首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We approach the reconstruction of the recent structural evolution of Stromboli volcano (Italy) and the analysis of the interplay between tectonics, gravity and volcanic deformation. By tying together structural, lithostratigraphic and rock mechanics data, we establish that since 100 ka BP, the edifice has faulted and jointed mainly along NE-striking planes. Faults mostly dip to the NW with normal displacement. Taking also into account the presence of a NW-trending regional least principal stress and of tectonic earthquake hypocenters inside the cone, we suggest that this fracturing can be related to the transmission of tectonic forces from the basement to the cone. Dyking concentrated along a main NE-trending weakness zone (NEZ) across the volcano summit, resembling a volcanic rift, whose geometry is governed by the tectonic field. In the past 13 ka, Stromboli experienced a reorganisation of the strain field, which was linked with the development of four sector collapses affecting the NW flank, alternating with growth phases. The tectonic strain field interplayed with dyking and fracturing related to unbuttressing along the collapse shoulders. We propose that tectonics control the geometry of dykes inside the cone and that these, in turn, contribute to destabilise the cone flanks.  相似文献   

2.
In recent years, increasing numbers of volcanoes are being recognized as having undergone large sector collapses. How far such events can change the succeeding behaviour of the volcano is poorly known, despite the importance for natural hazards and economic applications. By analysing the last 100‐kyr geological history of Stromboli (Italy), which has involved multiple collapses, this paper illuminates the feedback effect between sector collapse and magma upwelling and emplacement. The collapsed zone of Stromboli is episodically unbuttressed, draining magma preferentially with formation of eruptive centres in the collapse amphitheatre and dyking along the collapse shoulders. After a collapse, there were no further linear eruptions across the cone on opposing middle–lower slopes, but these occurred again after rebuilding of the cone. The time‐averaged eruption rate increased immediately before the first collapse and remained higher during the succeeding period of frequent collapses.  相似文献   

3.
Summary  The Stromboli island, in the Aeolian archipelago (Italy), is one of the most active volcanoes in Europe. In the last 13,000 years, its growth has been complicated by four sector collapses affecting the NW flank, the latest of which resulting in the formation of Sciara del Fuoco (SdF) horseshoe-shaped depression. Slope instability phenomena are represented not only by giant deep-seated gravitational slope deformations, but also by more frequent large landslides, such as occurred in December 2002–January 2003, and shallow landslides, involving loose or weakly cemented deposits, that constitute a natural hazard and affect residential and tourists safety. It is noteworthy that in volcanic environment the instability factors are manifold and much more complex than in other non-volcanic contexts. This paper deals with the Stromboli NW flank instability, and focuses on the effects of magma pressure in the feeding system. Two main objectives have been pursued: (1) to test a methodological approach, in order to evaluate a complex instability process; (2) to contribute to the understanding of volcano deformation and collapse mechanisms and associated hazard. A numerical model was developed by the Finite Difference Method and the FLAC 4.0 code, considering a cross-section of the entire volcano, orthogonal to the SdF and including both subaerial and submerged slopes. The stability of the volcano was analysed under gravity alone, and by introducing the magma pressure effect, both related to magmastatic and overpressure components. The results indicate that gravity alone is not sufficient to affect the stability of the volcano slopes, nor is the magmastatic pressure component. If an excess magma pressure component is introduced, instability is produced in accordance with field evidences and recent slope dynamics. Correspondence: Tiziana Apuani, Dipartimento di Scienze della Terra “A. Desio”, via Mangiagalli 34, 20133 Milano, Italy  相似文献   

4.
On December 24th, Mt. Etna volcano underwent a seismic crisis beneath the summit and upper southern flank of the volcano, accompanied by significant ash emission. Eruptive fissures opened at the base of summit craters, propagating SE‐wards. This lateral eruption lasted until December 27th. Despite the small eruption, seismic swarm and ground deformation were very strong. Sentinel‐1 interferograms show a wide and intense ground deformation with some additional features related to volcano‐tectonic structures. We inverted DInSAR data to characterise the magma intrusion. The resulting model indicates that a large dyke intruded but aborted its upraise at about the sea level; however, this big intrusion stretched the edifice, promoting the opening of the eruptive fissures fed by a shallower small dyke, and activating also several faults. This model highlights that a big intrusion beneath a structurally complex volcano represents a main issue even if the eruption is aborted.  相似文献   

