首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 912 毫秒
1.
Cosmic-ray propagation in the vicinity of 1 kpc from the Sun is considered. The data on the 1012–1015 eV particle anisotropy, on 1012 eV electron spectrum, and on temporal cosmic-ray variations are analyzed. The diffusion coefficientD(1012–1013 eV)=1029–1030 cm2s–1 inferred from the analysis coincides with its standard value in the large-halo model withh=15 kpc. The total power of cosmic-ray generation, about 3×1049 erg per SN in the proton component and about 1048 erg per SN in the electron component, typical of the galactic diffusion model is in agreement with the obtained parameters of local sources.  相似文献   

2.
The Astroneu Extensive Air Shower (EAS) array comprises autonomous detection stations; each station consisting of 3 large scintillator detectors and one or more Radio Frequency (RF) antennas. The scintillator detectors of a station are able to detect showers with a low energy threshold of 2030 TeV, at a rate of 1020 showers per hour depending on the station geometrical layout. The RF antennas are used to detect very high energy EAS (E > 1017eV) through their radio wave emission. This work focuses in reconstructing and studying showers that have been detected synchronously by the scintillator detectors of two distant Astroneu stations. The performance of the array to detect and reconstruct the direction of such high energy (E > 5 · 1015eV) showers is evaluated by comparing the experimental measurements to the predictions of a detail Monte Carlo (MC) simulation.  相似文献   

3.
《Astroparticle Physics》2008,28(6):512-520
We report the results of a search for point-like deviations from isotropy in the arrival directions of ultra-high energy cosmic rays in the northern hemisphere. In the monocular data set collected by the High-Resolution Fly’s Eye, consisting of 1525 events with energy exceeding 1018.5 eV, we find no evidence for point-like excesses. We place a 90% c.l. upper limit of 0.8 hadronic cosmic rays/km2 yr on the flux from such sources for the northern hemisphere and place tighter limits as a function of position in the sky.  相似文献   

4.
H Lammer  P Wurz  R Killen  S Massetti  A Milillo 《Icarus》2003,166(2):238-247
Mercury's close orbit around the Sun, its weak intrinsic magnetic field and the absence of an atmosphere (Psurface<1×10−8 Pa) results in a strong direct exposure of the surface to energetic ions, electrons and UV radiation. Thermal processes and particle-surface-collisions dominate the surface interaction processes leading to surface chemistry and physics, including the formation of an exosphere (N?1014 cm−2) in which gravity is the dominant force affecting the trajectories of exospheric atoms. NASA's Mariner 10 spacecraft observed the existence of H, He, and O in Mercury's exosphere. In addition, the volatile components Na, K, and Ca have been observed by ground based instrumentation in the exosphere. We study the efficiency of several particle surface release processes by calculating stopping cross-sections, sputter yields and exospheric source rates. Our study indicates surface sputter yields for Na between values of about 0.27 and 0.35 in an energy range from 500 eV up to 2 keV if Na+ ions are the sputter agents, and about 0.037 and 0.082 at an energy range between 500 eV up to 2 keV when H+ are the sputter agents and a surface binding energy of about 2 eV to 2.65 eV. The sputter yields for Ca are about 0.032 to 0.06 and for K atoms between 0.054 to 0.1 in the same energy range. We found a sputter yield for O atoms between 0.025 and 0.04 for a particle energy range between 500 eV up to 2 keV protons. By taking the average solar wind proton surface flux at the open magnetic field line area of about 4×108 cm−2 s−1 calculated by Massetti et al. (2003, Icarus, in press) the resulting average sputtering flux for O is about 0.8-1.0×107 cm−2 s−1 and for Na approximately 1.3-1.6×105 cm−2 s−1 depending on the assumed Na binding energies, regolith content, sputtering agents and solar activity. By using lunar regolith values for K we obtain a sputtering flux of about 1.0-1.4×104 cm−2 s−1. By taking an average open magnetic field line area of about 2.8×1016 cm2 modelled by Massetti et al. (2003, Icarus, in press) we derive an average surface sputter rate for Na of about 4.2×1021 s−1 and for O of about 2.5×1023 s−1. The particle sputter rate for K atoms is about 3.0×1020 s−1 assuming lunar regolith composition for K. The sputter rates depend on the particle content in the regolith and the open magnetic field line area on Mercury's surface. Further, the surface layer could be depleted in alkali. A UV model has been developed to yield the surface UV irradiance at any time and latitude over a Mercury year. Seasonal and diurnal variations are calculated, and Photon Stimulated Desorption (PSD) fluxes along Mercury's orbit are evaluated. A solar UV hotspot is created towards perihelion, with significant average PSD particle release rates and Na fluxes of about 3.0×106 cm−2 s−1. The average source rates for Na particles released by PSD are about 1×1024 s−1. By using the laboratory obtained data of Madey et al. (1998, J. Geophys. Res. 103, 5873-5887) for the calculation of the PSD flux of K atoms we get fluxes in the order of about 104 cm−2 s−1 along Mercury's orbit. However, these values may be to high since they are based on idealized smooth surface conditions in the laboratory and do not include the roughness and porosity of Mercury's regolith. Further, the lack of an ionosphere and Mercury's small, temporally and spatially highly variable magnetosphere can result in a large and rapid increase of exospheric particles, especially Na in Mercury's exosphere. Our study suggests that the average total source rates for the exosphere from solar particle and radiation induced surface processes during quiet solar conditions may be of the same order as particles produced by micrometeoroid vaporization. We also discuss the capability of in situ measurements of Mercury's highly variable particle environment by the proposed NPA-SERENA instrument package on board ESA's BepiColombo Mercury Planetary Orbiter (MPO).  相似文献   

