首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rößler, D., Moros, M. & Lemke, W. 2010: The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas, 10.1111/j.1502‐3885.2010.00180.x. ISSN 0300‐9483. The Littorina transgression is one of the most pronounced environmental events in the Holocene history of the Baltic Sea. It changed the hydrographic system from the freshwater Ancylus Lake into the brackish‐marine Littorina Sea. Here, 18 cores from two western Baltic basins, Mecklenburg Bay and the Arkona Basin, were analysed. We show that, besides biological indicators, sedimentary organic carbon, C/N ratio, bulk δ13C isotope values and carbonate content display clearly the transition from Ancylus Lake to the Littorina Sea. The first appearances of benthic foraminifers, marine molluscs and ostracods represent the onset of brackish‐marine conditions in the bottom waters. Central Arkona Basin sediments display more abrupt shifts in geochemical parameters and microfossil records at the transition from Ancylus Lake to the Littorina Sea than those from Mecklenburg Bay. Mixing of reworked Ancylus material with Littorina Sea stage material was stronger in Mecklenburg Bay, resulting in less pronounced proxy parameter changes and older bulk material dates. Radiocarbon dating of both calcareous material (benthic foraminifers, mollusc shells) and bulk fractions at the transgression horizon shows large age discrepancies. Based on calcareous fossil dates it appears that marine waters began to enter Mecklenburg Bay c. 8000 cal. a BP. In the Arkona Basin the first marine signals are recorded approximately 800 years later, c. 7200 cal. a BP. This indicates a transgression pathway via the Great Belt into Mecklenburg Bay and then into the Arkona Basin.  相似文献   

2.
The Baltic Sea has experienced a complex geological history, with notable swings in salinity driven by changes to its connection with the Atlantic and glacio‐isostatic rebound. Sediments obtained during International Ocean Drilling Program Expedition 347 allow the study of the effects of these changes on the ecology of the Baltic in high resolution through the Holocene in areas where continuous records had not always been available. Sites M0061 and M0062, drilled in the Ångermanälven Estuary (northern Baltic Sea), contain records of Holocene‐aged sediments and microfossils. Here we present detailed records of palaeoecological and palaeoenvironmental changes to the Ångermanälven Estuary inferred from diatom, palynomorph and organic‐geochemical data. Based on diatom assemblages, the record is divided into four zones that comprise the Ancylus Lake, Littorina Sea, Post‐Littorina Sea and Recent Baltic Sea stages. The Ancylus Lake phase is initially characterized as oligotrophic, with the majority of primary productivity in the upper water column. This transition to a eutrophic state continues into the Initial Littorina Sea stage. The Initial Littorina Sea stage contains the most marine phase recorded here, as well as low surface water temperatures. These conditions end before the Littorina Sea stage, which is marked by a return to oligotrophic conditions and warmer waters of the Holocene Thermal Maximum. Glacio‐isostatic rebound leads to a shallowing of the water column, allowing for increased benthic primary productivity and stratification of the water column. The Medieval Climate Anomaly is also identified within Post‐Littorina Sea sediments. Modern Baltic sediments and evidence of human‐induced eutrophication are seen. Human influence upon the Baltic Sea begins c. 1700 cal. a BP and becomes more intense c. 215 cal. a BP.  相似文献   