5.
3D earthquake locations, focal mechanisms and stress tensor distribution in a 16‐month interval covering the 2018 Mt. Etna flank eruption, enabled us to investigate the relationship between magma intrusion and structural response of the volcano and shed light on the dynamic processes affecting the instability of Mt. Etna. The magma intrusion likely caused tension in the flanks of the volcano, leading to significant ground deformation and redistribution of stress on the neighbouring faults at the edge of Mt. Etna's unstable sector, encouraging the ESE sliding of the eastern flank of the volcano. Accordingly, FPSs of the post‐eruptive events show strike slip faulting mechanisms, under a stress regime characterized by a maximum compressive σ1, NE‐SW oriented. In this perspective, any flank eruption could temporarily enhance the sliding process of both the southern and eastern flanks of the volcano.  相似文献   

6.
We studied mechanisms of structural destabilization of ocean island flanks by considering the linkage between volcano construction and volcano destruction, exemplified by the composite Teno shield volcano on Tenerife (Canary Islands). During growth, Tenerife episodically experienced giant landslides, genetically associated with rifting and preferentially located between two arms of a three-armed rift system. The deeply eroded late Miocene Teno massif allows insights into the rifting processes, the failure mechanisms and related structures. The semicircular geometry of palaeo-scarps and fracture systems, breccia deposits and the local dike swarm reconfigurations delineate two clear landslide scarp regions. Following an earlier collapse of the older Los Gigantes Formation to the north, the rocks around the scarp became fractured and intruded by dikes. Substantial lava infill and enduring dike emplacement increased the load on the weak scarp and forced the flank to creep again, finally resulting in the collapse of the younger Carrizales Formation. Once more, the changing stress field caused deformation of the nearby rocks, a fracture belt formed around the scarp and dikes intruded into new (concentric) directions. The outline, size and direction of the second failed flank of Teno very much resembles the first collapse. We suggest structural clues concerning mechanisms of recurrent volcano flank failure, verifying the concept that volcano flanks that have failed are prone to collapse again with similar dimensions.  相似文献   

7.
The Engadine Line (EL) is a seismically active fault in southeastern Switzerland. In the field we studied its western segment, presently not affected by seismicity but characterised by features suggesting neotectonic motions, and the coterminous Gruf Line. Uphill‐ and downhill‐facing scarps, offset rivers, non‐equilibrium hydrological conditions and aligned deep‐seated gravitational slope deformations are dominant in the western sector of the EL in the Inn Valley. Landform offsets and the most recent fault striations point to oblique left‐lateral strike‐slip. Close to the EL, at the Maloja Pass, a huge collapse beheaded the Inn Valley. Trench excavation with palaeoseismic analysis, stratigraphic correlations of Quaternary deposits and optically stimulated luminescence dating indicate that the collapse and faulting mostly occurred in the Late Pleistocene. In the Bregaglia Valley, the Gruf Line stretches along the southwestern extension of the EL. Six deep‐seated gravitational slope deformations developed along the Gruf Line and were dated to pre‐ and post‐Last Glacial Maximum times. We suggest that the western sector of the EL moved also in a Pleistocene time interval during which tectonic forces in the area were probably larger than at present, favouring local uplift, widespread gravity deformation, and retrogressive slope failure at the Inn Valley head. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The seismic wavefield associated to the ongoing eruptive activity at Stromboli volcano (Italy) is investigated using data from two small-aperture, short-period seismic arrays deployed on the northern and western flanks, located at about 1.7 km from the active craters. Two distinct approaches are used to analyze the recorded signals:
  • 1.1) the zero-lag cross-correlation method is used to analyze the explosion quakes data, to estimate slowness and backazimuth as a function of lapse time;
  • 2.2) multiple filter technique and phase matched filtering are used to estimate Rayleigh wave dispersion, to obtain a shallow velocity model of the two sites.
Estimates of slowness vectors at the two different array sites show a primary (volcanic) source located at shallow depth beneath the crater region. Secondary sources associated with path effects are located in close proximity of the sector graben of Sciara del Fuoco and of the old parasitic cone of Timpone del Fuoco. The shallow velocity structure derived for the western flank depicts striking resemblance with that previously inferred for the northern flank of the volcano.  相似文献   

