felsic volcanic rocks, which contain varying proportions of quartz, muscovite, chlorite, phlogopite, pyrite, cordierite and andalusite. The strongest alteration occurs within 5–10 m of the ore lenses. Stratigraphic younging within the mine area is uncertain as primary bedding and volcanic textures are absent due to strong alteration, and tectonic folding and shearing. In the vicinity of the ore lenses, hydrothermal alteration has produced both Mg-rich assemblages (Mg-chlorite, cordierite, phlogopite and locally talc) and quartz–muscovite–andalusite assemblages. Both types of assemblages commonly contain disseminated pyrite. The sequence of volcanic and ore-forming events at Kristineberg is poorly constrained, as the ages of the massive rhyolite and mine porphyry are unknown, and younging indicators are absent apart from local metal zoning in the A-ores. Regional structural trends, however, suggest that the sequence youngs to the south. The A- and B-ores are interpreted to have formed as synvolcanic sulphide sheets that were originally separated by some 100–150 m of volcanic rocks. The Einarsson zone, which is developed close to the 1,000 m level, is interpreted to have resulted in part from folding and dislocation of the B-ore sulphide sheet, and in part from remobilisation of sulphides into small Zn-rich massive sulphide lenses and late Au–Cu-rich veins. However, the abundance of strongly altered, andalusite-bearing rocks in the Einarsson zone, coupled with the occurrence of Au–Cu-rich disseminated sulphides in these rocks, suggests that some of the mineralisation was synvolcanic and formed from strongly acidic hydrothermal fluids. Editorial handling: P. Weihed  相似文献   

8.
Magnesite, siderite and dolomite are characteristic alteration minerals occurring in Miocene hanging wall rocks of dacitic composition which host the Kuroko orebodies. These carbonates generally occur in a more stratigraphically upper horizon than chlorite alteration zone surrounding the orebodies. The Mg/(Mg+Fe) ratios of the carbonates decrease from the central alteration zone to marginal zone. The Mg/(Mg+Fe) ratios of carbonates and chlorite positively correlate. The δ18O and δ13C values of magnesite, siderite and dolomite positively correlate with each other and lie between the igneous and marine carbonate values. The petrographic, isotopic and fluid inclusion characteristics and thermochemical modelling calculations indicate that magnesite and dolomite formed in the central zone close to the orebodies due to the interaction of hydrothermal solutions with the biogenic marine carbonates. Calcite formed further from the orebodies from hydrothermal fluids which did not contain a biogenic marine carbon component. The compositional and textural relationships indicate that superimposed alterations (chlorite alteration and carbonate alteration) occurred in hanging wall rocks. The mode of occurrences and the Mg/(Mg+Fe) ratios of magnesite and dolomite occurring in hanging wallrocks are useful in the exploration for concealed volcanogenic massive sulfide-sulfate deposits. Received: 9 September 1997 / Accepted: 23 September 1997  相似文献   

