首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subduction zones with deep seismicity are believed to be associated with the descending branches of convective flows in the mantle and are subordinated to them. Therefore, the position of subduction zones can be considered as relatively fixed with respect to the steady-state system of convective flows. The lithospheric plate overhanging a subduction zone (as a rule of continental type) may:
1. (1) either move away from the subduction zone; or
2. (2) move onto it. In the first case extensional conditions originate behind the subduction zone and the new oceanic crust of back-arc basins forms. In the second case active Andean-type continental margins with thickening of the crust and lithosphere are observed.
Behind the majority of volcanic island-arcs, along the boundary with marginal-sea basins, independent shallow seismicity belts can be traced. They are parallel to the main seismicity belts coinciding with the Benioff zones. The seismicity belts frame island-arc microplates. Island-arc microplates are assumed to be a frame of reference to calculate relative movements of the consuming and overhanging plates. Using slip vector azimuths for shallow seismicity belts in the frontal parts of the Kurile, Japan, Izu-Bonin, Mariana and Tonga—Kermadec arcs, the position of the pole of rotation of the Pacific plate with respect to the western Pacific island-arc microplates was computed. Its coordinates are 66.1°N, 119.2°W. From the global closure of plate movements it has been determined that for the past 10 m.y. the Eurasian and Indian plates have been moving away from the Western Pacific island-arc system, both rotating clockwise, around poles at 31.1°N, 164.2°W and 1.3°S, 157.5°W, respectively. This provides for the opening of the back-arc basins. At the same time South America is moving onto the subduction zone at the rate of 4 cm/yr. Some “hot spots”, such as Hawaiian, Tibesti, and those of the South Atlantic, are moving relative to the island-arc system at a very low rate, viz. 0.5–0.7 cm/yr. Presumably, the western Pacific subduction zone and “hot spots” form a single frame of reference which can generally be used for the analysis of absolute motions.  相似文献   

2.
The recent geodynamics of the Far East region of Russia is considered, where three large tectonic plates converge—Eurasian, North American, and Pacific, as well as several microplates—Okhotsk, Bering, and Amurian—have been hypothesized to exist. The available data on the position of the plate boundaries, the relative plate rotation poles, and the regional seismicity were analyzed, and parameters of plate motion models for northeastern Russia were determined in this study. The regional deep structure was investigated, using data obtained by different geophysical methods. The results of observations of the Magadan–Vrangel Island profile by deep seismic sounding (DSS), common-depth point (CDP) method, and correlation refraction method (CRM) are presented.  相似文献   

3.
基于海洋地质地球物理观测建立的板块构造理论意味着板块和浅部地幔共同演化,然而地幔底部尤其是大型横波低速异常区(LLSVP)与板块(尤其微板块)运动和演化之间是否存在关联仍有争议。一些研究认为LLSVP长期保持稳定,而另一些模型则认为它与各级板块存在相互作用。为此,本文通过总结前人成果,并基于近期发表的板块重建和地幔对流模型进行进一步分析,探讨微板块运动和LLSVP的演化关系。模拟结果表明,微板块与大板块类似,俯冲后通常会下沉至核幔边界。微幔块会推动地幔底部热的物质聚集并形成大的热化学结构。该热化学结构与层析成像揭示的LLSVP基本吻合。下地幔径向流速场和温度场的二阶结构与地表速度场散度的二阶结构随时间的移动轨迹相似,表明深浅部圈层的耦合演化,但是下地幔结构演化一般会滞后于浅表。在微幔块推挤之下,地幔柱优先沿着地幔底部热化学结构的边缘形成,且有时会被推至热化学结构的内部。地幔柱上升至浅部后,能够导致岩石圈弱化甚至裂解或板块边界跃迁,形成微板块。因此,地幔底部LLSVP不是稳定或静止的,而是与微板块动态协同演化,并通过地幔柱与浅表板块边界发生遥相关,从而控制微板块生成场所。  相似文献   