3.
《Earth》2009,92(1-4):77-92
The hypoxic zone in the Baltic Sea has increased in area about four times since 1960 and widespread oxygen deficiency has severely reduced macro benthic communities below the halocline in the Baltic Proper and the Gulf of Finland, which in turn has affected food chain dynamics, fish habitats and fisheries in the entire Baltic Sea. The cause of increased hypoxia is believed to be enhanced eutrophication through increased anthropogenic input of nutrients, such as nitrogen and phosphorus. However, the spatial variability of hypoxia on long time-scales is poorly known: and so are the driving mechanisms. We review the occurrence of hypoxia in modern time (last c. 50 years), modern historical time (AD 1950–1800) and during the more distant past (the last c. 10 000 years) and explore the role of climate variability, environmental change and human impact. We present a compilation of proxy records of hypoxia (laminated sediments) based on long sediment cores from the Baltic Sea. The cumulated results show that the deeper depressions of the Baltic Sea have experienced intermittent hypoxia during most of the Holocene and that regular laminations started to form c. 8500–7800 cal. yr BP ago, in association with the formation of a permanent halocline at the transition between the Early Littorina Sea and the Littorina Sea s. str. Laminated sediments were deposited during three main periods (i.e. between c. 8000–4000, 2000–800 cal. yr BP and subsequent to AD 1800) which overlap the Holocene Thermal Maximum (c. 9000–5000 cal. yr BP), the Medieval Warm Period (c. AD 750–1200) and the modern historical period (AD 1800 to present) and coincide with intervals of high surface salinity (at least during the Littorina s. str.) and high total organic carbon content. This study implies that there may be a correlation between climate variability in the past and the state of the marine environment, where milder and dryer periods with less freshwater run-off correspond to increased salinities and higher accumulation of organic carbon resulting in amplified hypoxia and enlarged distribution of laminated sediments. We suggest that hydrology changes in the drainage area on long time-scales have, as well as the inflow of saltier North Sea waters, controlled the deep oxic conditions in the Baltic Sea and that such changes have followed the general Holocene climate development in Northwest Europe. Increased hypoxia during the Medieval Warm Period also correlates with large-scale changes in land use that occurred in much of the Baltic Sea watershed during the early-medieval expansion. We suggest that hypoxia during this period in the Baltic Sea was not only caused by climate, but increased human impact was most likely an additional trigger. Large areas of the Baltic Sea have experienced intermittent hypoxic from at least AD 1900 with laminated sediments present in the Gotland Basin in the Baltic Proper since then and up to present time. This period coincides with the industrial revolution in Northwestern Europe which started around AD 1850, when population grew, cutting of drainage ditches intensified, and agricultural and forest industry expanded extensively.  相似文献   

4.
5.
Integrated palaeoecological studies of two fiord sediment sequences in the province of Blekinge, SE Sweden, covering the time span 11,000–5000 cal BP, reveal the timing and the environment for the Ancylus Lake/Littorina Sea transition 9800–8500 cal BP. The first ingression of saline water into the Baltic Sea through the Danish Straits occurred earlier than formerly assumed. New evidence, particularly mineral magnetic and palaeobotanical analyses, demonstrate that on the general trend of the eustatically caused Littorina transgression several minor fluctuations of the water level can be identified between 8500 and 5000 cal years BP. A distinct regression phase around 8100 cal BP is correlated with the Greenland ice-core cold event dated to 8200 ice-core years BP. This is described as a regional climatic catastrophe for the Baltic Sea region. The coastal stratigraphy is compared with the offshore stratigraphy earlier studied. A tentative shore displacement curve for Early and Middle Holocene is presented.  相似文献   

6.
High-resolution palaeoecological proxies of pollen, macrofossils and diatoms from an isolation lake provide a long-term record of the Holocene landscape history and shoreline displacement on the Biskopsmåla Peninsula in central Blekinge, SE Sweden. During the Preboreal/Boreal transition, the peninsula was sparsely vegetated by woodlands, along with lateglacial dwarf shrub/steppe communities. The lake basin was isolated from the shallow Yoldia Sea during this time. The regional climate improved from 10 700 cal. BP, evident as progressive expansion of Pinus-dominated mixed forest with deciduous trees. The lake basin was probably connected with the Ancylus Lake during the period 10700–10 100 cal. BP. Subsequently the basin became isolated again, corresponding to the Early Littorina Sea phase. Replacement of freshwater diatoms by those with brackish-water affinity at 8100 cal. BP indicates the initial transgression of the Littorina Sea in this basin. But not until 7500 cal. BP were brackish conditions fully established. Peaks of brackish-marine diatoms and dinoflagellates during 7500–7000 cal. BP indicate increased saltwater inflow to the Baltic Sea in response to global meltwater pulse 3. However, interactive changes in seagrass and stonewort macrofossil concentrations suggest that three minor transgressions during 5900–5300, 5000–4700 and 4400–4000 cal. BP occurred locally, associated with centennial-scale variations in regional wind pattern or coastal storminess. By 3000 cal. BP, the lake basin was finally isolated from the Baltic, and thereafter the landscape on the peninsula became gradually more influenced by human activities.  相似文献   