9.
Audiomagnetotelluric soundings were carried out on the volcanic island of Mayotte (Comores Archipelago). The field method and data are described and discussed. All the sounding cross sections show coherent curves with a high conductive layer between 100 and 200 m. depth. This layer is considered to be a fluctuating water table zone correlated to yearly climatic changes under tropical weathering processes. Dipping and sudden level variations are linked to tectonic volcanic features and are the visualization of a block faulting system of the primitive basaltic shield, a consequence of a distensive phase possibly connected with the collapse of the western flank of the volcano. Piano-key panels are the typical sub-surface style and the guide-line for any water prospection on the volcano and the activity of the island water transfer system.  相似文献   

10.
Stromboli is a 3000 m high island volcano, rising to 900 m above sea-level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). Major, large volume (1 km3) sector collapses, four occurring in the last 13 kyr, have played an important role in shaping the north-western flank (Sciara del Fuoco) of the volcano, potentially generating a high-risk tsunami hazard for the Aeolian Islands and the Italian coast. However, smaller volume, partial collapses of the Sciara del Fuoco have been shown to be more frequent tsunami-generating events. One such event occurred on 30 December 2002, when a partial collapse of the north-western flank of the island took place. The resulting landslide generated 10 m high tsunami waves that impacted the island. Multibeam bathymetry, side-scan sonar imaging and visual observations reveal that the landslide deposited 25 to 30 × 106 m3 of sediment on the submerged slope offshore from the Sciara del Fuoco. Two contiguous main deposit facies are recognized: (i) a chaotic, coarse-grained (metre-sized to centimetre-sized clasts) deposit; and (ii) a sand deposit containing a lower, cross-bedded sand layer and an upper structureless pebbly sand bed capped by sea floor ripple bedforms. The sand facies develops adjacent to and partially overlying the coarse deposits. Characteristics of the deposits suggest that they were derived from cohesionless, sandy matrix density flows. Flow rheology and dynamics led to the segregation of the density flow into sand-rich and clast-rich regions. A range of density flow transitions, both in space and in time, caused principally by particle concentration and grain-size partitioning within cohesionless parent flows was identified in the deposits of this relatively small-scale submarine landslide event.  相似文献   

11.
The geological development of the Fogo island volcano commenced in the early Quaternary, and much later during the Last Glacial stage this involved a mega‐scale lateral collapse of the former edifice. This later event created a large caldera‐like landform open to the east, the floor of which is known as the Chã, and subsequently within this a strato‐volcanic cone has grown. The last phase of volcanic activity started in late 2014 and persisted for 77 days. It had a devastating impact on the lives of the 1000 plus people who were living within the ‘caldera’, since two large villages and a smaller one were each totally destroyed in a matter of days by the advancing lavas. In addition, large areas of cultivated land, upon which the inhabitants were dependent for their livelihood, were enveloped by lava. The eruption proved to be of a greater magnitude than the immediately preceding one of 1995, when a mass evacuation was necessary but as only a few buildings were affected, resettlement followed. Unfortunately the much greater devastation to the human environment makes it doubtful whether any significant resettlement will be possible after the 2014–2015 event.  相似文献   