9.
The Murgul (Artvin, NE Turkey) massive sulfide deposit is hosted dominantly by Late Cretaceous calc-alkaline to transitional felsic volcanics. The footwall rocks are represented by dacitic flows and pyroclastics, whereas the hanging wall rocks consist of epiclastic rocks, chemical exhalative rocks, gypsum-bearing vitric tuff, purple vitric tuff and dacitic flows. Multi-element variation diagrams of the hanging wall and footwall rocks exhibit similar patterns with considerable enrichment in K, Rb and Ba and depletion in Nb, Sr, Ti and P. The chondrite-normalized rare earth element (REEs) patterns of all the rocks are characterized by pronounced positive/negative Eu anomalies as a result of different degrees of hydrothermal alteration and the semi-protected effects of plagioclase fractionation.Mineralogical results suggest illite, illite/smectite + chlorite ± kaolinite and chlorite in the footwall rocks and illite ± smectite ± kaolinite and chlorite ± illite in the hanging wall rocks. Overall, the alteration pattern is represented by silica, sericite, chlorite and chlorite–carbonate–epidote–sericite and quartz/albite zones. Increments of Ishikawa alteration indexes, resulting from gains in K2O and losses in Na2O and the chlorite–carbonate–pyrite index towards to the center of the stringer zone, indicate the inner parts of the alteration zones. Calculations of the changes in the chemical mass imply a general volume increase in the footwall rocks. Abnormal volume increases are explained by silica and iron enrichments and a total depletion of alkalis in silica zone. Relative K increments are linked to the sericitization of plagioclase and glass shards and the formation of illite/smectite in the sericite zone. In addition, Fe enrichment is always met by pyrite formation accompanied by quartz and chlorite. Illite is favored over chlorite, smectite and kaolinite in the central part of the ore body due to the increase in the (Al + K)/(Na + Ca) ratio. Although the REEs were enriched in the silicification zone, light REEs show depletion in the silicification zone and enrichment in the other zones in contrast to the heavy REEs' behavior. Hydrothermal alteration within the hanging wall rocks, apart from the gypsum-bearing vitric tuffs, is primarily controlled by chloritization with proportional Fe and Mg enrichments and sericitization.The δ18O and δD values of clay minerals systematically change with increasing formation temperature from 6.6 to 8.7‰ and − 42 to − 50‰ for illites, and 8.6 and − 52‰ for chlorite, respectively. The O- and H-stable isotopic data imply that hydrothermal-alteration processes occurred at 253–332 °C for illites and 136 °C for chlorite with a temperature decrease outward from the center of the deposit. The positive δ34S values (20.3 to 20.4‰) for gypsum suggest contributions from seawater sulfate reduced by Fe-oxide/-hydroxide phases within altered volcanic units. Thus, the hydrothermal alteration possibly formed via a dissolution–precipitation mechanism that operated under acidic conditions. The K–Ar dating (73–62 Ma) of the illites indicates an illitization process from the Maastrichtian to Early Danian period.  相似文献   

10.
The Mons Cupri Cu–Zn–Pb deposit is hosted by conglomerate of the ca. 2,965 Ma Cistern Formation, which forms part of the Bookingarra Group in the Central Pilbara tectonic zone of the Pilbara Craton. The deposit has two distinct mineralized zones: a 5- to 10-m-thick, stratiform, Zn–Pb-rich semi-massive sulphide lens, which overlies a funnel-shaped Cu-rich stringer zone. The deposit is located 5–20 m stratigraphically below the contact of the Cistern Formation with the overlying Rushall Slate. A high-Mg basalt (the Comstock Member) is located near the base of the Rushall Slate. Regional alteration mapping indicates that feldspar-destructive alteration facies are restricted to the vicinity of the deposit, with intense chloritic alteration restricted to the stringer zone and a narrow cross-cutting zone that can be traced for 700 m to the east, in the footwall of the deposit. Feldspar-destructive zones are well developed in the Comstock Member, indicating that mineralization occurred after deposition of the Rushall Slate. The Mons Cupri stratiform semi-massive sulphide lens is hosted by a conglomerate, and textural evidence indicates that this lens formed by replacement. These observations, combined with Pb isotope data, suggest that the Mons Cupri deposit formed epigenetically, at least 30 Ma after deposition of its host rock.Editorial Handling: B. Gemmell  相似文献   

11.
Orogenic or mesothermal quartz lodes in lower Palaeozoic Greenland Group metasedimentary rocks of the Reefton area have produced 67 tonnes (t) of gold prior to 1951, and recent exploration has identified new gold resources in several deposits, including the largest past producers, Blackwater and Globe-Progress. The metasedimentary rocks consist of alternating sandstone and mudstone beds that were metamorphosed to lower greenschist facies prior to being hydrothermally altered adjacent to the quartz lodes. The sandstones are feldspathic litharenites averaging Q65-F10-R25, with detrital grains of quartz, rock fragments, muscovite, and plagioclase and biotite that were altered to albite and chlorite, respectively, during metamorphism. Accessory minerals are graphite, apatite, zircon, tourmaline and titanite. Hydrothermal alteration of the sandstones has developed a mineral assemblage of K-mica, carbonate (dolomite, ankerite, ferroan magnesite and magnesian siderite), chlorite, pyrite and arsenopyrite. The abundance of hydrothermal chlorite is greater at Blackwater than at the other prospects studied. Hydrothermal alteration associated with the quartz lodes is marked by bleaching, magnesian siderite spots, disseminated arsenopyrite and pyrite and thin carbonate, quartz and sulphide veins. These trends are accompanied by increasing concentrations of S, As and Sb and decreasing Na, and a decrease of Fe and Mg in K-mica. The alkali alteration indices 3K/Al (representing K-mica) and Na/Al (representing albite) generally show antipathetic trends, with 3K/Al increasing near the lodes and Na/Al decreasing. These trends reflect the replacement of albite by K-mica. Carbonate alteration indices CO2/(Ca + Mg +Fe) and CO2/[Ca + Mg + Fe -0.5(S + As)] quantify the abundance of hydrothermal carbonates, but they show variable correlation with the lodes. They increase the width of the alteration halo in the hanging wall of the lodes at the Globe-Progress and General Gordon prospects, but the peak values are as far as 150 m from the lodes. By contrast, peak values of the carbonate alteration indices are within 10 and 2 m of the lodes, respectively, at the Merrijigs and Blackwater deposits. Data show that for deposits with wide hydrothermal alteration halos, such as at the Globe-Progress and General Gordon prospects, the use of a suite of geochemical indicators can assist exploration by indicating trends in hydrothermal alteration that provide vectors to mineralisation. They also increase the size of the exploration target. By contrast, the alteration halo of the Blackwater deposit is restricted to within less than 5 m of the quartz lode and, therefore, the geochemical indicators are of more limited assistance to exploration.  相似文献   