5.
This contribution to the 100th commemoration of the discovery of cosmic rays (6–8 August, 2012 in Bad Saarow, Germany) is about observations of those cosmic rays that are sensitive to the structure and the dynamics of the heliosphere. This places them in the energy range of 107–1010 eV. For higher energies the heliosphere becomes transparent; below this energy range the particles become strictly locked into the solar wind. Rather than give a strict chronological development, the paper is divided into distinct topics. It starts with the Pioneer/Voyager missions to the outer edges of the heliosphere, because the most recent observations indicate that a distinct boundary of the heliosphere might have been reached at the time of the meeting. Thereafter, the Ulysses mission is described as a unique one because it is still the only spacecraft that has explored the heliosphere at very high latitudes. Next, anomalous cosmic rays, discovered in 1972–1974, constitute a separate component that is ideally suited to study the acceleration and transport of energetic particles in the heliosphere. At this point the history and development of ground-based observations is discussed, with its unique contribution to supply a stable, long-term record. The last topic is about solar energetic particles with energies up to ∼1010 eV.  相似文献   

6.
On the basis of recent new information on regular and chaotic magnetic fields in coronae of spiral galaxies, we discuss propagation of ultra-high energy cosmic rays of energies exceeding 1017 eV in the galactic corona. It is shown that the expected regular magnetic field is able to confine to the corona protons of energies up to 3×1019 eV. Chaotic magnetic fields of the corona play an important role in dynamics of cosmic-ray protons of energy up to 7×1018 eV.  相似文献   

