首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precise measurements of submerged archaeological markers in the Siracusa coast (Southeastern Sicily, Italy) provide new data on relative sea-level change during the late Holocene. Four submerged archaeological sites have been studied and investigated through direct observations. Two of them are Greek archaic in age (2.5–2.7 ka) and are now 0.98–1.48 m below sea level; the other two developed during the Bronze age (3.2–3.8 ka) and are now 1.03–1.97 m below sea level. These archaeological data have been integrated with information derived from a submerged speleothem collected in a cave located along the Siracusa coast at − 20 m depth. The positions of the archaeological markers have been measured with respect to present sea level, corrected for tide and pressure at the time of surveys. These data were compared with predicted sea-level rise curves for the Holocene using a glacio-hydro-isostatic model. The comparison with the curve for the southeastern Sicily coast yields a tectonic component of relative sea-level change related to regional uplift. Uplift rates between 0.3 and 0.8 mm/yr have been estimated.  相似文献   

2.
Electron spin resonance (ESR) dating of coral has become an efficient geochronological tool in supporting morphostratigraphic studies carried out on Barbados during the last 10 years. The newly developed approach for DE determination (DEDmax plot procedure) improves the precision of ESR dating of Pleistocene coral, and therefore permits differentiation between the main marine isotope stages (MIS) 5, 7, 9 and 11 and also between sub-stages 5e, c and a. This study compares results of ESR and TIMS Uranium series dating (U/Th) of emergent Last Interglacial coral reef terraces from Barbados, and presents some implications for the timing and extent of sea-level changes during marine isotope stages (MIS) 5e, c and a. Both dating methods indicate a distinct formation of up to three coral reef terraces during MIS 5e, at approximately 132 ka (ESR) to 128 ka (U/Th), at c. 128 ka (ESR) and at c. 120 ka (U/Th) to 118 ka (ESR). It is also highly probable that three reef terraces were developed during MIS 5c between c. 103 ka (U/Th) and 105 ka (ESR). The formation of two separate coral reefs during MIS 5a is recognized for the first time on Barbados, with an age estimate for the older MIS 5a-2 reef of 85 ka (ESR) or 84 ka (U/Th), and an age estimate for the younger MIS 5a-1 reef terraces of 74 ka (ESR) or 77 ka (U/Th). Assuming a constant uplift rate of 0.276 m/ka at the south coast of Barbados, sea-level reached its maximum during MIS 5e-3 and MIS 5e-2 between 132 and 128 ka ago. After this, sea-level declined reaching a level of c. −11 m below present sea level approx. 118–120 ka ago (MIS 5e-1). During the substage 5c sea-level was generally lower than in substage 5e. It reached relative maxima at c. −13, −20 and −25 m during MIS 5c (approx. 105 ka) and formed three distinct coral reef terraces probably in relative short time intervals. For the first time, a double sea-level oscillation is recognized on Barbados during MIS 5a: an early MIS 5a-2 (c. 85 ka) with a sea-level places at approx. −21 m, and a late MIS 5a-1 sub-stage (c. 74 or 77 ka) with a sea-level at approx. –19 m below present sea level.  相似文献   

3.
Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2 ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26 m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2 ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism.  相似文献   

4.
Thirty-one new bulk-sediment U–Th dates are presented, together with an improved δ18O stratigraphy, for ODP Site 1008A on the slopes of the Bahamas Banks. These ages supplement and extend those from previous studies and provide constraints on the timing of sea-level highstands associated with marine isotope stages (MIS) 7 and 9. Ages are screened for reliability based on their initial U and Th isotope ratios, and on the aragonite fraction of the sediment. Twelve ‘reliable’ dates for MIS 7 suggest that its start is concordant with that predicted if climate is forced by northern-hemisphere summer insolation following the theory of Milankovitch. But U–Th and δ18O data indicate the presence of an additional highstand which post-dates the expected end of MIS 7 by up to 10 ka. This event is also seen in coral reconstructions of sea-level. It suggests that sea-level is not responding in any simple way to northern-hemisphere summer insolation, and that tuned chronologies which make such an assumption are in error by ≈10 ka at this time. U–Th dates for MIS 9 also suggest a potential mismatch between the actual timing of sea-level and that predicted by simple mid-latitude northern-hemisphere forcing. Four dates are earlier than that predicted for the start of MIS 9. Although the most extreme of these dates may not be reliable (based on the low-aragonite content of the sediment) the other three appear robust and suggest that full MIS 9 interglacial conditions were established at 343 ka. This is ≈8 ka prior to the date expected if this warm period were driven by northern-hemisphere summer insolation.  相似文献   