12.
Sector or flank collapse with related debris avalanches is increasingly recognized as a relatively common volcanic behaviour, in particular, for large, hot‐spot related oceanic islands. Here, we report the case of a catastrophic collapse that occurred at Ischia volcanic island in prehistorical times and was driven by the volcano‐tectonic uplift of Mt Epomeo, the major relief of the island. The collapse left a subaerial to submarine horseshoe scar on the southern flank of the island and generated a debris avalanche incorporating thousands of giant blocks dispersed as far as 50 km from the island. During the emplacement, part of the debris avalanche evolved into a debris flow covering an area of 250–300 km2. This constitutes the first, clear evidence of a submarine debris avalanche in the Mediterranean Sea. The major collapse was followed, and probably also preceded, by recurrent, less catastrophic terrestrial and underwater failures. Two other undersea hummocky deposits are found north and west of the island and might tentatively be correlated to the major southern collapse. Such volcanic behaviour, previously unknown for Ischia Volcano, has likely triggered tsunami waves over the entire Bay of Naples raising the question of their impact on prehistorical/historical communities.  相似文献   

13.
A tsunami source mechanism, resulting from the collapse of the cone of the Santorin Volcano, accounted for the catastrophic sea waves observed in the Aegean Archipelago and the Eastern Mediterranean in the Bronze Age. The tsunami and destruction resulting from the explosion and collapse of the volcano of Santorin are discussed in this study. On the basis of recent geological evidence, it is concluded that the final caldera collapse resulted from a large earthquake, along an about NE-SW trending normal fault, along which the Santorin Volcanic field has developed. Such a source mechanism can account for the size and destructiveness of this Bronze Age Tsunami with its interesting archaeological and historical implications.  相似文献   

14.
Merapi is Indonesia's most dangerous volcano with a history of deadly eruptions. Over the past two centuries, the volcanic activity has been dominated by prolonged periods of lava dome growth and intermittent gravitational or explosive dome failures to produce pyroclastic flows every few years. Explosive eruptions, such as in 2010, have occurred occasionally during this period, but were more common in pre‐historical time, during which a collapse of the western sector of the volcano occurred at least once. Variations in magma supply from depth, magma ascent rates and the degassing behaviour during ascent are thought to be important factors that control whether Merapi erupts effusively or explosively. A combination of sub‐surface processes operating at relatively shallow depth inside the volcano, including complex conduit processes and the release of carbon dioxide into the magmatic system through assimilation of carbonate crustal rocks, may result in unpredictable explosive behaviour during periods of dome growth. Pyroclastic flows generated by gravitational or explosive lava dome collapses and subsequent lahars remain the most likely immediate hazards near the volcano, although the possibility of more violent eruptions that affect areas farther away from the volcano cannot be fully discounted. In order to improve hazard assessment during future volcanic crises at Merapi, we consider it crucial to improve our understanding of the processes operating in the volcano's plumbing system and their surface manifestations, to generate accurate hazard zonation maps that make use of numerical mass flow models on a realistic digital terrain model, and to utilize probabilistic information on eruption recurrence and inundation areas.  相似文献   

15.
Ollier  Cochonat  Lénat  & Labazuy 《Sedimentology》1998,45(2):293-330
A volcaniclastic sedimentary fan extending to water depths of 4000 m is characterized using gravity cores, camera surveys, high-resolution sonar images, seismic records and bathymetry from the submarine portion of La Fournaise volcano, Réunion Island, a basaltic shield volcano in the SW Indian Ocean. Three main areas are identified from the study: (1) the proximal fan extending from 500 m water depth down to 2000 m water depth; (2) the outer fan extending from 2000 m water depth down to 3600 m water depth; (3) the basin extending beyond 3600 m water depth. Within these three main areas, seven distinct submarine environments are defined: the proximal fan is characterized by volcanic basement outcrops, sedimentary slides, deep-water deltas, debris-avalanche deposits, and eroded floor in the valley outlets; the outer fan is characterized by a discontinuous fine-grained sedimentary cover overlying coarse-grained turbidites or undifferentiated volcanic basement; the basin is characterized by hemipelagic muds and fine-grained turbidites interbedded with sandy and gravelly turbidite lobes. The evolution of the deep-sea volcaniclastic fan is strongly influenced by sector collapses, such as the one which occurred 0·0042 Ma ago. This collapse produced a minimum of 6 km3 of debris-avalanche deposit in the proximal area. The feeding regime of the deep-sea fan is ‘alluvial dominated’ before the occurrence of any sector collapse and ‘lava-dominated’ after the occurrence of a sector collapse. The main deep-water lava-fed delta is prograding among the blocks of the debris-avalanche deposits as a result of turbidity flows occurring on the delta slope. These turbidity flows are triggered routinely by wave-action, earthquakes and accumulation of new volcanic debris on top of the deltas. Both turbidity currents triggered on the deep-water delta slope, and those triggered by debris avalanche reworked volcaniclastic material as far as 100 km from the shore line.  相似文献   