7.
A high-resolution, well-dated dinoflagellate cyst record from a lagoon of the southeastern Swedish Baltic Sea reveals climate and hydrological changes during the Holocene. Marine dinoflagellate cysts occurred initially at about 8600 cal yr BP, indicating the onset of the Littorina transgression in the southeastern Swedish lowland associated with global sea level rise, and thus the opening of the Danish straits. Both the species diversity and the total accumulation rates of dinoflagellate cysts continued to increase by 7000 cal yr BP and then decreased progressively. This pattern reveals the first-order change in local sea level as a function of ice-volume-equivalent sea level rise versus isostatic land uplift. Superimposed upon this local sea level trend, well-defined fluctuations of the total accumulation rates of dinoflagellate cysts occurred on quasi-1000- and 500-yr frequency bands particularly between 7500 and 4000 cal yr BP, when the connection between the Baltic basin and the North Atlantic was broader. A close correlation of the total accumulation rates of dinoflagellate cysts with GISP2 ice core sea-salt ions suggests that fluctuations of Baltic surface conditions during the middle Holocene might have been regulated by quasi-periodic variations of the prevailing southwesterly winds, most likely through a system similar to the dipole oscillation of the modern North Atlantic atmosphere.  相似文献   

8.
We reconstruct the Holocene shore displacement of the Västervik-Gamlebyviken area on the southeast coast of Sweden, characterised by a maritime cultural landscape and archaeological significance since the Mesolithic. Sediment cores were retrieved from four lake basins that have been raised above sea level due to the postglacial land uplift and eustatic sea level changes after the melting of the Fennoscandian Ice Sheet. The cores were radiocarbon dated and analysed for loss on ignition and diatoms. The isolation thresholds of the basins were determined using LiDAR data. The results provide evidence for the initiation of the first Littorina Sea transgression in this area at 8.5 thousand calibrated years before present (cal. ka BP). A relative sea level rise by ∼7 m a.s.l. is recorded between 8.0 and 7.5 cal. ka BP with a highstand at ∼22 m a.s.l. between 7.5 and 6.2 cal. ka BP. These phases coincide with the second and third Littorina Sea transgressions, respectively, in the Blekinge area, southern Sweden and are consistent with the final deglaciation of North America. After 6.2 cal. ka BP, the relative sea level dropped below 22 m a.s.l., and remained at ∼20 m a.s.l. until 4.6 cal. ka BP coinciding with the fourth Littorina Sea transgression in Blekinge. From 4.6 to 4.2 cal. ka BP, the shore displacement shows a regression rate of 10 mm a−1 followed by a slowdown with a mean value of 4.6 mm a−1 until 1.6 cal. ka BP, when the relative sea level dropped below 3.3 m a.s.l. The Middle to Late Holocene highstand and other periods of minor sea level transgressions and/or higher salinity between 6.2 and 1.7 cal. ka BP are attributed to a combination of warmer climate and higher inflow of saline waters in the southern Baltic Sea due to stronger westerlies, caused by variations in the North Atlantic atmospheric patterns.  相似文献   