12.
The Gortdrum Cu-Ag-As-Sb-Hg-U orebody occurs in Lower Carboniferous strata on the downthrown side of an ENE transcurrent fault system in Southern County Tipperary, Republic of Ireland. The deposit comprises a linear discordant zone of brecciated carbonates and country rocks that are altered and mineralised. Research has indicated anomalous radioelement concentrations associated with the main copper orebody and in particular with the altered breccias within this zone. The metal association (Cu-Ag-As-Sb-Hg-U) is considered unique for Irish Carboniferous carbonate-hosted copper deposits. However, the low temperature mineral assemblage of early uranium-bearing minerals with later sulphide stages is reminiscent of many vein-type hydrothermal ore deposits. The geochemistry of uranium-enriched rocks indicates that the alteration of the basic dykes was a most significant event in the trapping of uranium within the limestones. Propylitization of the early basic dykes by CO2-bearing fluids produced the alteration which led to the development of hematite, leucoxene and clay minerals. The reducing environments attendant with such mineralogy created a favourable environment for uranium precipitation. The reduction of U+6 to U+4 by oxidation of reduced Fe in dolomitized brecciated limestone occurred prior to the main sulphide mineral sequences. The genesis of uranium in the deposit is linked to radioelement remobilization from uranium-bearing heavy minerals in sediments of upper Devonian-Lower Carboniferous age. The uranium became available to low temperature hydrothermal fluids which carried then deposited the uranium along a transcurrent fault system. The source of the heavy minerals is considered to be the Leinster Granite to the east, by which time in the Carboniferous, unroofing of the main pluton had commenced.Previous address: Department of Geology, Trinity College, Dublin 2, Ireland  相似文献   

13.
Electron paramagnetic resonance (EPR) spectroscopy of hot HNO3 insoluble residues of rock powders is used as a new exploration technique for the volcanic-hosted massive sulphide (VHMS) deposit in the Rosebery mine area. The EPR signal intensities measured in 326.5±5 mT sweeps are strong in the altered rocks, and show a negative correlation with Ca, Na and Sr, and a positive correlation with K/Na, Rb/Sr and (K × Rb)/(Ca × Na × Sr). The EPR intensities measured in 326.5±100 mT sweeps show high values in the footwall pyroclastics, host rocks and hanging wall pyroclastics near and around the Rosebery deposit, and correlate positively with K, Fe, Mn, Ba, F, Rb, Zn, Pb and Zr. The Rosebery deposit and associated footwall alteration zone are located at the intersection of two elongated paramagnetic halos. The first is characterized by strong intensities of [AlO4]° signals measured at magnetic flux density sweeps over 326.5±5 mT, trends NE–SW, and passes discordantly from the west to the east the White Spur Formation, altered footwall (footwall alteration zone), host rock of the Rosebery deposit, hanging wall and Mount Black Volcanics. The second, largely stratabound, halo is defined by strong intensities of Mn2+ sextets observed at magnetic flux density sweeps over 326.5±100 mT, runs N–S following the stratigraphic trend, and outlines the mineralized host rock and footwall alteration zone. It also extends toward the south into the unaltered footwall and hanging wall rocks. The first type of halo is considered to be related to wall rock alteration due to the VHMS mineralization processes as well to later Devonian metamorphism, and the second is thought to be related to massive sulphide mineralization alone.  相似文献   