4.
章传银  常晓涛 《地学前缘》2000,7(1):153-159
利用几何大地测量监测数据考察某一岩石圈板块或块体的运动 ,目前的主要方法是选择某一相对稳定点或直接选择地固参考系作为运动参考系 ,计算被考察的板块或块体相对于该相对稳定点的运动或在地固参考系中的运动。显然 ,这种计算结果无法全面直观地表达被考察板块或块体的内部相对运动 ,以及周围板块或块体相对于被考察板块或块体的运动。文中首次尝试了直接选择被考察板块或块体即欧亚板块东南部块体作为参考块体 ,利用一种高精度的几何大地测量监测数据 ,即国际地球参考框架 (ITRF)速度场计算了欧亚板块东南部块体在ITRF参考系中的线性运动模型 ,从而建立了欧亚板块东南部块体的块体参考系 ,并在该块体参考系中计算欧亚板块东南部块体内部及周围板块现今三维相对运动 ,进而分析中国大陆及周围板块的现今相对运动规律 ,以及板块边界处板块的现今相对运动规律。  相似文献   

5.
Geometric constraints derived from the present plate configuration and from plate motion vectors of the Caribbean as well as the North and South American plates within a hotspot reference frame indicate that the thickened Caribbean oceanic crust was formed in a near-American position rather, than at the Galapagos hotspot. A lateral displacement of more than 1000 km between the Caribbean plate and the North and South American plates is related to differences in plate motion velocities during the Cenozoic era. The differential motion between the Caribbean and the American plates results from trench-parallel mantle flow as a response to the westward motion of the American plates.  相似文献   

6.
全球板块重建的精细化和区域化是当前研究的热点领域之一。值得注意的是,针对重建板块形态分布规律的研究,尚未充分展开。在大数据背景下,本文根据已有板块重建模型,对中生代以来的重建板块的形态,进行了分形维数分析,并结合斑岩型铜矿床的频数分布规律,讨论了分形维数和斑岩型矿床频数对板块重建整体性评估的意义。研究结果表明,自250 Ma以来的地质历史时期,全球重建板块形态的分形维数具有先下降后上升的特点,在65 Ma达到最小,可能代表了由Pangea超大陆向未来超大陆Amasia的转换。此外,全球斑岩型铜矿床的频数异常与板块重建形态的分形维数异常具有良好的对应关系,表明板块运动过程中产生的快速形变与斑岩型铜矿床形成之间具有密切的联系。该结果可能将为整体性评估重建板块形态的真实性提供一个全新的方法,特别是对约束古老板块的形态方面,具有一定的科学价值;同时,也能为斑岩型铜矿床的成因,提供对照参考的数据基础。  相似文献   

7.
Carlo Doglioni 《Tectonophysics》2009,463(1-4):208-213
The Schellart's [Schellart, W.P., 2007, The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle. Tectonophysics, 445, 363–372.] paper uses slab dip and upper plate extension for testing the westward drift. His analysis and discussion are misleading for the study of the net rotation of the lithosphere since the first 125 km of subduction zones are sensitive also to other parameters such upper plate thickness, geometry and obliquity of the subduction zone with respect to the convergence direction. The deeper (> 125 km) part cannot easily be compared as well because E- or NE-directed subduction zones have seismic gaps between 270–630 km. Moreover the velocity of subduction hinge cannot be precisely estimated and it does not equal to backarc spreading due to accretionary prism growth and asthenospheric intrusion at the subduction hinge. It is shown here that hinge migration in the upper plate or lower plate reference frames supports a general global polarization of the lithosphere in agreement with the westward drift of the lithosphere. The W-directed subduction zones appear controlled by the slab–mantle interaction with slab retreat imposed by the eastward mantle flow. The opposite E-NE-directed subduction zones seem rather mainly controlled by the convergence rate, plus density, thickness and viscosity of the upper and lower plates. Finally, the geological and geophysical asymmetries recorded along subduction and rift zones as a function of their polarity with respect to the tectonic mainstream are not questioned in the Schellart's paper, but they rather represent the basic evidence for the westward drift of the lithosphere.  相似文献   