9.
Biostratigraphical and palaeoecological analyses of cores along a transect from Femer Belt to the Arkona Basin reveal that North Sea waters began to enter the western Baltic Sea between 8600 and 8400 calibrated years BP. Studies of diatoms indicate that Mecklenburg Bay was characterised by slightly brackish-water conditions between 8400 and 8000 cal. years BP. At around 8000 cal. years BP increasing salinity is indicated by a strong dominance of the diatoms Paralia sulcata and Dimeregramma minor. Some centuries later another diatom assemblage appeared and became dominant in Mecklenburg Bay. This assemblage includes Hyalinella lateripunctata and Pravifusus hyalinus species typical of shallow water areas along the Atlantic coast today. At this time the first marine molluscs made their appearance. The oldest shell of a marine mollusc found in our material is dated to 7600 cal. years BP. The associated assemblage that includes adult specimens of the gastropod Aporrhais pespelicani indicates higher salinities than today.During the Littorina Sea stage a marine diatom flora with P. sulcata, Catenula adhaerens and D. minor crossed the Darss Sill and became widely distributed in the Arkona Basin, Pomeranian Bay and the Baltic Sea proper. In contrast, taxa indicative of the Hyalinella lateripunctata/P. hyalinus assemblage are only found west of the Darss Sill in Femer Belt and Mecklenburg Bay. Apparently, the Darss Sill threshold has been acting as an important salinity border from around 7800 cal. years BP until today.  相似文献   

10.
A study of changes in siliceous microfossil assemblages and chemical analyses in a well-dated offshore sediment core from the Bornholm Basin, southwestern Baltic Sea, is carried out with the objective of increasing knowledge of the Holocene history of the area. The core covers about 11 300 calendar years from the brackish phase of the Yoldia Sea stage to the present. The first weak marine influence in the Ancylus Lake stage is recorded about 10 100 cal. yr BP (c. 8900 14C BP), indicating a complex transition to the Litorina Sea with different phases of brackish-water inflow. The lithology, organic carbon content and C/N and C/S ratios indicate no major changes in the sedimentary environment during the Litorina-Post-Litorina Sea stages. A high productivity event recorded in the Post-Litorina Sea stage around 950 cal. yr BP correlates with the Medieval warm event. A biostratigraphical change indicating a colder climate is recorded in the sediment at about 800 cal. yr BP, which might mark the beginning of the Little Ice Age.  相似文献   

11.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

12.
Early to late Holocene sediments from core F80, Fårö Deep, Baltic Sea, are investigated for their palynomorph composition and dinoflagellate cyst record to map variations in sea‐surface‐water salinity and palaeoproductivity during the past 6000 years. The F80 palynomorph assemblages are subdivided into four Assemblage Zones (AZs) named A to D. The transition from the stratigraphically oldest AZ A to B reflects a marked increase in palaeoproductivity and a gradual increase in surface‐water salinity over the ~1500 years between the Initial Littorina (former Mastogloia Sea Stage) and Littorina Sea Stage. A period with maximum sea‐surface salinity is recorded within the overlying AZ C from 7200 to 5200 cal. a BP, where the process length of Operculodinium centrocarpum indicates that average salinities were probably the highest (~15–17 versus 7.5 psu today) since the last glaciation. The change from AZ C to D correlates with a shift from laminated to non‐laminated sediments, and the dinoflagellate cyst assemblages suggest that the surface‐ and the deep‐water environment altered from c. 5250 cal. a BP, with less productivity in the surface water and more oxygenated conditions in the deep water. Here we demonstrate that past regional changes in surface salinity, primary productivity and deep‐water oxygenation status in the Baltic Sea can be traced by mapping overall palynomorph composition, dinoflagellate cyst assemblages and variations in the process length of O. centrocarpum in relation to periods of laminated/non‐laminated sedimentation and proportion of organic‐matter in the sediments. An understanding of past productivity changes is particularly important to better understand present‐day environmental changes within the Baltic Sea region.  相似文献   