5.
A 61-m-long sediment core (HB-1) and 690 km of high-resolution seismic profiles from offshore of the Yellow River delta, Bohai Sea, were analyzed to document the stratigraphy and sea-level changes during the Late Pleistocene and Holocene. Accelerator mass spectrometry 14C dating and analyses of benthic foraminifera, ostracods, the mineral composition, and sedimentary characteristics were performed for core HB-1, and seven depositional units (DU 1–DU 7 in descending order) were identified. The seismic reflection data were interpreted in light of the sedimentological data of the core and correlated with other well-studied cores obtained previously in the Bohai Sea area. Seven seismic units (SU 1 to SU 7 in descending order) were distinguished and interpreted as follows: SU 7 corresponds to marine facies in Marine Isotopic Stage (MIS) 5; SU 6, to terrestrial facies in MIS 4; SU 5 and SU 4, to alternating terrestrial and marine facies (DU 7–DU 5) in MIS 3; SU 3, to terrestrial facies (DU 4) in MIS 2; SU 2, to Holocene marine facies (DU 3 and DU 2); and SU 1, to modern Yellow River delta sediments deposited since 1855 (DU 1).The sedimentary facies from DU 7 to DU 5 reflect sea-level fluctuations during MIS 3, and the boundary between DU 5 and DU 6, which coincides with that between SU 4 and SU 5, is a distinctive, laterally continuous, undulating erosion surface, with up to 20 m of relief. This surface reflects subaerial exposure between transgressions during MIS 3. Estimated sea levels during MIS 3 ranged from −35 ± 5 to −60 ± 5 m or lower, with short-term fluctuations of 20 m. Sedimentary environments in the Bohai Sea area were governed mainly by eustatic sea-level changes and the Bohai Strait topography, which controls the entry of sea water into the Bohai Sea area.The mineral composition of the sediment core suggests that the Yellow River did not discharge into the Bohai Sea, or at least did not influence the study area significantly, during parts of MIS 3 and MIS 2 to the early Holocene (11–8.5 cal kyr BP).  相似文献   

6.
We examined 14 subaerially deposited speleothems retrieved from submerged caves in the northeastern Yucatán Peninsula (Mexico). These speleothems grew during the Middle to Late Quaternary and were dated by 230Th-U techniques to provide upper depth limits for past sea levels. We report the first relative sea-level limits for Marine Isotope Stages (MIS) 11 and 6, and present new evidence for sea-level oscillations during MIS 5 and early MIS 1. For the latter periods, the origin of growth interruptions is evaluated by combining petrographic methods with trace element analyses. The MIS 5c sea-level highstand probably occurred between 103.94 ± 0.58 ka and 96.82 ± 0.42 ka and must have exceeded -10.8 m (relative to present-day local sea level). The minimum average rate of sea-level fall over a 9.4 ka-long period during the MIS 5e/5d transition is calculated from stalagmite and published coral data at 1.74 ± 0.37 m/ka. For the early Holocene, previous discrepancies with respect to a potential multimetre oscillation of local sea level were found to be challenging to reconcile with the existing speleothem data from the area.  相似文献   