8.
The geometry and geochronology of aseismic ridges and oceanic islands in the southern oceans provide a good test of the proposition that hotspots remain fixed over long periods of time; that is, motion of an order of magnitude less than the relative motion between plate pairs. In most cases it is concluded that inter-hotspot movement cannot be discerned for the period 100 m.y. to Present and that widely distributed hotspots in the Atlantic and Indian Oceans provide a frame of reference for plate motions following the disintegration of Gondwanaland, which is independent of paleomagnetism. This frame of reference is “absolute” in that it gives the motion of the lithosphere with respect to the mantle (= hotspots). The absolute motion model indicates that Africa and Antarctica are now moving only very slowly, that there has been significant relative movement between East and West Antarctica since the Cretaceous, and prescribes the relative motion between the Somali and African plates.  相似文献   

9.
地幔柱构造理论研究若干问题及研究进展   总被引:3,自引:0,他引:3  
介绍了目前地幔柱构造理论研究中若干重要问题和最新进展,许多证据显示,地幔柱是严自于核幔边界附近的D″层发生热扰动并产生地幔柱的热动力源于外地核的不均匀加热作用;一个新启动的地幔柱在穿过整个地幔的缓慢上升过程会形成巨大球状顶冠和狭窄尾柱;地幔柱巨大球状顶冠会导致地壳发生上隆、区域变质作用、地壳深熔作用、构造变形作用和大规模火山作用,形成大陆或大洋溢流玄武岩;地幔柱狭窄尾柱的长期活动会在上覆运动板块上  相似文献   

10.
The definition of an "intraplate fixed" frame remains a significant error source for crustal motion studies at a few millimeters per year level. An appropriate implementation of such a frame is very important to avoid biased velocities and to confirm a valid geophysical interpretation. Here, we establish the newest global plate motion model of ITRF2000VEL and research the definition of an Asian-fixed frame in Asia using the ITRF2000 velocity field. By X2 and F ratio tests, we find a subset site in Asia that satisfies a rigid cap rotation with residual velocities <0. 95 mm/a and provide a stable Asia reference frame (SARF). In this reference frame, we find residual velocities at Asiatic ITRF2000 sites that are consistent with known active tectonic feature. An important result of this study is the identification of internal deformation of the order of 1-2 mm/a in an area usually interpreted as "stable" Asia. These results should be further checked as newer, denser and more accurate space geodetic data sets wit  相似文献   

11.
Seismic coupling and uncoupling at subduction zones   总被引:1,自引:0,他引:1  
Seismic coupling has been used as a qualitative measure of the “interaction” between the two plates at subduction zones. Kanamori (1971) introduced seismic coupling after noting that the characteristic size of earthquakes varies systematically for the northern Pacific subduction zones. A quantitative global comparison of many subduction zones reveals a strong correlation of earthquake size with two other variables: age of the subducting lithosphere and convergence rate. The largest earthquakes occur in zones with young lithosphere and fast convergence rates, while zones with old lithosphere and slow rates are relatively aseismic for large earthquakes. Results from a study of the rupture process of three great earthquakes indicate that maximum earthquake size is directly related to the asperity distribution on the fault plane (asperities are strong regions that resist the motion between the two plates). The zones with the largest earthquakes have very large asperities, while the zones with smaller earthquakes have small scattered asperities. This observation can be translated into a simple model of seismic coupling, where the horizontal compressive stress between the two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. While the variation in asperity size is used to establish a connection between earthquake size and tectonic stress, it also implies that plate age and rate affect the asperity distribution. Plate age and rate can control asperity distribution directly by use of the horizontal compressive stress associated with the “preferred trajectory” (i.e. the vertical and horizontal velocities of subducting slabs are determined by the plate age and convergence velocity). Indirect influences are many, including oceanic plate topography and the amount of subducted sediments.All subduction zones are apparently uncoupled below a depth of about 40 km, and we propose that the basalt to eclogite phase change in the down-going oceanic crust may be largely responsible. This phase change should start at a depth of 30–35 km, and could at least partially uncouple the plates by superplastic deformation throughout the oceanic crust during the phase change.  相似文献   