14.
The c. 1.9 Ga old Stollberg sulphide and Mnrich skarn iron ores and sulphide ores in Bergslagen, south-central Sweden are hosted by hydrothermally altered and metamorphosed felsic volcanic and volcaniclastic rocks. The ores are underlain by comformable alteration zones characterized by albite-gedrite-quartz and biotite-muscovite-plagioclase-K-feldspar-quartz +/– garnet assemblages. The present mineralogies are interpreted as medium-grade metamorphic equivalents to the original alteration mineral assemblages. PT-conditions during prograde regional metamorphism are semiquantatively determined to be 510 to 560 °C at approximately 3 kbar. With increasing modal content of gedrite and biotite in the alteration zones, the Mg/Fe ratios and XMg's in octahedral positions of these minerals also increase. In the gedrite-bearing strata, whole-rock Mg/Fe ratios remain constant, whereas in the biotite-rich unit the wholerock Mg/Fe trend is parallel to that of the biotites.The trends in the metamorphic mineral composition are interpreted to be a product of original changes in fluid composition during the evolution of a sub-seafloor hydrothermal system. During the initial stage of alteration, Fe-Mn-rich fluids altered the rocks, and during a later stage, the fluids became more Mg-rich, possibly due to entrainment of fresh seawater, and the alteration zones became relatively more Mg-rich. Sulphide precipitation was contemperaneous with Mg metasomatism, suggesting base metal precipitation was a function of the mixing of cool seawater with hydrothermal fluid. It is proposed that early hydrothermal alteration was associated with the deposition of areally extensive Fe-oxide formation, and that Mg metasomatism defines a second stage of hydrothermal activity during which sulphide mineralization overprinted the earlier formed Fe-oxide deposit.  相似文献   

15.
The Sullivan Pb-Zn-Ag massive sulphide deposit in southeastern British Columbia occurs within middle Proterozoic argillite, siltstone and quartz wacke of the Purcell Group. Rock samples were collected from the hangingwall and footwall of the eastern section of the mine and from outcrop up to 50 km from the Sullivan deposit. The samples were analyzed for Cu, Pb, Zn, S, Mn, Ba, Fe, K, Ca, Na and specific conductance. A stepwise discriminant analysis applied to the analytical data determined the group of variables that differentiate between hangingwall, footwall and outcrop or “Background” samples. Hangingwall and footwall rock samples were most effectively discriminated from “background” rock samples on the basis of specific conductance with Cu, Pb, S, Na, and Ba selected as less efficient discriminators. The variables that discriminate hangingwall from footwall rock samples are Cu, Zn and S. The selection of the discriminating variables in each case can be explained in terms of the chemical changes that occur as a result of host rock alteration and sulphide deposition during the mineralizing event at the Sullivan deposit.Stepwise discriminant analysis was used to reduce a number of potential pathfinder variables to an optimum group of pathfinder variables. These optimum pathfinders represent the variables that most effectively differentiate the host rocks of the Sullivan deposit from rocks outside of the mineralized zone that apparently do not contain massive sulphide mineralization.  相似文献   