13.
A total of 45 subfossil reindeer (Rangifer tarandus) antlers and bones - artefacts excluded - have been found over the years in the Baltic countries of Estonia, Latvia and Lithuania. The relatively high number of specimens suggests a stable residence of the species in the eastern Baltic region. For the first time, 12 of these finds were radiocarbon-dated. The ages of the samples range between 12 085 and 9970 14C yr BP (14 180-11 280 cal. yr BP), and cover the Lateglacial and early Holocene, a time period during which climatic conditions shifted from periglacial to temperate. The dates suggest a rapid colonization of the area during the deglaciation period and a local extinction around the Pleistocene-Holocene boundary. The results of the study do not support the theory that the recent wild reindeer populations of northern Europe had their origin in the Late Weichselian reindeer populations of the eastern Baltic region.  相似文献   

14.
The adoption of cereal cultivation is a key benchmark in the transition from Mesolithic hunter–gatherer foraging to Neolithic farming economies, but the nature, timing and ecological–cultural context of the earliest cereal use in the British Isles and northwest Europe is still uncertain. We present AMS radiocarbon dating and fine‐resolution pollen evidence from the Isle of Man for cereal growing in the latter stages of a distinct episode of forest disturbance at almost 6000 yr BP (uncalibrated). The coherent ecological structure of this phase at the fine resolution level suggests that it records cereal cultivation well before the Ulmus decline, rather than wild grass pollen grains. This example is one of a cluster of early dates for cereal‐type pollen near the start of the sixth millenium BP, including several around the Irish Sea, which indicate that the introduction of cereal agriculture probably occurred as early in the central British Isles as in the northern European plain. This early cereal phase is followed later by a probable phase of pre‐Ulmus decline pastoral activity. We also report Mesolithic age woodland disturbance around 7000 yr BP (uncalibrated) and the first radiocarbon dates for mid‐Holocene forest history of the Isle of Man. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
We present evidence of a submerged early Holocene landscape off the Blekinge coastline in the Baltic Sea, dating to the Yoldia Sea and Initial Littorina Sea Stages when the water level was lower than at present. 14C dated wood remains obtained by surveillance diving and new archaeological findings in combination with bathymetric analyses and interpolations between other sites across the Baltic Sea were used for refinement of the shoreline displacement history of the region. The new results reveal a Yoldia Sea lowstand level at 20 m b.s.l., a subsequent Ancylus Lake highstand at 3 m a.s.l., and then a period of relatively stable water level at about 4 m b.s.l. during the Initial Littorina Sea Stage, several metres lower than previously concluded. The refined shoreline displacement record was used for palaeo‐reconstructions of the study area during four key periods, the Yoldia Sea lowstand phase, the Ancylus Lake transgression phase, the Ancylus Lake highstand phase and the Initial Littorina Sea lowstand phase, using elevation data and map algebra functions. A flow accumulation algorithm was used for reconstruction of the now submerged prehistoric river network in order to identify areas of high archaeological potential. Our revised shoreline displacement record, and especially its lowstand period during the Initial Littorina Sea Stage around 9500–8500 cal. a BP, raises future demands not only for specific archaeological shallow‐water surveys down to 4 m b.s.l. in the area, but also for a renewed cultural heritage management strategy. The results of this study fill an important gap in the early Holocene part of the shoreline displacement history of Blekinge, contributing to its completion since the deglaciation, which is unique for the Baltic Sea.  相似文献   

