首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitrofanov  I. G.  Litvak  M. L.  Kozyrev  A. S.  Sanin  A. B.  Tret'yakov  V. I.  Boynton  W. V.  Shinohara  C.  Hamara  D.  Saunders  S.  Drake  D. M. 《Solar System Research》2003,37(5):366-377
We present the first results of the global neutron mapping of Mars by the Russian High-Energy Neutron Detector (HEND) onboard the US 2001 Mars Odyssey spacecraft. Global neutron maps of Mars in various spectral ranges allow the content of water ice and adsorbed and bound water in a near-surface layer of the planet 1 to 2 m in thickness to be estimated. Huge regions of permafrost with a high (several tens of percent by weight) content of water ice are shown to be present in the north and the south of Mars. The continuous observations of Mars for 12 months, from February 18, 2002, through February 8, 2003, are indicative of significant seasonal variations on Mars where the transition from northern winter to northern summer occurred.  相似文献   

2.
We report results of the analysis of the data on global mapping of neutron fluxes from the Martian surface, which have been obtained during the first ten months of measurements carried out by the Russian high-energy neutron detector HEND mounted aboard the AmericanMars Odysseyorbiter. This analysis allowed us to separate regions where free water (in ice form) prevailed in the surface layer (with a thickness of up to 2 m) of the Martian ground from regions where physically and chemically bound ground water was most likely to be the dominant form of water. The global mapping of regions with increased ice content in the ground-surface layer revealed a direct correlation with regions of polygonal terrains morphologically similar to terrestrial polygonal forms of permafrost origin. The potential content of bound water forms in the ground of circumpolar areas of the planet is also estimated.  相似文献   

3.
A new infrared spectrum of the leading side of Rhea is presented in the 0.65- to 2.5 μm region with 1.5% spectral resolution and 3 to 5% data precision. Water ice absorptions previously identified at 2.02, 1.65, and 1.55 μm are confirmed and more precisely defined. The 1.25-μm water ice absorption is identified for the first time and the 1.04-μm water ice absorption is probably also present. The spectrum of the leading side of Rhea is very similar to the spectrum of the leading side of Ganymede in the 0.6- to 2.5-μm region. The Rhea spectrum is also very similar to laboratory spectra of water frost on ice blocks rather than that of an optically thick frost. The strong water ice absorption features, high albedo, and little downturn in reflectance toward shorter wavelengths from 0.6 to 0.4 μm all indicate a surface of nearly pure water ice. The surface of Rhea is probably at least 90 wt% water ice and may be as much as 98 wt%. Of the remaining constituents, neither minerals nor clathrathes can be excluded. If the surface of Rhea were a methane clathrate, the surface would still be about 90 wt% water ice.  相似文献   

4.
As a child Frederick C. Leonard displayed such a precocious aptitude for astronomy that he became known as “Chicago's Boy Astronomer.” But within a decade after receiving his Ph.D., his interests had turned to meteorites. He persuaded Harvey Nininger to help him found the Society for Research on Meteorites, later renamed The Meteoritical Society, in 1933—a time when the study of meteorites was not considered a worthy pursuit of serious scientists. He nurtured the Society and held it together through the Great Depression, World War II, a destructive feud, and a significant personal and family crisis. He obtained legitimacy and affiliation for the Society with mainstream scientific organizations. He was its first President, and he was Editor of its publications from the Society's founding until a year before his death in 1960. Through it all he was a persistent advocate for the importance of the study of meteorites and the legitimacy of meteoritics as a valuable field of science.  相似文献   