16.
Abstract: The Mamut deposit of Sabah, East Malaysia, is a porphyry type Cu‐Au deposit genetically related to a quartz monzonite (“adamellite”) porphyry stock associated with upper Miocene Mount Kinabalu plutonism. The genesis of the Mamut deposit is discussed based on petrology of the intrusives in the Mount Kinabalu area combined with ore– and alteration–petrography, fluid inclusion and sulfur isotope studies. Groundmass of the adamellite porphyry at Mamut is rich in K which suggests vapor transport of alkaline elements during the mineralizing magmatic process, while the groundmass of the post‐ore “granodiorite” porphyry at Mamut contains small amounts of normative corundum suggesting depletion in alkaline elements at the root zone of the magma column. Sub‐dendritic tremolitic amphibole rims on hornblende phenocrysts in the Mamut adamellite porphyry suggest interaction between the mineralizing magma and the exsolved fluids. Occurrences of clinopyroxene microphenocrysts and pseudomor‐phic aggregates of shredded biotite and clinopyroxene after hornblende phenocrysts in the barren intrusives imply lower water fugacity and decreasing in water fugacity, respectively. Compositional gap between the core of hornblende phenocrysts and the tremolitic amphibole rims and those in the groundmass of the Mamut adamellite porphyry suggests a decrease in pressure. Higher XMg (=Mg/(Mg+Fe) atomic ratio) in the tremolitic amphibole rims in the Mamut adamellite porphyry compared to those of the barren intrusions suggests high oxygen fugacity. High halogen contents of igneous hydrous minerals such as amphiboles, biotite and apatite in the Mamut adamellite porphyry suggest the existence of highly saline fluids during the intrusion and solidification of the mineralizing magma. Fluid inclusions found in quartz veinlet stockworks are characterized by abundant hypersaline polyphase inclusions associated with subordinate amounts of immiscible gaseous vapor. Both Cu and Au are dispersed in disseminated and quartz stockwork ores. Chalcopyrite and pyrrhotite as well as magnetite are the principal ore minerals in the biotitized disseminated ores. Primary assemblage of intermediate solid solution (iss) and pyrrhotite converted to the present assemblage of chalcopyrite and pyrrhotite during cooling. Subsequent to biotitization, quartz veinlet stockworks formed associated with retrograde chlorite alteration. The Cu‐Fe sul–fides associated with stockwork quartz veinlet are chalcopyrite and pyrite. Overlapping Pb and Zn and subsequent Sb mineralizations were spatially controlled by NNE‐trending fractures accompanying the phyllic and advanced argillic alteration envelope. Sulfur isotopic composition of ore sulfides are homogeneous (about +2%) throughout the mineralization stages. These are identical to those of the magmatic sulfides of Mount Kinabalu adamellitic rocks.  相似文献   

17.
Orogenic gold-bearing quartz veins in the middle Tertiary Bullendale Fault Zone, New Zealand were mined historically for coarse gold in a narrow zone (ca. 5 m thick). However, recent drilling has revealed a broad hydrothermal alteration zone extending into the host schist, in which disseminated sulphide and gold mineralisation has occurred. The evidence of alteration is first seen over 150 m across strike from the fault zone, and the best-developed alteration halo is about 50 m wide. The extent and intensity of alteration is strongly controlled by local structures that developed during regional Tertiary kink folding of the pervasively foliated and fissile metasedimentary schist host. The earliest structures are foliation-parallel microshears (micron to millimeter scale) formed during flexural-slip folding. Later, but related, structures are predominantly normal faults and associated shear zones that have formed extensional sites during the regional folding event. All these structures facilitated hydrothermal fluid penetration and rock alteration, with localised vein formation and brecciation. Where fluid has followed structures, metamorphic chlorite, phengite, and titanite have been altered to hydrothermal ankerite, rutile, and muscovite or kaolinite. Ankerite with Fe/(Fe + Mg) < 0.4 formed in host rocks with Fe/(Fe + Mg) of 0.6, and iron released by ankerite alteration possibly formed pyrite and arsenopyrite that host disseminated gold. Fault zones were extensively silicified and veined with quartz, albite, sulphides, and gold. Host rocks have wide compositional variations because of centimeter-scale metamorphic segregation. However, the alteration halo is characterised by elevated CO2 and S, as measured by loss-on-ignition (doubled to ca. 6 wt.%), elevated As (100–10,000 ppm), and weakly elevated Sb (up to 14 ppm). Strontium is elevated and Ba depleted in many altered rocks, so Sr/Ba ratio increases from < 1 (host rocks) to > 3 in the most altered and silicified rocks. Many altered and mineralised rocks have low Sr/Ba (< 0.5) as well. The subtle geochemical signature is not useful as a vector to ore because of the strong microstructural control on alteration. Likewise, there is no evidence for spatial mineralogical zonation across the alteration halo, although the most intense alteration is centred on the main fault zone, and intensity of alteration is controlled by microstructures at all scales. As documented in previous studies, hydrothermal alteration haloes enlarge the exploration target for some orogenic gold deposits, and may include disseminated gold, as in this Bullendale example.  相似文献   