16.
The Baltic Sea is an intra‐continental brackish water body. Low saline surface water, the so‐called Baltic outflow current, exits the Baltic Sea through the Kattegat into the Skagerrak. Ingressions of saline oxygen‐rich bottom water enter the Baltic Sea basins via the narrow and shallow Kattegat and are of great importance for the ecological and ventilation state of the Baltic Sea. Over recent decades, progress has been made in studying Holocene changes in saline water inflow. However, reconstructions of past variations in Baltic Sea outflow changes are sparse and hampered because of the lack of suitable proxies. Here, we used the relative proportion of tetra‐unsaturated C37 ketones (C37:4 %) in long‐chain alkenones produced by coccolithophorids as a proxy for outflowing Baltic Sea water in the Skagerrak. To evaluate the applicability of the proxy, we compared the biomarker results with grain‐size records from the Kattegat and Mecklenburg Bay in addition to previously published salinity reconstructions from the Kattegat over the last 5000 years. All Skagerrak records showed an increase in C37:4 % that is accompanied by enhanced bottom water currents in the Kattegat and western Baltic Sea over the past 3500 cal. a BP, indicating an increase in Baltic Sea outflow. This probably reflects higher precipitation in the Baltic Sea catchment area owing to a re‐organization of North Atlantic atmospheric circulation with an increased influence of wintertime Westerlies over the Baltic catchment from the mid‐ to the late Holocene.  相似文献   

17.
The Late Quaternary climate history of the Larsemann Hills has been reconstructed using siliceous microfossils (diatoms, chrysophytes and silicoflagellates) in sediment cores extracted from three isolation lakes. Results show that the western peninsula, Stornes, and offshore islands were ice‐covered between 30 000 yr BP and 13 500 cal. yr BP. From 13 500 cal. yr BP (shortly after the Antarctic Cold Reversal) the coastal lakes of the Larsemann Hills were deglaciated and biogenic sedimentation commenced. Between 13 500 and 11 500 cal. yr BP conditions were warmer and wetter than during the preceding glacial period, but still colder than today. From 11 500 to 9500 cal. yr BP there is evidence for wet and warm conditions, which probably is related to the early Holocene climate optimum, recorded in Antarctic ice cores. Between 9500 and 7400 cal. yr BP dry and cold conditions are inferred from high lake‐water salinities, and low water levels and an extended duration of nearshore sea‐ice. A second climate optimum occurred between 7400 and 5230 cal. yr BP when stratified, open water conditions during spring and summer characterised the marine coast of Prydz Bay. From 5230 until 2750 cal. yr BP sea‐ice duration in Prydz Bay increased, with conditions similar to the present day. A short return to stratified, open water conditions and a reduction in nearshore winter sea‐ice extent is evident between 2750 and 2200 cal. yr BP. Simultaneously, reconstructions of lake water depth and salinity suggests relatively humid and warm conditions on land between 3000 and 2000 cal. yr BP, which corresponds to a Holocene Hypsithermal reported elsewhere in Antarctica. Finally, dry conditions are recorded around 2000, between 760 and 690, and between 280 and 140 cal. yr BP. These data are consistent with ice‐core records from Antarctica and support the hypothesis that lacustrine and marine sediments on land can be used to evaluate the effect of long‐term climate change on the terrestrial environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Core MD95‐2011 was taken from the eastern Vøring Plateau, near the Norwegian coast. The section between 250 and 750 cm covers the time period from 13 000 to 2700 cal. yr BP (the Lateglacial and much of the Holocene). Samples at 5 cm intervals were analysed for fossil diatoms. A data‐set of 139 modern sea‐surface diatom samples was related to contemporary sea‐surface temperatures (SSTs) using two different numerical methods. The resulting transfer functions were used to reconstruct past sea‐surface temperatures from the fossil diatom assemblages. After the cold Younger Dryas with summer SSTs about 6°C, temperatures warmed rapidly to about 13°C. One of the fluctuations in the earliest Holocene can be related to the Pre‐Boreal Oscillation, but SSTs were generally unstable until about 9700 cal. yr BP. Evidence from diatom concentration and magnetic susceptibility suggests a change and stabilization of water currents associated with the final melting of the Scandinavian Ice Sheet at c. 8100 cal. yr BP. A period of maximum warmth between 9700 and 6700 cal. yr BP had SSTs 3–5°C warmer than at present. Temperatures cooled gradually until c. 3000 cal. yr BP, and then rose slightly around 2750 cal. yr BP. The varimax factors derived from the Imbrie & Kipp method for sea‐surface‐temperature reconstructions can be interpreted as water‐masses. They show a dominance of Arctic Waters and Sea Ice during the Younger Dryas. The North Atlantic current increased rapidly in strength during the early Holocene, resulting in warmer conditions than previously. Since about 7250 cal. yr BP, Norwegian Atlantic Water gradually replaced the North Atlantic Water, and this, in combination with decreasing summer insolation, led to a gradual cooling of the sea surface. Terrestrial systems in Norway and Iceland responded to this cooling and the increased supply of moisture by renewed glaciation. Periods of glacial advance can be correlated with cool oscillations in the SST reconstructions. By comparison with records of SSTs from other sites in the Norwegian Sea, spatial and temporal changes in patterns of ocean water‐masses are reconstructed, to reveal a complex system of feedbacks and influences on the climate of the North Atlantic and Norway.  相似文献   