7.
Comet McNaught-Hartley was observed in five 1-h exposures on January 8-14 2001 using the advanced CCD imaging spectrometer on board the Chandra X-ray Observatory. The X-ray image of the comet does not show a crescent-like shape. The brightest region is offset from the nucleus between the sunward and comet velocity directions. The comet mean X-ray luminosity is equal to 7.8×1015 erg s−1 for photon energy E>150 eV and aperture ρ=1.5×105 km where the comet X-ray brightness exceeds 20% of the peak value. Gas production rate was 1029 s−1 during the observations, and the efficiency of X-ray excitation was equal to 4×10−14 erg AU3/2. Day-to-day variations in X-rays reached a factor of 5. The strongest short-term variation was by a factor of 1.75 for 1600 s. This variation may be explained by a decline in the solar-wind flux by the same factor in ≈800 s. The comet and Earth were seeing different faces of the Sun, and time delay in the solar-wind events on the Earth and the comet was long, equal to 6 days. The best correlation between the comet X-ray luminosity and the solar-wind proton density is for the time delay of 5.5 days and may be explained by the higher velocity of heavy ions.Careful background subtraction made it possible to extract the comet spectrum from 150 to 1000 eV. No signal was detected at E>1000 eV, and a 3σ upper limit to any emission with E>1000 eV is 0.3% of the photon emission at 150-1000 eV. The best χ2-fit model to the spectrum consists of nine narrow emission features. The emission energies and intensities are in good agreement with a charge exchange spectrum calculated by us for the slow solar wind. Using this spectrum, we identify the observed emissions as (Ne7++Mg7++Mg8+) at 195 eV, (Mg8++Mg9++Si8+) at 250 eV, C5+ at 370 and 460 eV, O6+ at 560 eV, O7+ at 650, 780, and 840 eV, and Ne8+ at 940 eV. X-ray spectroscopy of comets may be used to diagnose the solar-wind composition and its interaction with comets.  相似文献   

8.
The neutral, singly, doubly and triply ionized mercury (Hg I–IV, respectively) spectral line shapes and line center positions have been investigated in the laboratory helium plasma at electron densities ranging between 9.3 × 1022 m?3 and 1.93 × 1023 m?3 and electron temperatures around 19,500 K, both interesting for astrophysics. The mercury (natural isotope composition) atoms were sputtered from the cylindrical amalgamated gold plates located in the homogenous part of the pulsed helium discharge operating at a pressure of 665 Pa in a flowing regime. The mercury spectral line profiles were recorded using the McPherson model 209 spectrograph and the Andor ICCD camera as the detection system. This research presents Stark broadening parameters, the width (W) and the shift (d), of one Hg I, 19 Hg II, 6 Hg III and 4 Hg IV lines, not investigated so far. Our experimental W values were compared with the data calculated applying various approaches. The shape and intensity of astrophysically important 398.4 nm Hg II spectral line was discussed taking into account the isotope shift, hyperfine structure and Penning effects. At the mentioned plasma parameters the Stark broadening is found to be a main line broadening mechanism of the lines (λ > 200 nm) in the Hg I–IV spectra.  相似文献   

9.
The astrophysical jet experiment at Caltech generates a T=2–5 eV, n=1021–1022 m−3 plasma jet using coplanar disk electrodes linked by a poloidal magnetic field. A 100 kA current generates a toroidal magnetic field; the toroidal field pressure inflates the poloidal flux surface, magnetically driving the jet. The jet travels at up to 50 km/s for ∼20–25 cm before colliding with a cloud of initially neutral gas. We study the interaction of the jet and the cloud in analogy to an astrophysical jet impacting a molecular cloud. Diagnostics include magnetic probe arrays, a 12-channel spectroscopic system and a fast camera with optical filters. When a hydrogen plasma jet collides with an argon target cloud, magnetic measurements show the magnetic flux compressing as the plasma jet deforms. As the plasma jet front slows and the plasma piles up, the density of the frozen-in magnetic flux increases.  相似文献   