18.
山阳-柞水矿集区位于中秦岭晚古生代弧前盆地中,矿集区内出露有泥盆、石炭系地层,同时发育大量印支期和燕山期的岩浆侵入体。目前的研究显示,矿集区内出露的燕山期岩体在其内部及其与地层的接触带附近发育有强烈的热液蚀变和CuMo矿化。通过对区域内燕山期岩体的矿物学研究表明:岩体发育有大量的钾长石和斜长石,部分已发生蚀变;黑云母是原生的镁质黑云母;角闪石主要属于浅闪石和镁角闪石;绿泥石主要是铁叶绿泥石,同时岩体中还发育有榍石、磷灰石等矿物。根据黑云母和角闪石成分特征可判定山柞地区的燕山期岩体是形成于造山带环境具有壳幔混溶特征的I型花岗岩;各岩体的结晶温度大致相同,在701~789℃之间;岩浆具有较高的氧逸度。根据绿泥石估算出岩体的热液蚀变温度在250~355°C,说明形成蚀变的热液流体属于中高温/中温热液流体。通过对比可以发现:山柞地区燕山期岩体在形成环境、岩浆源区及氧逸度方面与典型的大型、超大型斑岩、斑岩-矽卡岩型CuMoAu矿床的成矿岩体具有相似的特征,而且山柞地区燕山期岩体的黑云母在TiO2、Al2O3和CaO含量及K/Na、Mg/Fe、Mg/(Mg+Fe3++Fe2++Mn)及(Fe3++ Fe2+)/(Mg+Fe3++Fe2+)比值与典型性。但是山柞地区出露的燕山期岩体的黑云母的Ti、Si与AlIV+AlVI、Fe3++Fe2+的特征与典型矿床的成矿岩体中的黑云母成分具有一定的差异;磷灰石中F、Cl和S等挥发份成分,尤其是其中SO3含量明显低于典型矿床成矿岩体,这对于Cu/Mo等成矿元素的富集沉淀具有十分不利的影响;同时山柞地区燕山期岩体普遍形成于较大的深度,也是不利于其形成大规模矿化。总体上,山阳-柞水矿集区内燕山期岩体与典型的斑岩、斑岩-矽卡岩型CuMoAu矿床相比,既有部分有利的成矿条件,也有一些不利条件,虽然难以形成大型矿床,但仍具有形成中小型矿床的潜力,在今后的找矿勘查工作中依然需要重视。  相似文献   

19.
201、325和706铀矿床蚀变带绿泥石研究   总被引:3,自引:0,他引:3  
以岩矿鉴定结果和电子探针绿泥石分析数据为依据,将325、706花岗岩型铀矿床蚀变带绿泥石分为假象绿泥石和鳞片状绿泥石。后者由前者转变而成,转变过程中存在着铁的迁出与镁的加入,迁出的铁形成赤铁矿,可能是造成碱性蚀变带呈红色的原因之一。201、325铀矿床蚀变带绿泥石为铁镁绿泥石和蠕绿泥石,706铀矿床蚀变带绿泥石主要属密绿泥石和铁斜绿泥石,少数属铁镁绿泥石。研究发现绿泥石变种由蚀变带原岩的∑FeO与MgO比值大小决定,与铀矿蚀变带是否为酸性和碱性没有必然的对应关系;绿泥石晶胞中镁羟基和铝羟基相对比例大小不同,是导致其吸收位置在2259-2262nm和2348-2359nm的诊断性吸收峰发育程度存在差别的原因。  相似文献   

20.
哈图金矿蚀变岩型矿体特征及金赋存状态研究   总被引:1,自引:0,他引:1  
哈图金矿由石英脉型和蚀变岩型矿体组成,蚀变岩型矿体遭受了强烈黄铁矿化、毒砂化、碳酸盐化、硅化和绢云母化蚀变.成矿作用划分5个阶段:钠长石-石英阶段(I)、黄铁矿-碳酸盐-石英阶段(II)、黝铜矿-黄铜矿-自然金阶段(III)、毒砂-碳酸盐-绢云母阶段(IV)和方解石-石英阶段(V).其中,II—IV阶段是主要金成矿阶段.哈图金矿含金矿物主要为自然金,平均成色912.自然金呈裂隙金、包裹金、粒间金形式嵌布在黄铁矿和毒砂中.当载金矿物为黄铁矿时,自然金与黝铜矿-黄铜矿-闪锌矿关系密切;当载金矿物为毒砂时,自然金与黄铁矿-黄铜矿关系密切.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号