12.
Both the system of plate motions and the global gravity field or the geoid are now so precisely known that it seems worthwhile to look for quantitative relationships. Some aspects, such as the general occurrence of positive gravity and geoid anomalies in regions of plate convergence, have long been known. Our aim is to describe the gravitational field in terms of plate-kinematic parameters and we present a preliminary step in this direction: for four plates (Pacific, Nazca, Indian, American) we have computed the correlation of the Gem 8 geoid heights (with reference to an ellipsoid of 1/298.255 ellipticity) with distance from the poles of motion and distance from the axes in an “absolute” frame. The geoid tends first to drop from the ridge axes to at least 10° distance and then to rise toward the convergence zones. This trend is strongest for the Indian plate in collision with Eurasia, is smaller, but very clear for the oceanic Pacific and Nazca plates, and is not developed for the American plate which does not subduct. We did not find a consistent relationship for the geoid with distance from the pivots. A possible interpretation of the results is the return flow of the large-scale mantle circulation.  相似文献   

13.
Western Europe is traversed by the Rhinegraben rift system. The stages of graben formation evolved coincidentally with the culminations of compressional folding in the Alps. Rhinegraben rifting has been controlled by mantle diapirism, but the Alpine orogeny by subduction of lithosphere. Presumably, Alpine subduction forced compensating mantle uplift in the foreland. The Middle Eocene to Oligocene crustal spreading of the Rhinegraben implies a state of stress with a maximum horizontal component parallel to the graben axis (about 20?). In the same area, the Recent average direction of maximum compressive stress is of about 320? (NW), as calculated by in-situ stress measurements, fault-plane solutions of earthquakes and Recent crustal movements. The rotation of the stress components relative to the crust of stable Europe evolved subsequent to counterclockwise rotations of microplates in the Mediterranean. A model is proposed which ascribes these rotations to alterating shear motions of the Afro-Arabian macroplates relative to stable Europe exerting a ball-bearing effect to the intervenient microplates. The postulated motions are in accord with the patterns of inhomogeneous ocean floor spreading east and west of the African plate. The stages of Alpine plate collision had induced a significant readjustment of intraplate stress conditions, and deformation in the cratonic foreland of stable Europe.  相似文献   

14.
Largely because of the wide variety of observational constraints which must be satisfied, the search for a viable driving mechanism is perhaps the most perplexing problem related to plate tectonics. The mechanism must be compatible with the rigid behavior of lithospheric plates, and with a wide range of plate sizes, shapes and motions. It must be consistent with complex configurations of plate boundaries and equally complex boundary interactions, such as the destruction of ridges at subduction zones. The mechanism must produce steady-state relative and absolute plate motions which persist for tens of millions of years, but must also account for sudden dramatic changes. Finally, the plate driving mechanism must be consistent with the non-Newtonian properties of olivine and with the fabrics of upper mantle peridotites.Mounting evidence suggests that plate motions result from forces associated with plate boundaries and that the principal resisting force is drag at the base of the lithosphere, particularly beneath continents Several investigators have suggested that gravitational forces acting on thermally-induced, lateral density variations in the upper mantle are the principal driving forces for plate tectonics. If so, plate motions are ultimately controlled by the temperature distribution in the upper mantle, and plate tectonics represents a state of dynamic equilibrium in which plate motions are both the cause and the consequence of temperature and density variations in the mantle. This concept requires that average absolute plate velocities be predictable from the characteristics of individual plates, and that plates tend to move down horizontal temperature gradients.A simple linear relation which includes contributions from ridge push (RP), slab pull (SP), trench suction (TS) and continental drag (CD): (cm/y) = (2.6 ± 0.4) + (4.8 ± 1.8) RP + (14.3 ± 1.7) SP +(3.5 ± 2.5) TS−(5.1 ±0.7) CD predicts plate velocities with an rms error of 0.44 cm/y, and a correlation coefficient of 0.98. That plate velocities can be accurately predicted from their own boundary configurations and proportions of continental lithosphere is strong evidence that plate motions result from negative buoyancy forces associated with plate boundaries.  相似文献   