7.
As a future warm-climate analog, much attention has been directed to studies of the Last Interglacial period or marine isotope substage (MIS) 5.5, which occurred ~120,000 years ago. Nevertheless, there are still uncertainties with respect to its duration, warmth and magnitude of sea-level rise. Here we present new data from tectonically stable peninsular Florida and the Florida Keys that provide estimates of the timing and magnitude of sea-level rise during the Last Interglacial period. The Last Interglacial high sea stand in south Florida is recorded by the Key Largo Limestone, a fossil reef complex, and the Miami Limestone, an oolitic marine sediment. Thirty-five new, high-precision, uranium-series ages of fossil corals from the Key Largo Limestone indicate that sea level was significantly above present for at least 9000 years during the Last Interglacial period, and possibly longer. Ooids from the Miami Limestone show open-system histories with respect to U-series dating, but show a clear linear trend toward an age of ~120 ka, correlating this unit with the Last Interglacial corals of the Key Largo Limestone. Older fossil reefs at three localities in the Florida Keys have ages of ~200 ka and probably correlate to MIS 7. These reefs imply sea level near or slightly above present during the penultimate interglacial period. Elevation measurements of both the Key Largo Limestone and the Miami Limestone indicate that local (relative) sea level was at least 6.6 m, and possibly as much as 8.3 m higher than present during the Last Interglacial period.  相似文献   

8.
We have synthesized new and existing relative sea-level (RSL) data to produce a quality-controlled, spatially comprehensive database from the North Carolina coastline. The RSL database consists of 54 sea-level index points that are quantitatively related to an appropriate tide level and assigned an error estimate, and a further 33 limiting dates that confine the maximum and minimum elevations of RSL. The temporal distribution of the index points is very uneven with only five index points older than 4000 cal a BP, but the form of the Holocene sea-level trend is constrained by both terrestrial and marine limiting dates. The data illustrate RSL rapidly rising during the early and mid Holocene from an observed elevation of ?35.7 ± 1.1 m MSL at 11062–10576 cal a BP to ?4.2 m ± 0.4 m MSL at 4240–3592 cal a BP.We restricted comparisons between observations and predictions from the ICE-5G(VM2) with rotational feedback Glacial Isostatic Adjustment (GIA) model to the Late Holocene RSL (last 4000 cal a BP) because of the wealth of sea-level data during this time interval. The ICE-5G(VM2) model predicts significant spatial variations in RSL across North Carolina, thus we subdivided the observations into two regions. The model forecasts an increase in the rate of sea-level rise in Region 1 (Albemarle, Currituck, Roanoke, Croatan, and northern Pamlico sounds) compared to Region 2 (southern Pamlico, Core and Bogue sounds, and farther south to Wilmington). The observations show Late Holocene sea-level rising at 1.14 ± 0.03 mm year?1 and 0.82 ± 0.02 mm year?1 in Regions 1 and 2, respectively. The ICE-5G(VM2) predictions capture the general temporal trend of the observations, although there is an apparent misfit for index points older than 2000 cal a BP. It is presently unknown whether these misfits are caused by possible tectonic uplift associated with the mid-Carolina Platform High or a flaw in the GIA model. A comparison of local tide gauge data with the Late Holocene RSL trends from Regions 1 and 2 support the spatial variation in RSL across North Carolina, and imply an additional increase of mean sea level of greater than 2 mm year?1 during the latter half of the 20th century; this is in general agreement with historical tide gauge and satellite altimetry data.  相似文献   

9.
Foraminifera and molluscs from the 90 m deep ENEA borehole (Versilian plain, central Italy) were studied for paleoenvironmental purposes. Palaeontological analyses, integrated with U/Th and radiocarbon data, helped to recognize late Quaternary sea-level changes and supplied results on tectonic mobility of the area. The study highlighted four sedimentary phases. The first phase consists of a shore environment attributed to MIS 7.1. A hiatus corresponding to MIS 6 is hypothesized at the top of this interval. Recognition of the paleo-shoreline of MIS 7.1 at − 72.8 m signifies a vertical displacement due to the extensional tectonics of the Apennine orogenesis. The second phase consists of a transgressive succession with evidence of warm temperatures, which was interpreted as part of the transgression leading to the MIS 5.5 highstand. The third phase includes sub-aerial and lacustrine deposits. Radiocarbon dates and palaeoecological reconstruction led us to attribute this interval to MIS 4, MIS 3 and MIS 2. The fourth phase begins with a lagoon environment attributable to Holocene sea-level rise and ends with marsh episodes, signifying the progradation of the alluvial plain. This reconstruction confirms the hypothesis of tectonic stability for the Versilian area during the Holocene.  相似文献   