19.
Holocene relative shore-level changes and development of the Ģipka palaeolagoon in the western Gulf of Riga are reconstructed using multiproxy analyses by combining litho-, biostratigraphical and chronological data with remote sensing and geophysical data. The results show the development of the Ģipka basin from the Ancylus Lake/Initial Litorina Sea coastal zone (before c. 9.1 cal. ka BP) to coastal fen (c. 9.1 to 8.4 cal. ka BP) and gradual development of the Litorina Sea lagoon (c. 8.4 to 4.8 cal. ka BP) and its transition to a freshwater coastal lake (c. 4.8 to 4.6 cal. ka BP), fen (c. 4.6 to 4.2 cal. ka BP), and river floodplain (since c. 4.2 cal. ka BP). The highest shorelines of the Ancylus Lake and Litorina Sea were mapped at an elevation of 12–11 and 9 m a.s.l., respectively. A new relative shore level (RSL) curve for the western Gulf of Riga was constructed based on RSL data from the Ģipka area and from nearby Ruhnu Island studied earlier. The reconstruction shows that the beginning of the last marine transgression in the western Gulf of Riga started at c. 8.4 cal. ka BP, and concurred with the 1.9 m RSL rise event recorded from the North Sea basin. Diatom analysis results indicate the existence of the Ģipka lagoon between c. 7.7 and 4.8 cal. ka BP, with the highest salinity c. 6.1 cal. ka BP. During the existence of the brackish lagoon, settlement sites of the Neolithic hunter–gatherer groups existed on the shores of the lagoon in the period c. 6.0 to 5.0 cal. ka BP.  相似文献   

20.
This article reports the first discovery of middle Holocene cryptotephra from a peat sequence in Estonia, eastern Baltic. Two sequences, Mustjärve and Parika (located 110 km apart), were chosen for a pilot study aimed at finding traces of tephra fallout during the middle Holocene. Peat accumulation at both sites started in the early Holocene (c. 9500–9000 14C yr BP; c . 11 000–10000 cal. yr BP) and continued throughout the whole Holocene. The radiocarbon-dated intervals between c. 2000 and 5000 14C yr BP (c. 2000–5500 cal. yr BP) were chosen from both sites for the study. Colourless tephra shards were identified at 312–316 cm below the peat surface in the Mustjärve peat sequence, while no tephra was found in peat of the same age at Parika. Electron microprobe analyses suggest a correlation with the initial phase of the Hekla-4 eruption (c. 4260 cal. yr BP), although the age-depth model indicated an age around 4900 cal. yr BP. Small concentrations of colourless to light brown tephra shards at 266–270 cm in the Mustjärve sequence indicate that the Kebister tephra (c. 3750 cal. yr BP) might also be present, but geochemical analyses were not possible. The low concentration and small size of the tephra particles indicate that Estonian bogs are probably on the verge of where tephrochronology is possible in northwestern Europe. Further studies of full Holocene sequences are required in order to discover traces of other ash plumes reaching as far east as the eastern Baltic area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号