首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The horizontal and vertical sand mass fluxes in aeolian sand transport are investigated in a wind tunnel by PTV (particle tracking velocimetry). According to the particle velocity and volume fraction of each individual particle from PTV images, the total horizontal sand mass flux, the horizontal mass fluxes of ascending and descending sand particles, and upward and downward vertical sand fluxes are analyzed. The results show that the horizontal mass fluxes of ascending and descending sand particles generally decrease with the increase of height and can be described by an exponential function above about 0.03 m height. At the same friction velocity, the decay heights of the total horizontal sand mass flux and the horizontal mass fluxes of ascending and descending sand particles are very similar. The proportion of horizontal mass flux of ascending sand particles is generally about 0.3–0.42, this means the horizontal mass flux of descending sand particles makes an important contribution to the total horizontal sand mass flux. Both the upward and downward vertical sand mass fluxes generally decrease with height and they are approximately equal at the same height and friction velocity. The relation between upward (or downward) vertical sand mass flux and horizontal sand mass flux can be described by a power function. The present study is used to help understand the transport of ascending and descending sand particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Motivated by field studies of the Ems estuary which show longitudinal gradients in bottom sediment concentration as high as O(0.01 kg/m4), we develop an analytical model for estuarine residual circulation based on currents from salinity gradients, turbidity gradients, and freshwater discharge. Salinity is assumed to be vertically well mixed, while the vertical concentration profile is assumed to result from a balance between a constant settling velocity and turbulent diffusive flux. Width and depth of the model estuary are held constant. Model results show that turbidity gradients enhance tidally averaged circulation upstream of the estuarine turbidity maximum (ETM), but significantly reduce residual circulation downstream, where salinity and turbidity gradients oppose each other. We apply the condition of morphodynamic equilibrium (vanishing sediment transport) and develop an analytical solution for the position of the turbidity maximum and the distribution of suspended sediment concentration (SSC) along a longitudinal axis. A sensitivity study shows great variability in the longitudinal distribution of suspended sediment with the applied salinity gradient and six model parameters: settling velocity, vertical mixing, horizontal dispersion, total sediment supply, fresh water flow, and water depth. Increasing depth and settling velocity move the ETM upstream, while increasing freshwater discharge and vertical mixing move the ETM downstream. Moreover, the longitudinal distribution of SSC is inherently asymmetric around the ETM, and depends on spatial variations in the residual current structure and the vertical profile of SSC.  相似文献   

3.
The authors’ parameterization of the dynamic and thermal action of stationary orographic waves generated by the Earth’s surface relief is included into the model of general circulation of the middle and upper atmosphere. Numerical simulation of the general circulation in the troposphere and stratosphere was performed and the influence of stationary orographic waves propagating upward from the Earth’s surface on the meridional and vertical velocity was studied. It is shown that the allowance for the dynamic and thermal action of these waves in the numerical model leads to changes by up to 20–30% in the meridional circulation and ozone fluxes associated with it at heights of the ozone layer maximum.  相似文献   

4.
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s~(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s~(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity.  相似文献   

5.
Vertical and temporal variations of three-dimensional wind velocity associated with an upper-tropospheric cold vortex-tropopause funnel system were observed by an MST radar in Japan (the MU radar). Marked changes of vertical velocity and horizontal wind direction were found between the inside and outside of the cold vortex. The vertical velocity activity outside the vortex was asymmetric; it was most active in a sector before the vortex. Unsaturated internal gravity waves in their generation stage contribute predominantly to the vertical velocity activity, suggesting that tropospheric occluded cyclones may be a possible source of middle-atmospheric gravity waves through the geostrophic adjustment process.  相似文献   

6.
The study of wave propagation in media with elliptical velocity anisotropy shows that seismic energy is focused according to the horizontal component of the velocity field while the vertical component controls the time-to-depth relation. This implies that the vertical component cannot be determined from surface seismic velocity analysis but must be obtained using borehole or regional geological information. Both components of the velocity field are required to produce a correctly focused depth image. A paraxial wave equation is developed for elliptical anisotropic wave propagation which can be used for modelling or migration. This equation is then transformed by a change of variable to a second paraxial equation which only depends on one effective velocity field. A complete anisotropic depth migration using this transformed equation involves an imaging step followed by a depth stretching operation. This allows an approximate separation or splitting of the focusing and depth conversion steps of depth migration allowing a different velocity model to be used for each step. This split anisotropic depth migration produces a more accurate result than that obtained by a time migration using the horizontal velocity field followed by an image-ray depth conversion using the vertical velocity field. The results are also more accurate than isotropic depth migration and yield accurate imaging in depth as long as the lateral variations in the anisotropy are slow.  相似文献   