10.
In Vietnam, the coastal sand barriers and dunes located in front of the steep slopes of the high rising Truong Son Mountains are sensitive to climate and environment change and give evidence for Holocene sea-level rise. The outer barrier sands were deposited shortly before or contemporaneous with the local sea-level high stand along the Van Phong Bay postdating the last glacial maximum (LGM). Optically stimulated luminescence (OSL) dating yielded deposition ages ranging from 8.3 ± 0.6 to 6.2 ± 0.3 ka for the stratigraphically oldest exposed barrier sands. Further periods of sand accumulation took place between 2.7 and 2.5 ka and between 0.7 and 0.5 ka. The youngest period of sand mobilisation was dated to 0.2 ± 0.01 ka and is most likely related to reworked sand from mining activities. At the Suoi Tien section in southern central Vietnam, the deposition of the inner barrier sands very likely correlate with an earlier sea-level high stand prior to the last glaciation. OSL age estimates range from 276 ± 17 to 139 ± 15 ka. OSL dating significantly improves our knowledge about the sedimentary dynamics along the coast of Vietnam during the Holocene.  相似文献   

11.
Late Quaternary glacier fluctuations in the Macha Khola valley (Gorkha Himal, Nepal) were reconstructed using relative and absolute dating techniques. Our results indicate that younger moraine complexes were left by Late Holocene (<1.7 cal. ka BP), mid-Holocene (ca 3 cal. ka BP), and Lateglacial (ca 13 cal. ka BP) ice advances. Older Late Quaternary glacier advances occurred during Marine Oxygen Isotope Stages (MIS) 2 and 3–4. No relics of Middle or Early Pleistocene glaciations could be found. During MIS 3–4, glaciers advanced down to an altitude of at least 2150 m a.s.l., corresponding to an ELA depression of approximately 1300 m. At about 3500 m a.s.l., the MIS 2 Macha Khola glacier reached almost the thickness of the former MIS 3–4 glacier and retreated some time before 17.9 cal. ka BP. The Lateglacial glacier advanced again several times to altitudes between 2450 and 3400 m a.s.l. The mid-Holocene glaciers extended much farther down-valley than the Late Holocene ones. Dendrochronological data of Abies spectabilis suggested several periods of unfavourable growth conditions especially at the beginning of the 19th (1820) and 20th (1905) centuries.  相似文献   

12.
Multiproxy analyses of sediment cores from Lago Taypi Chaka Kkota (LTCK) Cordillera Real, Bolivia, provide a record of drier conditions following late Pleistocene deglaciation culminating in pronounced aridity between 6.2 and 2.3 ka B.P. Today LTCK is a glacial-fed lake that is relatively insensitive to changes in P–E because it is largely buffered from dry season draw-down through the year-round supply of glacial meltwater. This was not the case during the middle to late Holocene when glaciers were absent from the watershed. Lake-water δ18O values inferred from δ18O analysis of sediment cellulose range from −12.9 to −5.3‰ and average −8.7‰ between 6.2 and 2.3 ka B.P. Modern lake-water δ18O from LTCK averages −14.8‰ which is compatible with the δ18Olw value of −14.3‰ for the surface sediment cellulose. Analyses of δ18O from modern surface waters in 23 lakes that span the range from glacial-fed to closed basin vary from −16.6 to −2.5‰. This approximates the magnitude of the down-core shift in δ18Olw values in LTCK during the middle to late Holocene from −12.9 to −5.3‰. Strong paleohydrologic change during the middle Holocene is also evident in diatom assemblages that consist of shallow-water, non-glacial periphytic taxa and bulk organic δ13C and δ15N that show increases likely resulting from degradation of lacustrine organic matter periodically exposed to subaerial conditions. Neoglaciation began after 2.3 ka B.P. as indicated by changes in the composition of the sediments, lower δ18O values, and a return to diatom assemblages characteristic of the glacial sediments that formed during the Late Pleistocene. Collectively, these data indicate that the past 2.3 ka B.P. have been the wettest interval during the Holocene. Millennial-scale shifts in the paleohydrologic record of LTCK during the early to middle Holocene conform to other regional paleoclimatic time-series, including Lake Titicaca and Nevado Sajama, and may be driven by insolation and resultant changes in atmospheric circulation and moisture supply. In contrast, an apparent 1200-year lag in the onset of wetter conditions at LTCK (2.3 ka B.P.) compared to Lake Titicaca (3.5 ka B.P.) provides evidence for variable sub-regional hydrologic response to climate change during the middle to late Holocene.  相似文献   

