首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global ocean circulation models do not usually take high-latitude processes into account in an adequate form due to a limited model domain or insufficient resolution. Without the processes in key areas contributing to the lower part of the global thermohaline circulation, the characteristics and flow of deep and bottom waters often remain unrealistic in these models. In this study, various sections of the Bremerhaven Regional Ice Ocean Simulation model results are combined with a global inverse model by using temperature, salinity, and velocity constraints for the Hamburg Large Scale Geostrophic ocean general circulation model. The differences between the global model with and without additional constraints from the regional model demonstrate that the Weddell Sea circulation exerts a significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. The influence of the Ross Sea is found to be less important in terms of global influences. However, regional changes in the Pacific sector of the Southern Ocean are found to be of Ross Sea origin. The additional constraints change the hydrographic conditions of the global model in the vicinity of the Antarctic Circumpolar Current in such a way that transport values, e.g., in Drake Passage no longer need to be prescribed to obtain observed transports. These changes not only improve the path and transport of the Antarctic Circumpolar Current but affect the meso- and large-scale circulation. With a higher (lower) mean Drake Passage transport, the mean Weddell Gyre transport is lower (higher). Furthermore, an increase (decrease) in the Antarctic Circumpolar Current leads to a decrease (increase) of the circum-Australian flow, i.e., a decrease (increase) of the Indonesian Throughflow.  相似文献   

2.
ABSTRACT

A system of stochastic differential equations is formulated describing the heat and salt content of a two-box ocean. Variability in the heat and salt content and in the thermohaline circulation between the boxes is driven by fast Gaussian atmospheric forcing and by ocean-intrinsic, eddy-driven variability. The eddy forcing of the slow dynamics takes the form of a colored, non-Gaussian noise. The qualitative effects of this non-Gaussianity are investigated by comparing to two approximate models: one that includes only the mean eddy effects (the “averaged model”), and one that includes an additional Gaussian white-noise approximation of the eddy effects (the “Gaussian model”). Both of these approximate models are derived using the methods of fast averaging and homogenisation. In the parameter regime where the dynamics has a single stable equilibrium the averaged model has too little variability. The Gaussian model has accurate second-order statistics, but incorrect skew and rare-event probabilities. In the parameter regime where the dynamics has two stable equilibria the eddy noise is much smaller than the atmospheric noise. The averaged, Gaussian, and non-Gaussian models all have similar stationary distributions, but the jump rates between equilibria are too small for the averaged and Gaussian models.  相似文献   

3.
A set of 61 normal modes with periods between 7.8 and 133.1 h has been calculated, using a 1° model of the global ocean, including the Arctic Ocean. The model explicitly considers frictional forces and ocean self-attraction and loading effects. The latter effects have generally been taken into account by parameterization, but for some modes the effects have also been considered fully. Due to friction, the computed eigenfrequencies are complex, exhibiting also the varying dissipative properties of the modes and their dependence on the distribution of potential and kinetic energies over the oceanic regions. In detail, gravity modes having periods less then 80 h and dominating the semi-diurnal and the diurnal tides, topographically controlled vorticity modes with periods longer than diurnal, and two planetary vorticity modes with periods of 96.8 and 119.4 h have been identified. These planetary vorticity modes have their energies distributed over Pacific, Atlantic, and Indian Oceans, while the other modes with periods longer than 80 h, as vorticity modes, have their energies concentrated on topographic structures of restricted extension. The modes are discussed with respect to their wave properties, e.g., concerning quasi-standing-wave resonances and to the appearance of Kelvin waves of different orders and trapped by different coastlines. In particular, the relevance of specific modes for the development of the fields of the most important semi-diurnal and diurnal tidal constituents is investigated.  相似文献   

4.
We investigated dam behaviours during high-flow events and their robustness against perturbations in meteorological conditions using the H08 global hydrological model. Differences in these behaviours were examined by comparing simulation runs, with and without dams and using multiple meteorological datasets, at a case-study site, Fort Peck Dam on the Missouri River, USA. The results demonstrated that dam-regulated river flow reduced temporal variability over large time periods and also dampened inter-forcing discrepancies in river discharge (smoothing effects). However, during wet years, differences in peak flow were accentuated downstream of the dam, resulting in divergence in simulated peak flow across the meteorological forcing (pulsing effect). The pulsing effect was detected at other major dams in global simulations. Depending upon the meteorological forcing, the dams act as a selective filter against high-flow events. Synergy between a generic dam scheme and differences in meteorological forcing data might introduce additional uncertainties in global hydrological simulations.  相似文献   