7.
The spatio-temporal variability of submesoscale eddies off southern San Diego is investigated with two-year observations of subinertial surface currents [O(1) m depth] derived from shore-based high-frequency radars. The kinematic and dynamic quantities — velocity potential, stream function, divergence, vorticity, and deformation rates — are directly estimated from radial velocity maps using optimal interpolation. For eddy detection, the winding-angle approach based on flow geometry is applied to the calculated stream function. A cluster of nearly enclosed streamlines with persistent vorticity in time is identified as an eddy. About 700 eddies were detected for each rotation (clockwise and counter-clockwise). The two rotations show similar statistics with diameters in the range of 5–25 km and Rossby number of 0.2–2. They persist for 1–7 days with weak seasonality and migrate with a translation speed of 4–15 cm s−1 advected by background currents. The horizontal structure of eddies exhibits nearly symmetric tangential velocity with a maximum at the defined radius of the eddy, non-zero radial velocity due to background flows, and Gaussian vorticity with the highest value at the center. In contrast divergence has no consistent spatial shape. Two episodic events are presented with other in situ data (subsurface current and temperature profiles, and local winds) as an example of frontal-scale secondary circulation associated with drifting submesoscale eddies.  相似文献   

8.
云南地区地处青藏高原东南缘,一直是地球科学研究的热点地区.目前,一些热点问题,如云南地区是否存在中下地壳低速流及其空间分布,仍有一定的争议.通过建立云南地区精细的地壳上地幔速度与各向异性结构,可为深入认识上述问题提供重要信息.本文利用天然地震波形记录,采用双台法提取了12~60 s周期的Rayleigh和Love波相速度频散,并进一步反演获得了云南地区10~100 km的三维地壳上地幔SV和SH波速度及径向各向异性结构.结果表明:S波速度与径向各向异性结构在横向和垂向均存在显著变化.在20~30 km深度,存在两个低速条带,且条带内呈现出正径向各向异性(VSH>VSV)特征,暗示了中下地壳低速物质的水平向运动.在80~100 km深度,云南西南和东南部显示为低速异常和正径向各向异性特征,暗示了软流圈物质的水平流动.在云南北部的丽江、攀枝花和昭通地区,岩石圈地幔中则存在明显的负径向各向异性(VSH<VSV),可能反映了地幔物质的上涌痕迹.历史强震多发生在地壳低速区域或高低速过渡带,且地震附近的径向各向异性为负或者较弱.一些地震震源下方存在低速层,地壳低速层可能会促进强震发生.  相似文献   

9.
The dispersion and deposition of particulate organic matter from a fish cage located in an idealized curved channel with a 90° bend are studied for different horizontal grid resolutions. The model system consists of a three-dimensional, random-walk particle tracking model coupled to a terrain-following ocean model. The particle tracking model is a Lagrangian particle tracking simulator which uses the local flow field, simulated by the ocean model, for advection of the particles and random walk to simulate the turbulent diffusion. The sinking of particles is modeled by imposing an individual particle settling velocity. As the homogeneous water flows through the bend in the channel, the results show that a cross-channel secondary circulation is developed. The motion of this flow is similar to a helical motion where the water in the upper layers moves towards the outer bank and towards the inner bank in the lower layers. The intensity of the secondary circulation will depend on the viscosity scheme and increases as the horizontal grid resolution decreases which significantly affects the distribution of the particles on the seabed. The presence of the secondary circulation leads to that most of the particles that settle, settle close to the inner bank of the channel.  相似文献   