5.
Abstract— The D/H ratios and water contents were measured by ion microprobe analysis in 52 individual Antarctic micrometeorites (AMMs) and 10 Antarctic cosmic spherules (ACSs) containing nuggets of iron hydroxide (COPS phase). In AMMs, δD values vary from ?366 to +249%‰ and water contents lie between 0.4-3.7 wt%. The COPS nuggets in cosmic spherules have high water contents (2 to 8 wt%) and exhibit δD values from ?144 to +167%‰, which is indicative of an extraterrestrial origin of their constituent water. The silicate portion of ACSs also contain extraterrestrial H equivalent to ~0.l to 1.2 wt% water. Deuterium-exchange experiments were performed with isotopically spiked water. These experiments demonstrate that water in mineral phases of AMMs and ACSs is indigenous and does not result from contamination during residence in Antarctic ice. The frequency distribution of D/H ratios in AMMs allows us to further narrow the relationship between AMMs and carbonaceous chondrites to CM and CI chondrites but contrasts with that of stratospheric interplanetary dust particles (IDPs) of similar sizes (from ?10 to 50 μm). The relatively narrow range of D/H ratios measured in AMMs as well as in ACSs (which are more resistant and thus less susceptible to collection biases) suggests that D-rich IDP-like particles are very rare in our AMMs collections. This indicates that these D-rich grains might constitute a minor fraction of the micrometeorite flux in the interplanetary medium and that possible collection biases in Antarctica would not be responsible for their strong depletion in the AMMs collections.  相似文献   

6.
We report on a 4.1 (±0.2) km diameter and 185 m deep circular submarine structure exposed on the seabed in >40 m water depths in the northwestern Gulf of St. Lawrence (Eastern Canada) from the analysis of high‐resolution multibeam bathymetric and seismic data. The presence of a circular form characterized by a central uplift and concentric rings resembles the morphology and geometry of complex meteorite impact structures. Also, other origins, such as kimberlites, intrusions, karsts, or diapirs, can be eliminated on geological criteria. A single 4 cm long breccia fragment recovered from the central uplift has numerous glassy droplets of fluorapatite composition, assumed to be impact melts, and a single quartz grain with planar intersection features thought to be shock‐induced planar deformation features (PDFs). The absolute age of this possible impact structure is unknown, but its geological setting indicates that it was formed long after the Mid‐Ordovician and before regional pre‐Quaternary sea‐level lowstands. Present results outline the need for further examination to confirm an impact origin and to precisely date the formation of the structure.  相似文献   

7.
Abstract– Donald D. Bogard (Don, Fig. 1 ) became interested in meteorites after seeing the Fayetteville meteorite in an undergraduate astronomy class at the University of Arkansas. During his graduate studies with Paul Kuroda at Arkansas, Don helped discover the Xe decay products of 244Pu. After a postdoctoral period at Caltech, where he learned much from Jerry Wasserburg, Peter Eberhardt, Don Burnett, and Sam Epstein, Don became one of a number of young Ph.D. scientists hired by NASA’s Manned Spacecraft Center to set up the Lunar Receiving Laboratory (LRL) and to perform a preliminary examination of Apollo samples. In collaboration with Oliver Schaeffer (SUNY), Joseph Zähringer (Max Planck, Heidelberg), and Raymond Davis (Brookhaven National Laboratory), he built a gas analysis laboratory at JSC, and the noble gas portion of this laboratory remained operational until he retired in 2010. At NASA, Don worked on the lunar regolith, performed pioneering work on cosmic ray produced noble gas isotopes and Ar‐Ar dating, the latter for important insights into the thermal and shock history of meteorites and lunar samples. During this work, he discovered that the trapped gases in SNC meteorites were very similar to those of the Martian atmosphere and thus established their Martian origin. Among Don’s many administrative accomplishments are helping to establish the Antarctic meteorite and cosmic dust processing programs at JSC and serving as a NASA‐HQ discipline scientist, where he advanced peer review and helped create new programs. Don is a recipient of NASA’s Scientific Achievement and Exceptional Service Medals and the Meteoritical Society’s Leonard Medal.
Figure 1 Open in figure viewer PowerPoint Donald Bogard.  相似文献   