13.
Sedimentological, geomorphic, and ground penetrating radar (GPR) data are combined with optically stimulated luminescence data to define the Holocene evolution of a coastal system in peninsular Malaysia. The Setiu coastal region of northeast Malaysia comprises five geological and geomorphic units representing distinct evolutionary phases of this coastline. Estimated marine limiting point elevations indicate deposition of an early aggradational shoreline associated with a sea-level elevation of −0.1 to +1.7 m (MSLPMVGD datum) between ∼6.8 ka and 5.7 ka, in agreement with previous sea-level studies from the Malay–Thai peninsula. A hiatus occurs in the record between ∼5.7 ka and 3.0 ka, possibly due to a relative sea-level oscillation and shoreline erosion. Long-term relative sea-level fall and possible still-stands created strandplains that are interrupted by aggradational to transgressive paleo-barrier and estuary formation corresponding with brief episodes of RSL rise. Analyses of GPR facies and OSL ages suggest annual clinoform deposition, with geometries dictated by variations in ENSO. These data demonstrate the utility of high resolution studies of coastal facies as useful proxy indicators for paleoclimate studies at subdecadal to millennial time-scales.  相似文献   

14.
A geochronological framework based on amino acid racemisation (AAR) and constrained by previously reported optically stimulated luminescence (OSL) ages is presented for the evolution and paleosea-level record of the Pleistocene Bridgewater Formation of the Mount Gambier region, of southern Australia. Within the study area, the Bridgewater Formation is represented by late early Pleistocene [Marine Isotope Stage (MIS) 23 at 933 ka] to Holocene barrier shoreline successions deposited during sea-level highstands. Regional monotonic uplift (0.13 mm yr–1) and pervasive calcrete development during the Pleistocene have preserved the sequence of calcarenite (mixed quartz-skeletal carbonate sand) shoreline complexes from denudation. AAR analyses confirm that the barriers generally increase in age landwards and correlate with sea-level highstands associated with interglacials as defined by the marine oxygen isotope record. AAR analyses on the benthic foraminifer Elphidium crispum have proved more reliable than the whole-rock method in extending the age range of AAR dating of these relict shoreline successions. Paleosea-levels from the coastal plain are as follows: MIS 7, –9 ± 2 m; MIS 9, 4 ± 1 m; and a minimum sea-level of 2 ± 2 m is derived for MIS 11. Paleosea-level could not be determined for MIS 15, 19 or 23 as diagnostic sea-level indicators were not identified within these sedimentary successions. Dismal Range, dated at 933 ± 145 ka (MIS 23), represents a correlative feature to the East Naracoorte Range but is some 25 km seaward of the Kanawinka Fault compared with the same barrier at Naracoorte. Mingbool Range (788 ± 18 ka) is of similar age to the West Naracoorte Range (MIS 19) and formed as an arcuate shoreline complex that became attached to the higher relief of the area represented by the Mount Burr Volcanic Province. The higher topographical relief resulted from crustal doming of the Oligo-Miocene Gambier Limestone caused by the intrusion of magma associated with the volcanic province. The AAR age of 788 ± 118 ka for Mingbool Range indicates that the Mount Burr volcanics predate the deposition of this shoreline complex.  相似文献   