10.
The transversely isotropic (TI) model with a tilted axis of symmetry may be typical, for instance, for sediments near the flanks of salt domes. This work is devoted to an analysis of reflection moveout from horizontal and dipping reflectors in the symmetry plane of TI media that contains the symmetry axis. While for vertical and horizontal transverse isotropy zero-offset reflections exist for the full range of dips up to 90°, this is no longer the case for intermediate axis orientations. For typical homogeneous models with a symmetry axis tilted towards the reflector, wavefront distortions make it impossible to generate specular zero-offset reflected rays from steep interfaces. The ‘missing’ dipping planes can be imaged only in vertically inhomogeneous media by using turning waves. These unusual phenomena may have serious implications in salt imaging. In non-elliptical TI media, the tilt of the symmetry axis may have a drastic influence on normal-moveout (NMO) velocity from horizontal reflectors, as well as on the dependence of NMO velocity on the ray parameter p (the ‘dip-moveout (DMO) signature’). The DMO signature retains the same character as for vertical transverse isotropy only for near-vertical and near-horizontal orientation of the symmetry axis. The behaviour of NMO velocity rapidly changes if the symmetry axis is tilted away from the vertical, with a tilt of ±20° being almost sufficient to eliminate the influence of the anisotropy on the DMO signature. For larger tilt angles and typical positive values of the difference between the anisotropic parameters ε and δ, the NMO velocity increases with p more slowly than in homogeneous isotropic media; a dependence usually caused by a vertical velocity gradient. Dip-moveout processing for a wide range of tilt angles requires application of anisotropic DMO algorithms. The strong influence of the tilt angle on P-wave moveout can be used to constrain the tilt using P-wave NMO velocity in the plane that includes the symmetry axis. However, if the azimuth of the axis is unknown, the inversion for the axis orientation cannot be performed without a 3D analysis of reflection traveltimes on lines with different azimuthal directions.  相似文献   

11.
Surface current mapping from HF/VHF coastal radars traditionally requires at least two distant sites. Vector velocities are estimated by combining the radial velocity components measured by the radars. In many circumstances (e.g., failures, interferences, logistics constraints), such a combination is not possible by lack of data from one station. Two methods are evaluated to get information on surface circulation from a single site radar: the Vectorial Reconstruction Method (VRM) for current vector mapping and the Vortex Identification Method (VIM) for detecting eddy-like structures. The VRM assumes a non-divergent horizontal surface current, and the VIM analyzes radial velocities and their radial and orthoradial gradients. These two methods are tested on modeled and measured data sets in the Northwestern Mediterranean Sea where both high-resolution ocean circulation model and radar campaigns are available. The VRM performance is strongly limited by the divergence-free hypothesis which was not satisfied in our real data. The VIM succeeded in detection of vortex in the Gulf of Lions and from an operating single site radar located on the Provence coasts in summer.  相似文献   

12.
宁夏地区地壳新速度模型在地震定位中的应用   总被引:3,自引:0,他引:3  
本文利用有限差分法正演和遗传算法反演得到宁夏地区地壳新速度模型, 再将该模型配置到MSDP软件的HYP2000定位方法中。 选用宁夏地区2008年以来地震和爆破资料, 从震中位置、 深度及残差3个方面对新模型和原模型进行定位对比分析。 结果表明: 定位网内地震时, 新模型得到的震中比原模型更接近断层, 震群的深度也与断层分布更为吻合; 运用新模型定位的爆破深度平均为2.8 km, 绝大多数不超过5 km, 落实爆破位置与定位结果差平均为水平2.4 km、 垂直2.6 km, 更符合大多为地表爆破的实际情况。 进一步分析新模型定位的地震深度与宁夏地区地壳速度结构, 发现地震发生在高速-低速转换地区。  相似文献   