8.
Vagn Buchwald (Fig.  1 ) was born in Copenhagen where he attended school and college. Then after 18 months of military service, he assumed a position at the Technical University of Copenhagen. A few years later, he was presented with a piece of the Cape York meteorite, which led to an interest in iron meteorites. Through a campaign of informed searching, Vagn found the 20 ton Agpalilik meteorite (part of the Cape York shower) on 31st July 1963 and by September 1967 had arranged its transport to Copenhagen. After sorting and describing the Danish collection, which included application of the Fe‐Ni‐P phase diagram to iron meteorite mineralogy, Vagn was invited to sort and describe other iron meteorite collections. This led to a 7 yr project to write his monumental Handbook of Iron Meteorites. Vagn spent 3 yr in the United States and visited most of the world's museums, the visit to Berlin being especially important since the war had left their iron meteorites in bad condition and without labels. During a further decade or more of iron meteorite research, he documented natural and anthropomorphic alterations experienced by iron meteorites, discovered five new minerals (roaldite, carlsbergite, akaganeite, hibbingite, and arupite); had a mineral (buchwaldite, NaCaPO4) and asteroid (3209 Buchwald 1982 BL1) named after him; and led expeditions to Chile, Namibia, and South Africa in search of iron meteorites and information on them. Vagn then turned his attention to archeological metal artifacts. This work resulted in many papers and culminated in two major books on the subject published in 2005 and 2008, after his retirement in 1998. Vagn Buchwald has received numerous Scandinavian awards and honors, and served as president of the Meteoritical Society in 1981–1982.  相似文献   

9.
The method of computing the radiation field in an infinite circular cylinder proposed in Part I is now applied to the case of isotropic scattering with sources on the boundary and axis of the cylinder, as well as for a uniform distribution of sources inside the cylinder. For the simplest kernel we obtain exact solutions of the basic integral equation in explicit form. For scattering in a spectral line with complete frequency redistribution and a power absorption profile we develop an asymptotic theory for the case when the optical radius of the cylinder is large. We solve the asymptotic equations for the basic characteristics of the scattering in closed form for conservative scattering and find its asymptotics. We obtain estimates of the mean number of scatterings with a layered source, and also the mean and variance of the number of scatterings with a uniform source distribution.Translated fromAstrofizika, Vol. 37, No. 4, 1994.This work was carried out with the financial support of the Russian Basic Research Fund (grant 93-02-2957).  相似文献   

10.
A self-consistent model of the kinetically nonequilibrium near-surface layer of a cometary nucleus is developed on the basis of the gas-kinetic approach. The weight method of direct statistical simulation is used to model numerically the two-dimensional gas outflow from an ice sample subjected to radiative heating. The effective coefficient of water ice sublimation is estimated. Mass transfer in a porous ice and mineral (scattering) nonisothermal medium is investigated by the method of test particles, and the effective gas release is evaluated taking into account the proper rotation of the cometary nucleus for various model parameters. In these calculations, allowance is made for the kinetic character of the flow and volume sublimation and condensation of the volatile constituents of the material of the cometary nucleus.  相似文献   

11.
Our work was inspired by the recent brightening of Comet 17P/Holmes. The recently observed increase in brightness of this comet was correlated with emission of dust, probably larger in mass than the dust mantle of the nucleus. We analyzed the hypothesis that the comet can eject a large mass of dust due to non-uniform crystallization of amorphous water ice. For this purpose, we simulated the evolution of a model nucleus on the orbit of Comet 17P/Holmes. The nucleus is composed of water ice and dust and has the shape of an elongated ellipsoid. The simulations include crystallization of amorphous ice in the nucleus, changes in the dust mantle thickness, and changes in the nucleus orientation in space. Our computations indicate that: (i) ejection of the dust cover triggers crystallization of ice independently on the material properties of the nucleus; (ii) moderate changes in the nucleus orientation (∼50°) may result in an acceleration of the crystallization of ice in the northern hemisphere, while a rather large change in the orientation (∼120°) is needed to cause a significant jump of the crystallization front in the southern hemisphere, where the emission of dust during the recent brightening was strongest. We investigated the possible reason for an explosion and we have found that the crystallization of the water ice itself is probably not sufficient.  相似文献   