15.
东亚西太平洋岩石圈三维结构及其地幔动力学   总被引:5,自引:1,他引:4  
朱介寿 《地学前缘》2007,14(3):1-20
欧亚大陆及其边缘海地区是由约30多块尺度不同、形成时代和性质各异的板块或地块拼合而成。这些岩石圈板块或地块经过长时间的漂移,多次聚合与分离,碰撞与增生,在新生代最后形成现代的拼合欧亚大陆。欧亚大陆及其边缘海的板块或地块可以分为以下六类:(1)前寒武纪巨型克拉通地块及地盾;(2)前寒武纪小型克拉通地块及板块;(3)显生宙造山带及汇聚地块;(4)陆陆碰撞型地块及造山带;(5)新生代边缘海海盆;(6)大陆裂谷盆地及增生地块。高分辨率地震面波层析成像,显示同一类型的板块或地块的岩石圈和软流圈的速度结构十分相似,呈现出其独有的速度分布特征。不同类型板块或地块的速度结构有重大差异。直到400km深度,各个板块和地块的横向差异才逐渐减小。一般而言,前寒武纪克拉通板块及地块的岩石圈巨厚具有高速性质、软流圈很薄或不存在;边缘海、造山带等区域岩石圈较薄和速度较低,软流圈发育。根据欧亚大陆及边缘海地区天然地震层析成像,人工地震剖面数据及其他有关资料,建立了欧亚大陆及其边缘海岩石圈模型。  相似文献   

16.
The Precambrian formations of the Singhbhum and Chotanagpur region of the Indian Peninsular Shield are tectonically classified and their implications in the context of plate tectonics are reviewed on the basis of the stratigraphic, structural, petrologic, geochemical, geophysical and geochronologic data that have accumulated through extensive research in the region in recent years. It is shown that the essential elements in tectonic settings, geological facies and structural and metamorphic characters of the Singhbhum orogenic belt and the reactivated Chotanagpur plateau are elegantly interpretable in terms of interaction of two converging microplates, named here as the Singhbhum and Chotanagpur plates. A detailed correlation of the tectonic evolution with the different stages of a proposed model of plate motions is attempted in the paper.The study reveals three cycles of plate motions with intervening periods of “quiescence”. During the first cycle (2000-1600 Ma), the Singhbhum plate moved northward and collided with the Chotanagpur plate: this led to the tectonic emplacement of the Dalma ophiolite belt and development of the F1 folds and thrusts and M1 metamorphism. During the second cycle (1550-1170 Ma), a clockwise rotation of the Singhbhum plate towards the NE generated the F2 folds and a transcurrent sinistral shear zone. Obduction of the continental lithosphere of this plate occurred during the third cycle (1000-850 Ma) as a result of its continued impingement on the Chotanagpur plate in the NNW direction; this is documented by the evolution of the F3 folds, M3 metamorphism and the Singhbhum thrust zone. The “quiescence” periods allowed time for isostatic readjustments, viz., uplifts, intrusions of basic dyke swarms, erosion and paralic sedimentation.  相似文献   