13.
Rapid urbanization in the Jakarta area has become a severe subsurface environmental issue as it entails groundwater level decline and land subsidence caused by excessive groundwater pumping. In this study, apparent groundwater age rejuvenation in the deep aquifer under DKI Jakarta was found by comparing 14C activities between 1985 and 2008. We discussed the use of a numerical groundwater flow model to evaluate the rejuvenation process in this urbanized area. When considering the deep aquifer in the DKI Jakarta area, we can assume six direction fluxes toward the aquifer: two vertical fluxes (downward and upward flux) and four horizontal fluxes (northern, southern, western, and eastern flux). Results of model calculations show that the greatest groundwater flux among six flux directions became ‘vertical downward flux’, which means that shallower groundwater intrudes into the deep one because of excessive groundwater pumping from the mid‐1980s. This flux grows about 50% during the 2000s. This result is consistent with the detection of CFC‐12 and SF6, which functions as an indicator of young groundwater even in the deep groundwater. The rejuvenation ratio ‘R’ was determined using 14C activity in the groundwater; R increases with the CFC‐12 concentration and both show good correlation. Furthermore, we estimated the ‘vertical downward flux’ at each well's screen depth using model estimation. Results show that this flux is greater in the urban groundwater depression area and especially at shallower parts of the deep aquifer, and that it affects the magnitude of the shallow groundwater intrusion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This is the first of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory (also known as Dupuit or Boussinesq theory). Here, we examine the effect of lateral flow on the downward fluxes of water and solutes through perched groundwater at steady state. We derive analytical expressions describing the decline in the downward flux rate with depth. Using these, we obtain analytical expressions for water age in a number of cases. The results show that when the permeability field is homogeneous, the spatial structure of water age depends qualitatively on a single dimensionless number, Hi. This number captures the relative contributions to the lateral hydraulic potential gradient of the relief of the lower‐most impermeable boundary (which may be below the weathering front within permeable or incipiently weathered bedrock) and the water table. A “scaled lateral symmetry” exists when Hi is low: age varies primarily in the vertical dimension, and variations in the horizontal dimension x almost disappear when the vertical dimension z is expressed as a fraction z/H(x) of the laterally flowing system thickness H(x). Taking advantage of this symmetry, we show how the lateral dimension of the advection–diffusion‐reaction equation can be collapsed, yielding a 1‐D vertical equation in which the advective flux downward declines with depth. The equation holds even when the permeability field is not homogeneous, as long as the variations in permeability have the same scaled lateral symmetry structure. This new 1‐D approximation is used in the accompanying paper to extend chemical weathering models derived for 1‐D columns to hillslope domains.  相似文献   

15.
In a multi‐parameter waveform inversion, the choice of the parameterisation influences the results and their interpretations because leakages and the tradeoff between parameters can cause artefacts. We review the parameterisation selection when the inversion focuses on the recovery of the intermediate‐to‐long wavenumbers of the compressional velocities from the compressional body (P) waves. Assuming a transverse isotropic medium with a vertical axis of symmetry and weak anisotropy, analytical formulas for the radiation patterns are developed to quantify the tradeoff between the shear velocity and the anisotropic parameters and the effects of setting to zero the shear velocity in the acoustic approach. Because, in an anisotropic medium, the radiation patterns depend on the angle of the incident wave with respect to the vertical axis, two particular patterns are discussed: a transmission pattern when the ingoing and outgoing slowness vectors are parallel and a reflection pattern when the ingoing and outgoing slowness vectors satisfy Snell's law. When the inversion aims at recovering the long‐to‐intermediate wavenumbers of the compressional velocities from the P‐waves, we propose to base the parameterisation choice on the transmission patterns. Since the P‐wave events in surface seismic data do not constrain the background (smooth) vertical velocity due to the velocity/depth ambiguity, the preferred parameterisation contains a parameter that has a transmission pattern concentrated along the vertical axis. This parameter can be fixed during the inversion which reduces the size of the model space. The review of several parameterisations shows that the vertical velocity, the Thomsen parameter δ, or the Thomsen parameter ε have a transmission pattern along the vertical axis depending on the parameterisation choice. The review of the reflection patterns of those selected parameterisations should be done in the elastic context. Indeed, when reflection data are also inverted, there are potential leakages of the shear parameter at intermediate angles when we carry out acoustic inversion.  相似文献   

16.
While velocity contrasts are responsible for most of the events recorded in our data, the long wavelength behavior of the velocity model is responsible for the geometrical shape of these events. For isotropic acoustic materials, the wave dependency on the long (wave propagation) and short (scattering) wavelength velocity components is stationary with the propagation angle. On the other hand, in representing a transversely isotropic with a vertical symmetry axis medium with the normal moveout velocity, the anellepticity parameter η, the vertical scaling parameter δ, and the sensitivity of waves vary with the polar angle for both the long and short wavelength features of the anisotropic dimensionless medium parameters (δ and η). For horizontal reflectors at reasonable depths, the long wavelength features of the η model is reasonably constrained by the long offsets, whereas the short wavelength features produce very week reflections at even reasonable offsets. Thus, for surface acquired seismic data, we could mainly invert for smooth η responsible for the geometrical shape of reflections. On the other hand, while the δ long wavelength components mildly affects the recorded data, its short wavelength variations can produce reflections at even zero offset, with a behavior pattern synonymous to density. The lack of the long wavelength δ information will mildly effect focusing but will cause misplacement of events in depth. With low enough frequencies (very low), we may be able to recover the long wavelength δ using full waveform inversion. However, unlike velocity, the frequencies needed for that should be ultra‐low to produce long‐wavelength scattering‐based model information as δ perturbations do not exert scattering at large offsets. For a combination given by the horizontal velocity, η, and ε, the diving wave influence of η is absorbed by the horizontal velocity, severely limiting the η influence on the data and full waveform inversion. As a result, with a good smooth η estimation, for example, from tomography, we can focus the full waveform inversion to invert for only the horizontal velocity and maybe ε as a parameter to fit the amplitude. This is possibly the most practical parametrization for inversion of surface seismic data in transversely isotropic with vertical symmetry axis media.  相似文献   