12.
Abstract– Recent spacecraft missions to comets have reopened a long‐standing debate about the histories and origins of cometary materials. Comets contain mixtures of anhydrous minerals and ices seemingly unaffected by planetary processes, yet there are indications of a hydrated silicate component. We have performed aqueous alteration experiments on anhydrous interplanetary dust particles (IDPs) that likely derived from comets. Hydrated silicates rapidly formed from submicrometer amorphous silicates within the IDPs at room temperature in mildly alkaline solution. Hydrated silicates may thus form in the near‐surface regions of comets if liquid water is ever present. Our findings provide insight into origins of cometary IDPs containing both anhydrous and hydrated minerals and help reconcile the seemingly inconsistent observations of hydrated silicates from the Stardust and Deep Impact missions.  相似文献   

13.
太阳选址全国日照条件分析   总被引:1,自引:0,他引:1  
利用国家气象信息中心气象资料室整编的中国756个基本、基准气象站在1971~2000年间的日照时数和日照百分率年值、月值数据集,研究了全国范围的日照条件,结合1951~2008年间我国云量、水汽要素资料,分析了影响日照的因素.研究结果表明,我国日照时数和日照百分率的分布形势一致,东南少而西北多,从东南向西北递增.在我国东部地区日照时数由南向北逐步递增,西部地区日照条件整体好于东部,符合常规.藏西南狮泉河一带日照条件最优;40°N纬度带附近和藏南地区次之,江南华南、四川盆地以及云贵高原东部地区的日照条件较差;其余地区日照条件居中.日照时数受云量、水汽要素的影响,呈负相关关系.  相似文献   

14.
We present the results of an aerodynamic liquid dispersion experiment using initially molten silicate samples. We investigate the threshold of breakup and the size distribution of dispersed droplets. The breakup threshold is consistent with the previous experiments using water and a mixture of water and glycerol. Also, we confirm the previous results that the size distributions of dispersed droplets are represented by an exponential form and that the characteristic size of dispersed droplets is related to the dynamic pressure of high-velocity gas flow. The size distribution has a similar form to that of chondrules, though the experiment is not exactly corresponding to the shock heating models for chondrule formation that consider solid precursors which are molten by the shocks. The experimental results indicate that, if liquid chondrule-precursors were dispersed by high-velocity flow, the dynamic pressure of the flow is ∼10 kPa. A chondrule formation condition in a shock-wave heating model suggests that this pressure can be realized at the regions within ∼1 AU in the minimum solar-nebula mass models. However, if the nebula had a larger mass and gravitational instabilities occurred, this pressure may be realized in the spiral arms at 2-3 AU and chondrules may be formed in asteroid belt.  相似文献   

15.
In early January 1888, James E. Keeler was one of the first astronomers to work with the very new Lick Observatory 36-in. refractor. On January 7 while observing Saturn visually on a night of very fine seeing, he discovered a narrow, dark “division” in the outer part of the A ring. Despite repeated attempts, neither Keeler nor any of the other Lick observers saw this gap again until over a year later, on March 2, 1889, another night of extremely good seeing. On that occasion not only Keeler, but also E. S. Holden, J. M. Schaeberle, and E. E. Barnard all observed “Mr. Keeler's division,” as Barnard called it. It could only be seen using very high magnification with this large telescope, at a site known to be excellent, on the nights of very best definition. This gap is not the same as the feature which J. F. Encke had earlier discovered and described as a low-contrast division nearly in the middle of the A ring, and had drawn as nearly the same width as Cassini's division. Later visual observations by B. Lyot and A. Dollfus, again on nights of fine seeing with large telescopes, showed that the Encke division is complex. To them, with the best resolution, it appeared as three wide minima of light, fuzzy, and of low contrast, with a narrow, well-marked minimum of light at its outer edge. The outer edge is just where Keeler placed his gap, although he did not see the low-contrast structure in the Encke division. The images, with much superior resolution obtained from the Pioneer and Voyager space probes, show that the Encke division is even more complex than Lyot and Dollfus realized, but confirm the narrow Keeler feature as a true gap in the outer part of the A ring.  相似文献   