17.
C. Doglioni 《地学学报》1991,3(4):423-434
In W-dipping subduction zones there is a general eastward progression of the back-arc basin-accretionary wedge-foredeep complex. With the forward progression, early stages of the complex are revealed by slices of upper crust and sedimentary cover abandoned to the west left floating above a new section of mantle. A major shear zone should form at the new Moho separating upper crust slices of earlier accretionary stages and the eastward flowing mantle. The mantle wedging at the top of the subduction plane could be responsible for the uplift of the central parts of the belt. The retreating of the subduction hinge is interpreted as due to the push generated by the ‘eastward mantle flow detected in the hot spot reference frame. The foredeep depth is mainly a function of the radius of curvature of the subduction hinge. The frontal wedge is constructed from the stacking of the upper layers of the subducting plate and the syntectonic clastics that fill the foredeep which are progressively involved in thrusting and later by extension. In order to preserve volume balance, the lithosphere of the eastern plate before subduction has to be the same size as that which has been subducted: due to the longer length of the arc with respect to the original length of the linear margin between the two converging plates, laterally stretched subducted lithosphere is predicted at depth. W-dipping subductions usually have a short life probably due to their inherent capability to produce new lateral heterogeneities of the lithosphere (the thin back-arc) which are a key factor in controlling and generating new subductions (both E- and W-dipping). This model is applied to the Apennines-Tyrrhenian Sea system.  相似文献   

18.
杨冬红  杨德彬 《世界地质》2010,29(4):652-657
潮汐变化引起的大气圈、海洋圈和岩石圈差异旋转的计算结果显示:地球扁率变大时,赤道面的高速气流和洋流产生与地球自转方向相反的由东向西运动,类似赤道东风带;地球扁率变小时,大气和海洋赤道突起减小并向两极流动,在南北纬35°线以上的中高纬度地区,形成两极突起,该计算结果与全球风带分布完全符合。综合分析表明,太阳在赤道面时,赤道东风加强,海洋南北赤道暖流加强;太阳在南北回归线时,西风带加强。日、地、月在同一直线上时将增强这一效应。日月大潮引起的大气、海洋和固体地球的差异旋转是日食多次发生在赤道引发拉尼娜事件产生的动力学机制。  相似文献   

19.
杨文采 《地质论评》2022,68(1):2022020013-2022020013
本文对西太平洋的洋-陆转换作用进行探讨。西太平洋洋-陆转换带在中国东部可分为华南、华北-黄海和东北3个区段。东北地区中-新生代洋-陆转换作用涉及古今太平洋板块和蒙古—鄂霍茨克洋板块两方面俯冲作用的影响,产生大面积中基性岩浆和火山活动,从侏罗纪一直延伸到现在。不同于东北和华南地区,华北-黄海有克拉通型的岩石圈,在晚侏罗世—新近纪因为太平洋板块的大角度旋转造成软流圈低黏度物质上涌,和地壳拉张与幔源岩浆的底侵,造成上地壳裂谷型沉积盆地。燕山地区在侏罗纪与东北地区类似,有强烈的软流圈上涌和岩石圈岩石部分熔融,产生强烈岩浆活动。在白垩纪到新生代,因为蒙古—鄂霍茨克洋闭合和太平洋板块大角度旋转,发生沿蒙古—鄂霍茨克洋的转换断层的拉张,产生从南蒙古过锡林浩特的NW向玄武质岩浆和火山带。洋-陆转换带不同区段有不同的动力学作用演化过程,与先期岩石圈的性质、大洋板块俯冲带的分布、方向变化和俯冲持续时间、以及后期俯冲带后撤作用都有密切关系。洋-陆转换作用的统一后果是大陆的增生,但是不同区段大陆增生和物质运动的模式是不一样的。  相似文献   

20.
Clear understanding of detailed lithospheric plate motions has been impeded by lack of a suitable means of graphical representation. A series of coloured global maps are presented that reveal more detail in the patterns of both absolute and relative global plate motions. The use of continuous colour to represent velocities overcomes the limitations of earlier maps that used isolated vectors at selected points to indicate plate velocities. Velocity magnitudes and directions for entire surfaces of plates were computed at a resolution of 0.5°, and are shown on two separate maps. Relative motions between plates were decomposed into their shear and normal components, and are plotted on separate maps. Continuous colour is again used to indicate both the directions and magnitudes of sinistral/dextral and convergent/divergent motions for all plate boundaries. A final map of normalized velocity magnitudes for all plates reveals a global, fast 'belt' of plate motion that parallels a great circle aligned with the fastest portion of the Pacific Plate and orthogonal to the East Pacific Rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号