17.
张雪  高强 《地震研究》1990,13(1):29-39
本文对滇西北下关地区的地震地质条件和水压致裂应力测量进行了对比分析。认为二者是矛盾的,其原因可能是最小水平主应力的测值偏大。本文依据测量数据和弹性力学理论对测量结果进行了分析,发现该区浅部,垂向主应力是最小主应力,但其随深度增大而增加的速度大于最小水平主应力,400米以下深度,垂向主应力转变为中间主应力。最小水平主应力的实际值可以写为0.85+0.0227H(Mpα),这里H是深度,单位是米。该分析表明,目前水压致裂测得的最小水平主应力的误差要比预料的大。  相似文献   

18.
接收函数反演地壳S波速度结构的有效约束方法   总被引:3,自引:3,他引:0       下载免费PDF全文
本文通过对径向接收函数和垂直向接收函数进行低通滤波,获取了S波视速度随低通滤波参数的变化曲线,然后利用经验关系将它转换成了台站下方的S波速度结构,并以此作为接收函数反演的初始模型.理论数值实验表明:由于初始模型的S波速度值提供了有效的约束,即使Moho面深度并不准确,但反演迭代过程还是快速地向真解逼近.另外,通过给观测波形加入10%的噪声,在保持S波速度不变的情况下,分别对波速比进行5%的正负扰动(即泊松比分别扰动为0.23和0.27),反演结果仍然快速向真解收敛.对保山台记录的远震接收函数反演结果表明:用本文方法反演所得结果与测深结果较为一致.这充分说明只要S波速度值(而非泊松比)能够提供有效的约束,接收函数的反演过程对P波速度的选取并不敏感.  相似文献   

19.
Summary Data are presented concerning Reynolds Stresses in wind waves obtained from time series records of horizontal and vertical velocity components of motion beneath the ocean free surface. The stresses, of the order of 25 dyne cm–2, are generally positive indicating horizontal momentum transfer downward through the dynamic wind wave regime. The magnitude of the observed stress increases with wind speed and sea state. The co-spectra show strong negative peaks which appear at the ambient wave frequencies and indicate that the correlations or eddy stresses of the gross wave motions are responsible for the momentum flux. This is a corroboration of results reported previously by the writer in this journal.  相似文献   

20.
The flow patterns in confluence channel and the simulation of confluence flow are more complex than that in straight channel. Additional terms in the momentum equations, i.e. dissipation terms, denoting the impact of turbulence, and dispersion terms, denoting the vertical non‐uniformity of velocity, show great impacts on the accuracy of numerical simulations. The dissipation terms, i.e. the product of eddy viscosity coefficient and velocity gradient, are much larger than those of the flow in straight channel. In this study, the zero equation model and the depth‐averaged k‐ε model are used to analyse the impact of eddy viscosity. Meanwhile, the dispersion terms in the momentum equation, depending on the vertical non‐uniformity of velocity, are usually neglected in routine simulation. With the use of detailed experimental data for verification, this study presents the distribution of parameters of vertical non‐uniformity and the intimated connection between non‐uniformity parameters and accuracy of numerical simulations of confluence flow with depth‐averaged models. The results present that simulation accuracy of confluence flow is very sensitive to the turbulence modes, which cannot be handled by normal, simple turbulence model. On the contrary, the impact of dispersion terms is both flow‐condition‐dependent and place‐dependent, and such impact is negligible when secondary circulation is weak. The results indicate the key elements in modelling confluence flow and are helpful for selecting suitable numerical model and solving engineering problems encountered in confluence channel. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号