10.
A.E. Potter  R.M. Killen 《Icarus》2008,194(1):1-12
Cross-sections of the sodium emission tail of Mercury were measured at various distances down the tail when Mercury was moving away from the Sun (true anomaly angles <180°), and again when Mercury was moving towards the Sun (true anomaly angles >180°). As predicted in early modeling studies, significant differences were expected between these two cases, as the result of Doppler shifts to higher solar intensity in the former case, and to lower solar intensity for the latter case. For observations with Mercury moving away from the Sun, the sodium tail was observed out to about 40,000 kilometers (16 Mercury radii, RM) downstream, expanding, on average, at a rate of 1.9±0.3 km/s. The source rates for sodium generation from Mercury into the tail were found to be in the range 2-5×1023 atoms/s, corresponding to between 1 and 10% of the estimated total sodium production rate on the planet. The limiting value of radiation acceleration required to produce an observable sodium tail was estimated to be 112±24 cm/s2. For observations where Mercury was moving towards the Sun, the emission intensity in the sodium tail decreased very rapidly with distance downstream, disappearing entirely beyond 12,000 (6 RM) kilometers for radiation accelerations of 128.7 and 135.4 cm/s2. For smaller radiation accelerations, the sodium tail was not detectable at all, yielding a limiting value for tail generation of about 122±2 cm/s2. Interpretation of the limiting radiation acceleration values suggests that the process that generates the sodium tail yields atoms with energies greater than 3 eV. Particle sputtering is the most reasonable source process.  相似文献   

11.
The detection of the Cosmic Thermal Neutrino Background (CTNB) would provide the “cleanest” evidence for the hot big bang model of the early Universe. I discuss some recent thoughts on the possibility of detecting the CTNB (especially if neutrinos have a small mass of ~ few eV) by looking for certain CTNB-induced features in the extremely high energy (E ≳ 1020 eV) cosmic neutrino spectrum that may become measurable in the future by some of the large-area extensive air-shower detectors being built for detecting extremely high energy cosmic rays. NAS/NRC Senior Research Associate on sabbatical leave from Indian Institute of Astrophysics, Bangalore 560 034, India.  相似文献   

12.
We investigate the properties of acoustic events (AEs), defined as spatially concentrated and short duration energy flux, in the quiet Sun, using observations of a 2D field of view (FOV) with high spatial and temporal resolution provided by the Solar Optical Telescope (SOT) onboard Hinode. Line profiles of Fe i 557.6 nm were recorded by the Narrow-band Filter Imager (NFI) on a 82″×82″ FOV during 75 min with a time step of 28.75 s and 0.08″ pixel size. Vertical velocities were computed at three atmospheric levels (80, 130, and 180 km) using the bisector technique, allowing the determination of energy flux to be made in the range 3 – 10 mHz using two complementary methods (Hilbert transform and Fourier power spectrum). Horizontal velocities were computed using local correlation tracking (LCT) of continuum intensities providing divergences. We found that the net energy flux is upward. In the range 3 – 10 mHz, a full FOV space and time averaged flux of 2700 W m−2 (lower layer 80 – 130 km) and 2000 W m−2 (upper layer 130 – 180 km) is concentrated in less than 1 % of the solar surface in the form of narrow (0.3″) AE. Their total duration (including rise and decay) is of the order of 103 s. Inside each AE, the mean flux is 1.6×105 W m−2 (lower layer) and 1.2×105 W m−2 (upper). Each event carries an average energy (flux integrated over space and time) of 2.5×1019 J (lower layer) to 1.9×1019 J (upper). More than 106 events could exist permanently on the Sun, with a birth and decay rate of 3500 s−1. Most events occur in intergranular lanes, downward velocity regions, and areas of converging motions.  相似文献   

13.
Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. From energetics considerations we anticipate on the order of 10–100 neutrino events per kilometer squared per year pointing back at the source(s) of both galactic and extragalactic cosmic rays. In this context, we discuss the results of the AMANDA and IceCube neutrino telescopes which will deliver a kilometer-square-year of data over the next 3 years.  相似文献   