15.
Planktic foraminiferal census data, faunal sea surface temperatures (SSTs) and oxygen isotopic and lithic records from a site in the northeast Atlantic were analyzed to study the interglacial dynamics of Marine Isotope Stage (MIS) 11, a period thought to closely resemble the Holocene on the basis of orbital forcing. Interglacial conditions during MIS 11 persisted for approximately 26 ka. After the main deglacial meltwater processes ceased, a 10- to 12-ka-long transitional period marked by significant water mass circulation changes occurred before surface waters finally reached their thermal maximum. This SST peak occurred between 400 and 397 ka, inferred from the abundance of the most thermophilic foraminiferal species and was coincident with lowest sea level according to benthic isotope values. The ensuing stepwise SST decrease characterizes the overall climate deterioration preceding the increase in global ice volume by  3 ka. This cooling trend was followed by a more pronounced cold event that began at 388 ka, and that terminated in the recurrence of icebergs at the site around 382 ka. Because the water mass configuration of early MIS 11 evolved quite differently from that of the early Holocene, there is little evidence that MIS 11 can serve as an appropriate analogue for a future Holocene climate, despite the similarity in some orbital parameters.  相似文献   

16.
Modern deltas are understood to have initiated around 7.5–9 ka in response to the deceleration of sea-level rise. This episode of delta initiation is closely related to the last deglacial meltwater events and eustatic sea-level rises. The initial stage of the Mekong River delta, one of the world's largest deltas, is well recorded in Cambodian lowland sediments. This paper integrates analyses of sedimentary facies, diatom assemblages, and radiocarbon dates for three drill cores from the lowland to demonstrate Holocene sedimentary evolution in relation to sea-level changes. The cores are characterized by a tripartite succession: (1) aggrading flood plain to natural levee and tidal–fluvial channel during the postglacial sea-level rise (10–8.4 ka); (2) aggrading to prograding tidal flats and mangrove forests around and after the maximum flooding of the sea (8.4–6.3 ka); and (3) a prograding fluvial system on the delta plain (6.3 ka to the present). The maximum flooding of the sea occurred at 8.0 ± 0.1 ka, 2000 years before the mid-Holocene sea-level highstand, and tidal flats penetrated up to 20–50 km southeast of Phnom Penh after a period of abrupt ~5 m sea-level rise at 8.5–8.4 ka. The delta progradation then initiated as a result of the sea-level stillstand at around 8–7.5 ka. Another rapid sea-level rise at 7.5–7 ka allowed thick mangrove peat to be widely deposited in the Cambodian lowland, and the peat accumulation endured until 6.3 ka. Since 6.3 ka, a fluvial system has characterized the delta plain, and the fluvial sediment discharge has contributed to rapid delta progradation. The uppermost part of the sedimentary succession, composed of flood plain to natural-levee sediments, reveals a sudden increase in sediment accumulation over the past 600–1000 years. This increase might reflect an increase in the sediment yield due to human activities in the upper to middle reaches of the Mekong, as with other Asian rivers.  相似文献   

17.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

18.
Sedimentology, carbon isotope and sequence stratigraphic analysis of subsurface sediments from western part of Ganges–Brahmaputra (GB) delta plain shows that a Late Quaternary marine clay and fluvial channel-overbank sediments of MIS 5 and 3 highstands are traceable below the Holocene strata. During the Last Glacial Maximum (LGM) sea-level lowering of >100 m produced a regional unconformity (type 1), represented by palaeosols and incised valley. C4 vegetation expanded on exposed lowstand surface in an ambient dry glacial climate. At 9 ka transgression inundated the lowstand surface pushing the coastline and mangrove front 100 km inland. Simultaneous intensification of monsoon and very high sediment discharge (4–8 times than modern) caused a rapid aggradation of both floodplain and estuarine valley fill deposits between 8 and 7 ka. The Hoogli River remaining along its present drainage possibly acted as the main conduit for transgression and sediment discharge that was subsequently abandoned. C3 vegetation dominated the delta plain during this time. From 7 ka onward progradation of delta plain started and continued till recent. This period experienced a mixed C3–C4 vegetation with localized mangroves in the mid-Holocene to dominant return of C4 vegetation in the late Holocene period. The study indicates that while the initiation of western part of GB delta occurred at least 1 ka earlier than the global mean delta formation age, the progradation started at 7 ka, at least 2 ka earlier than thought before. The terrestrial vegetation change was modulated by changes in depositional environment, specific ecological niches and climate rather than pCO2.  相似文献   