5.
In a previous paper (Grimshaw, 1987) the resonant forcing of coastally trapped waves was discussed in the barotropic case. In order to extend that theory to more realistic situations, we have considered the analogous theory whereby a longshore current interacts with a longshore topographic feature, or the forcing is due to longshore wind stress, for the case of the continuously stratified ocean. As in the previous theory, near resonance, when a long-wave phase speed is close to zero (in the reference frame of the forcing), the wave motion is governed by a forced evolution equation of the KdV-type. The behaviour of the wave field is characterized by three parameters representing the bandwidth for resonance, the forcing amplitude and the dissipation. We have evaluated these parameters in various practical cases, and found that the bandwidths, which scale with 1/2 when the forcing has dimensionless amplitude , can often be quite broad. Typically the second, third, or higher, modes may be resonant. Concurrently, the dissipation is also usually significant, leading to a steady state balance between the forcing, dissipation and nonlinear terms.  相似文献   

6.
Zhuang  Zhanpeng  Zheng  Quanan  Yuan  Yeli  Yang  Guangbing  Zhao  Xinhua 《Ocean Dynamics》2020,70(3):293-305
Ocean Dynamics - A novel vertical mixing scheme to describe the influence of the non-breaking surface waves in ocean general circulation models is proposed based on the second-order turbulence...  相似文献   

7.
Unified global and regional wave model on a multi-resolution grid   总被引:1,自引:1,他引:0  
Models for ocean surface wave forecasting in weather centres comprise global and regional systems in order to efficiently meet service demands. Regional models cannot run alone and have to use large area or global models to provide boundary wave spectra. The modern two-way nesting technique is to run the two models together with the regional model domain covered by both resolutions. An alternative method is to use a single multi-resolution grid that fits irregular coastlines and provides refined resolutions in selected regions. This paper presents a multi-resolution model based on a spherical multiple-cell (SMC) grid, which is designed to relax the CFL restriction of Eulerian advection time step at high latitudes by merging the conventional latitude-longitude grid cells. The implementation of the SMC grid in WAVEWATCH III is described, and a multi-resolution (6, 12 and 25 km) global SMC configuration is compared with a suite of nested grid ocean surface wave models, including 35-km global, 8-km European and 4-km UK regional models. Verification against buoy and platform wave observations indicates that the unified model is better than the 35-km global and very close in performance to the two regional models.  相似文献   

8.
This study uses a series of scenarios of wave (boundary) and wind (local) forcing to examine the sensitivity and to quantify the effects associated with nesting ProWAM and POLCOMS models for downscaling predictions of waves in the Irish Sea. The model results show that the response of the modelling system to the wave and wind forcing during the downscaling varies widely depending on wind conditions. Generally, the wave forcing has a greater effect on overall wave prediction in most of the Irish Sea, except for the eastern Irish Sea/Liverpool Bay. The study also suggests detailed look-up tables at specific locations to quantify the impacts of the different forcing scenarios over the Irish Sea, which can be readily extended to the location on any other sites.  相似文献   

9.
Global ocean circulation models usually lack an adequate consideration of high-latitude processes due to a limited model domain or insufficient resolution. Without the processes in key areas of the global thermohaline circulation, the characteristics and flow of deep and bottom waters cannot be modeled realistically. In this study, a high-resolution (~20 km) ocean model focused on the Weddell Sea sector of the Southern Ocean is combined with a low-resolution (2° × 2°) global ocean model applying the state estimation technique. Temperature, salinity, and velocity data on two Weddell Sea sections from the regional model are used as constraints for the large-scale model in addition to satellite altimetry and sea-surface temperatures. The differences between the model with additional constraints and without document that the Weddell Sea circulation exerts significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. Furthermore, a warming trend in the period 1993–2001 was found in the Weddell Sea and adjacent basins in agreement with float measurements in the upper Southern Ocean. Teleconnections to the North Atlantic are suggested but need further studies to demonstrate their statistical significance.  相似文献   

10.
Modelling the global ocean tides: modern insights from FES2004   总被引:30,自引:2,他引:30  
During the 1990s, a large number of new tidal atlases were developed, primarily to provide accurate tidal corrections for satellite altimetry applications. During this decade, the French tidal group (FTG), led by C. Le Provost, produced a series of finite element solutions (FES) tidal atlases, among which FES2004 is the latest release, computed from the tidal hydrodynamic equations and data assimilation. The aim of this paper is to review the state of the art of tidal modelling and the progress achieved during this past decade. The first sections summarise the general FTG approach to modelling the global tides. In the following sections, we introduce the FES2004 tidal atlas and validate the model against in situ and satellite data. We demonstrate the higher accuracy of the FES2004 release compared to earlier FES tidal atlases, and we recommend its use in tidal applications. The final section focuses on the new dissipation term added to the equations, which aims to account for the conversion of barotropic energy into internal tidal energy. There is a huge improvement in the hydrodynamic tidal solution and energy budget obtained when this term is taken into account.  相似文献   

11.
Ocean Dynamics - This paper evaluates the performance of the spectral wave model WAVEWATCH III for the South Atlantic Ocean forced by wind inputs from the most recent reanalyses, NCEP/CFSR and...  相似文献   