14.
We conducted a transmission electron microscope study of the exsolution microstructures of Ca-rich pyroxenes in type I chondrules from the Paris CM and Renazzo CR carbonaceous chondrites in order to provide better constraints on the cooling history of type I chondrules. Our study shows a high variability of composition in the augite grains at a submicrometer scale, reflecting nonequilibrium crystallization. The microstructure is closely related to the local composition and is thus variable inside augite grains. For compositions inside the pyroxene miscibility gap, with a wollastonite (Wo) content typically below 40 mole%, the augite grains contain abundant exsolution lamellae on (001). For grain areas with composition close to Wo40, a modulated texture on (100) and (001) is the dominant microstructure, while areas with compositions higher than Wo40 do not show any exsolution microstructure development. To estimate the cooling rate, we used the spacing of the exsolution lamellae on (001), for which the growth is diffusion controlled and thus sensitive to the cooling rate. Despite the relatively homogeneous microstructures of augite grains with Wo < 35 mole%, our study of four chondrules suggests a range of cooling rates from ~10 to ~1000 °C h−1, within the temperature interval 1200–1350 °C. These cooling rates are comparable to those of type II chondrules, i.e., 1–1000 °C h−1. We conclude that the formation of type I and II chondrules in the proto-solar nebula was the result of a common mechanism.  相似文献   

15.
It is suggested that cosmic rays of energies as high as 1020 eV consist of dust grains of relativistic energies. Such dust grains as typical in interstellar space are accelerated first by a strong radiation pressure of luminous, compact galaxies and then by magnetic processes. A grain with the mass of about 10–16 g and the Lorentz factor of about 103 attains an energy as large as 1020 eV and produces a huge extensive air shower. Such grains survive against the collisions with cosmic microwave photons. This would remove the serious difficulty, if both the cosmic microwave radiation and the huge extensive air showers, which were regarded as due to protons of energies greater than 1019 eV, existed in spite of that the protons should strongly attenuate by the collisions with the radiation.  相似文献   

16.
Propagation of UHE protons through CMB radiation leaves the imprint on energy spectrum in the form of Greisen–Zatsepin–Kuzmin (GZK) cutoff, bump (pile-up protons) and dip. The dip is a feature in energy range 1×1018–4×1019 eV, caused by electron-positron pair production on CMB photons. Calculated for power-law generation spectrum with index γ g =2.7, the shape of the dip is confirmed with high accuracy by data of Akeno—AGASA, HiRes, Yakutsk and Fly’s Eye detectors. The predicted shape of the dip is robust: it is valid for the rectilinear and diffusive propagation, for different discretenesses in the source distribution, for local source overdensity and deficit etc. This property of the dip allows us to use it for energy calibration of the detectors. The energy shift λ for each detector is determined by minimum χ 2 in comparison of observed and calculated dip. After this energy calibration the absolute fluxes, measured by AGASA, HiRes and Yakutsk detectors remarkably coincide in energy region 1×1018–1×1020 eV. Below the characteristic energy E c ≈1×1018 eV the spectrum of the dip flattens for both diffusive and rectilinear propagation, and more steep galactic spectrum becomes dominant at E<E c . The energy of transition E tr<E c approximately coincides with the position of the second knee E 2kn , observed in the cosmic ray spectrum. The dip-induced transition from galactic to extragalactic cosmic rays at the second knee is compared with traditional model of transition at ankle, the feature observed at energy ∼1×1019 eV.   相似文献   

17.
The Chandra X-ray Observatory (CXO) observations of Comets McNaught-Hartley (MH) and LINEAR S4 (S4) have been processed in the same way to compare X-rays from those comets. The X-ray isophotes are crescent-like in S4 and more circular in MH because of the different phase angles (98° and 44°, respectively). The peak X-ray brightness is greater in S4 than that in MH by a factor of 1.5 and smaller by a factor of 1.7 after the correction for heliocentric distance. The X-ray luminosities of MH and S4 are equal to 8.6 and 1.4×1015 erg s−1 inside the apertures of ρ=1.5 and 0.5×104 km, respectively. (Brightness is 20% of the peak value at these ρ.) Efficiencies of X-ray excitation corrected to the solar wind flow are similar and equal to 4.3×10−14 erg AU3/2 in both comets. This confirms the solar wind excitation of X-rays in comets. Spectra of the comets were extracted with a special care of the background correction and using an energy-dependent spectral resolution code. The MH spectrum consists of ten emissions instead of nine emissions in the previously published spectrum. The new emission at 307 eV fills in a strong minimum in the previous spectrum and removes the major difference between that spectrum and the synthetic spectrum. This emission is assigned to the C+4 and Mg+9 lines. The positions of the other emissions and their identification are similar to those in the previous spectrum. The S4 spectrum consists of eight emissions, and four emissions are the same as in MH. The line identification is given. Ion ratios in the solar wind have been extracted from the spectra. O+8/O+7 is equal to 0.29±0.04 and 0.14±0.02 in MH and S4, and this difference correlates with the higher solar wind speed in S4. Ne+9/O+7 is (15±6)×10−3 and (19±7)×10−3, and these are the first data on Ne+9 in the solar wind. C+6/O+7 is 0.7±0.2 in both MH and S4. X-ray spectroscopy of comets may be used as a diagnostic tool to study the solar wind composition.  相似文献   