19.
A detailed study of uplifted Middle–Late Pleistocene marine terraces on the eastern side of northern Calabria, southern Italy, provides insights into the temporal and spatial scale variability of vertical displacement rates over a time span of 400 ka. Calabria is located in the frontal orogen of southern Italy above the westerly-plunging Ionian slab, and a combination of lithospheric, crustal, and surface processes concurred to rapid Late Quaternary uplift. Eleven terrace orders and a raised Holocene beach were mapped up to 480 m a.s.l., and were correlated between the coastal slopes of Pollino and Sila mountain ranges across the Sibari Plain, facing the Ionian Sea side of northeastern Calabria. Precise corrections were applied to the measured shoreline angles in order to account for uncertainty in measurement, erosion of marine deposits, recent debris shedding, and bathymetric range of markers. Radiometric (ESR and 14C) dating of shells provides a crono-stratigraphic scheme, although many samples were found to be resedimented in younger terraces. Terrace T4, whose inner margin stands at elevations of 94–130 m, is assigned to MIS 5.5 (124 ka), based on new ESR dating and previous amino acid racemization estimations. The underlying terraces T3, T2 and T1 are attributed to MIS 5.3 (100 ka), 5.1 (80 ka) and 3 (60 ka), as inferred from their relative position supplemented by ESR and 14C age determinations. The age of higher terraces is poorly constrained, but conceivably is tracked back to MIS 11 (400 ka). The reconstructed depositional sequence of terraces attributed to MIS 5.5 and 7 reveals two regressive marine cycles separated by an alluvial fanglomerate, which, given the steady uplift regime, points to minor sub-orbital sea-level changes during interstadial highstands. Based on the terrace chronology, uplift in the last 400 ka occurred at an average rate of 1 mm/a, but was characterized by the alternation of more rapid (up to 3.5 mm/a) and slower (down to 0.5 mm/a) periods of displacement. Spatial variability in uplift rates is recorded by the deformation profile of terraces parallel to the coast, which document the growth of local fold structures.  相似文献   

20.
This paper reports the main sedimentary characteristics, soil micromorphology and optically-stimulated luminescence (OSL) ages, and details the pedosedimentary reconstruction, of the Hudson site situated in the northern Pampas of Buenos Aires province. It also provides the OSL chronology and a reinterpretation of previously reported micromorphological features for the nearby site of Gorina. Finally, the stratigraphic records of both sites are compared and the main environmental events discussed in a regional context.At Hudson, situated at a low altitude environment close to the coastal plain, the basal fine-grained paludal deposits were unconformably covered by coastal marine sediments with an OSL age of ca. 128 ka supporting its correlation with the high stand of sea level of marine isotope stage 5e. A paleosol developed on the marine deposits and the underlying paludal sediments. OSL ages suggest that soil development and its subsequent erosion occurred over some period between ca. 128 and 54 ka. Fine sediment accumulation in a paludal environment continued until prior to ca. 23 ka when the accumulation of the uppermost loess mantle started. It continued until the early Holocene when present soil development began. At Gorina, OSL ages suggest that the upper part of the pedocomplex formed at some stage between ca. 194 and 56 ka. Loess then accumulated followed by an erosional phase; loess deposition restarted by ca. 29 ka and continued until the beginning of the Holocene (ca. 9 ka) when the present land surface was established.The stratigraphic and paleoenvironmental differences exhibited by the Hudson and Gorina records result from their contrasting geomorphological settings. The OSL geochronology suggests that the last interglacial (MIS 5) at Hudson is marked by the accumulation of marine deposits (MIS 5e) and the subsequent development of a paleosol. The equivalent soil-forming interval at Gorina is represented by the upper part of the buried pedocomplex. Both at Gorina and Hudson, loess accumulation was dominant especially during MIS 2. Loess accumulation continued during MIS 1 until the early Holocene with apparently somewhat higher sedimentation rates in Hudson. Pedogenesis has been predominant during the rest of the Holocene, resulting in the formation of the surface soil profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号