16.
Eine photographische Photometrie in B and V wurde für den cD-Haufen A 1795 durchgeführt. Dieser Haufen liegt in der Nähe des galaktischen Nordpols. Unser Katalog enthält 721 Galaxien in einem Gebiet von 1.6 ° um das Haufenzentrum.  相似文献   

17.
“Water and related chemistry in the Solar System” is a Herschel Space Observatory Guaranteed-Time Key Programme. This project, approved by the European Space Agency, aims at determining the distribution, the evolution and the origin of water in Mars, the outer planets, Titan, Enceladus and the comets. It addresses the broad topic of water and its isotopologues in planetary and cometary atmospheres. The nature of cometary activity and the thermodynamics of cometary comae will be investigated by studying water excitation in a sample of comets. The D/H ratio, the key parameter for constraining the origin and evolution of Solar System species, will be measured for the first time in a Jupiter-family comet. A comparison with existing and new measurements of D/H in Oort-cloud comets will constrain the composition of pre-solar cometary grains and possibly the dynamics of the protosolar nebula. New measurements of D/H in giant planets, similarly constraining the composition of proto-planetary ices, will be obtained. The D/H and other isotopic ratios, diagnostic of Mars’ atmosphere evolution, will be accurately measured in H2O and CO. The role of water vapor in Mars’ atmospheric chemistry will be studied by monitoring vertical profiles of H2O and HDO and by searching for several other species (and CO and H2O isotopes). A detailed study of the source of water in the upper atmosphere of the Giant Planets and Titan will be performed. By monitoring the water abundance, vertical profile, and input fluxes in the various objects, and when possible with the help of mapping observations, we will discriminate between the possible sources of water in the outer planets (interplanetary dust particles, cometary impacts, and local sources). In addition to these inter-connected objectives, serendipitous searches will enhance our knowledge of the composition of planetary and cometary atmospheres.  相似文献   

18.
We present preliminary statistics on the precipitable water vapor (PWV) content over the Karakaya Hills in Erzurum city, where the largest optical and near-infrared astronomical telescope in Turkey will be operated. Since the observatory will observe in the near-infrared (NIR), it is intended to perform PWV measurements of the atmosphere above the site by using signal delays in Global Positioning System (GPS) communication. The analysis of the GPS data recorded on the summit for almost one year shows that the atmosphere over the site of the observatory, which has an altitude of 3170 m, has favorable conditions for NIR observations. From GPS measurements, we report that the site had an average PWV of 3.2 mm and a median PWV of 2.7 mm between October 6, 2016, and June 15, 2017. We also present the time dependency of the PWV content and the correlations between the amount of PWV and the other meteorological records gathered from radiosonde flights and ground-based measurements.  相似文献   

19.
We report the first detection of the nitrogen sulfide (NS) radical in a comet. The abundance relative to water is at least a few hundredths of a percent for Comet Hale-Bopp.  相似文献   

20.
Abstract— Stuart H. Perry (1874–1957), an influential Michigan newspaper editor and publisher and a vice president of the Associated Press, developed a passionate interest in collecting and studying meteorites in the 1920s and 1930s. Firmly believing that meteorites belong in great museums where they can be properly investigated, he generously donated his meteorites to various museums after he finished his own study of them. He had a sincere interest in the National Collection of Meteorites, and donated 192 specimens–‐mostly irons–‐to the U.S. National Museum; these constituted some of the most important meteorites in its collection, and moved iron meteorites to center stage, a position still occupied. By applying current metallographic methods to the study of iron meteorites, Perry directed scientists to a powerful new research tool, which led to major advances in our understanding of meteoritic irons and helped give rise to a new field within planetary sciences. His groundbreaking monograph The metallography of meteoric iron served as a standard reference collection of metallographic photomicrographs of iron meteorites for more than 30 years. It remained an insightful and useful work on the structure of meteoritic iron until improved binary and ternary phase diagrams in the Fe‐Ni(‐P) system allowed a more detailed treatment of the formation of iron meteorites. Perry received many honors for his work, and held office in the Meteoritical Society, serving as a councilor from 1941–1950, and as a vice president from 1950–1957.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号