12.
This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.  相似文献   

13.
The study on the South China Sea (SCS) circulation has a history of more than 40 years. Nevertheless, the SCS circulation is not fully understood compared with the Bohai Sea, Yellow Sea and East China Sea (ECS). Many numerical studies on the SCS circulati…  相似文献   

14.
15.
The impacts of the spatiotemporal variations of sea ice salinity on sea ice and ocean characteristics have not been studied in detail, as the existing climate models neglect or misrepresent this process. To address this issue, this paper formulated a parameterization with more realistic sea ice salinity budget, and examined the sensitivity of sea ice and ocean simulations to the ice salinity variations and associated salt flux into the ocean using a coupled global climate model. Results show that the inclus...  相似文献   

16.
Series of sensitivity tests were performed with a z-coordinate, global eddy-permitting (1/4°) ocean/sea-ice model (the ORCA-R025 model configuration developed for the DRAKKAR project) to carefully evaluate the impact of recent state-of-the-art numerical schemes on model solutions. The combination of an energy–enstrophy conserving (EEN) scheme for momentum advection with a partial step (PS) representation of the bottom topography yields significant improvements in the mean circulation. Well known biases in the representation of western boundary currents, such as in the Atlantic the detachment of the Gulf Stream, the path of the North Atlantic Current, the location of the Confluence, and the strength of the Zapiola Eddy in the south Atlantic, are partly corrected. Similar improvements are found in the Pacific, Indian, and Southern Oceans, and characteristics of the mean flow are generally much closer to observations. Comparisons with other state-of-the-art models show that the ORCA-R025 configuration generally performs better at similar resolution. In addition, the model solution is often comparable to solutions obtained at 1/6 or 1/10° resolution in some aspects concerning mean flow patterns and distribution of eddy kinetic energy. Although the reasons for these improvements are not analyzed in detail in this paper, evidence is shown that the combination of EEN with PS reduces numerical noise near the bottom, which is likely to affect current–topography interactions in a systematic way. We conclude that significant corrections of the mean biases presently seen in general circulation model solutions at eddy-permitting resolution can still be expected from the development of numerical methods, which represent an alternative to increasing resolution.  相似文献   

17.
18.
Three specimens of killer whales (Orcinus orca), an open ocean carnivore, were analysed for extremely toxic polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) to understand their long-range distribution patterns. Several PCDF congeners, including the highly toxic 2,3,7,8-tetra- and 2,3,4,7,8-penta-CDFs were identified in the blubber of those specimens. The PCDF isomeric pattern in killer whale is more complex than the reported patterns in humans and birds, indicating the weaker metabolic potency of killer whales for these toxic compounds. High levels of PCBs (about 400 mg kg−1) have also been detected in those specimens. The 2,3,7,8-substituted PCDF congeners identified in commercial PCBs were also found in killer whale, indicating PCBs as the possible source. Isomer-specific and trace level determinations of PCDD in killer whale, revealed no detectable quantities. The detection of comparatively high levels ( > 300 ng kg−1) of PCDFs and undetection of PCDDs in open ocean killer whales suggest that PCDFs are more ubiquitous than PCDDs.  相似文献   

19.
The ensemble Kalman filter (EnKF) performs well because that the covariance of background error is varying along time. It provides a dynamic estimate of background error and represents the reasonable statistic characters of background error. However, high computational cost due to model ensemble in EnKF is employed. In this study, two methods referred as static and dynamic sampling methods are proposed to obtain a good performance and reduce the computation cost. Ensemble adjustment Kalman filter (EAKF) method is used in a global surface wave model to examine the performance of EnKF. The 24-h interval difference of simulated significant wave height (SWH) within 1 year is used to compose the static samples for ensemble errors, and these errors are used to construct the ensemble states at each time the observations are available. And then, the same method of updating the model states in the EAKF is applied for the ensemble states constructed by a static sampling method. The dynamic sampling method employs a similar method to construct the ensemble states, but the period of the simulated SWH is changing with time. Here, 7 days before and after the observation time is used as this period. To examine the performance of three schemes, EAKF, static, or dynamic sampling method, observations from satellite Jason-2 in 2014 are assimilated into a global wave model, and observations from satellite Saral are used for validation. The results indicate that the EAKF performs best, while the static sampling method is relatively worse. The dynamic sampling method improves an assimilation effect dramatically compared to the static sampling method, and its overall performance is closed to the EAKF. In low latitudes, the dynamic sampling method has a slight advantage over the EAKF. In the dynamic or static sampling methods, only one wave model is required to run and their computational cost is reduced sharply. According to the performance of these three methods, the dynamic sampling method can treated as an effective alternative of EnKF, which could reduce the computational cost and provide a good performance of data assimilation.  相似文献   

20.
Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolution (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a three-dimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号