18.
《Planetary and Space Science》2007,55(11):1494-1501
In this work, we calculate the neutral Na production rates on the Moon and Mercury, as due to the impacts of meteoroids having an impact probability on the surface that can influence the daily observations of the exosphere: the meteoroids radius range considered for the Moon and Mercury are 10−8–0.15 and 10−8–0.10 m, respectively. We also estimate the mass of meteoroids that has impacted the surfaces of the Moon and Mercury in the last 3.8 Gy (after the end of the Late Heavy Bombardment).The results of our model are that (i) the Na production rates are ∼(3–4.9)×104 and ∼(1.8–2.3)×106 atoms cm−2 s−1, for Moon and Mercury, respectively, and (ii) in the last 3.8 Gy, the mass of meteoroids that has impacted the whole surface of the Moon and Mercury has been 8.86×1018 and 2.66×1019 g, respectively.  相似文献   

19.
By combining data from cosmic microwave background (CMB) experiments (including the recent WMAP third year results), large scale structure (LSS) and Lyman-α forest observations, we derive upper limits on the sum of neutrino masses of Σmν < 0.17 eV at 95% c.l. We then constrain the hypothesis of a fourth, sterile, massive neutrino. For the third massless +1 massive neutrino case we bound the mass of the sterile neutrino to ms < 0.26 eV at 95% c.l. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses which tightens the limit to ms < 0.23 eV and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are non-trivial. For a mass of >1 eV or <0.05 eV the cosmological energy density in sterile neutrinos is always constrained to be ων < 0.003 at 95% c.l. However, for a sterile neutrino mass of 0.25 eV, ων can be as large as 0.01.  相似文献   

20.
This work is based on a systematic analysis of images of comet 1P/Halley collected during its penultimate and ultimate approaches, i.e., in 1910 and 1986. This research has identified, characterized, classified, and compared tail structures of comet 1P/Halley, namely disconnection events (DEs), wavy structures, and solitons. The images of the comet during its 1910 passage, as illustrated in the Atlas of Comet Halley 1910 II (Donn et al. 1986), were compared with those of its approach in 1986 as illustrated in The International Halley Watch Atlas of Large‐Scale Phenomena (Brandt et al. 1992). Two onsets of DEs were discovered after the perihelion passage in 1910 with an average value of the corrected cometocentric velocity (Vc) of 57 ± 15 km s?1. Ten onsets of DEs were discovered after the perihelion passage in 1986 with an average Vc equal to 130 ± 37 km s?1. The mean value of the corrected wavelength λc of wavy structures in 1910 is equal to 1.7 ± 0.1 × 10km, as compared to 2.2 ± 0.2 × 106 km in 1986. The mean value of the amplitude A of the wave in 1910 is equal to 1.4 ± 0.1 × 105 km and 2.8 ± 0.5 × 105 km in 1986. The goals of this research were to report the results obtained from the analysis of the P/Halley's images from 1910 and 1986, to provide empirical data for comparison, and to form the input for future physical/theoretical work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号