16.
The Colli Albani volcanic complex (Rome, Italy) has been dominated by episodic eruptions commencing around 561?ka and ending with the most recent activity of the Albano maar phase (<70?ka). Earthquakes of moderate intensity, gas emissions and significant ground deformations are the recent evidences of a residual activity. Former geodetic data from leveling surveys, GPS stations and InSAR observations tracked ongoing significant uplift of the order of few mm/year near the Colli Albani western flank. Different uplift rates were detected by each technique in different time spans, suggesting also the possibility of sporadic recharge of the hydrothermal system. The renewed high precision leveling data from IGMI survey carried out in 1997/1999 and the last leveling survey carried out in 2006 show that the uplift along the route is currently significant at an average rate of ~3?mm/year. Radar interferograms from ALOS satellite show uplift rate of ~6?mm/year, southwest of the central sector of the leveling route. We have undertaken a joint inversion of the various geodetic data (vertical rates from leveling surveys, GPS site velocities and InSAR observations acquired by ALOS satellite) using a nonlinear inversion technique to estimate the parameters of a point-pressure source, possibly capable of explaining the ongoing deformation at Colli Albani volcano.  相似文献   

17.
Bioclastic flow deposits offshore from the Soufrière Hills volcano on Montserrat in the Lesser Antilles were deposited by the largest volume sediment flows near this active volcano in the last 26 kyr. The volume of these deposits exceeds that of the largest historic volcanic dome collapse in the world, which occurred on Montserrat in 2003. These flows were most probably generated by a large submarine slope failure of the carbonate shelf comprising the south‐west flank of Antigua or the east flank of Redonda; adjacent islands that are not volcanically active. The bioclastic flow deposits are relatively coarse‐grained and either ungraded or poorly graded, and were deposited by non‐cohesive debris flow and high density turbidity currents. The bioclastic deposit often comprises multiple sub‐units that cannot be correlated between core sites; some located just 2 km apart. Multiple sub‐units in the bioclastic deposit result from either flow reflection, stacking of multiple debris flow lobes, and/or multi‐stage collapse of the initial landslide. This study provides unusually precise constraints on the age of this mass flow event that occurred at ca 14 ka. Few large submarine landslides have been well dated, but the slope failures that have been dated are commonly associated with periods of rapid sea‐level change.  相似文献   

18.
Mt. Melbourne volcano (Northern Victoria Land-Antarctica) is part of the McMurdo Igneous complex, which spans a considerable time interval between 48 Ma to the Present. It is generally accepted that both the location and the magmatic products of the volcano are genetically linked to Ross Sea rifting and uplift of the Transantarctic Mountains (TAM) rift shoulder. Studies on pyroclastic falls suggest that an eruption likely occurred in the last few centuries. Presently the volcano has a low level of activity which has been highlighted and monitored by means of integrated geophysical networks. After a review of previous geophysical and geological findings at both regional and at a more local scale, in our study we display and interpret newly compiled magnetic and gravity images over the Mount Melbourne area to better constrain the tectonic framework of the region. We propose that the structural setting is dominated by major NWSE right-lateral strike-slip faults generating uplifted crustal blocks, namely the Deep Freeze Range block and more subsided N-S graben-like structures such as the one in which Mount Melbourne volcano itself appears to be located. Local seismic events could well be associated with the N-S faults within this graben. Gravity data is consistent with crustal thickening beneath the TAM and offshore it highlights together with heat flow data and seismic constraints a NNE trending pull- apart basin with extended crust also linked to the strike-slip tectonics of the region. Local gravity anomalies are also discussed.  相似文献   

19.
Zoning patterns of An content and Fe, Mg and Sr concentrations in plagioclase phenocrysts in andesites from Parinacota Volcano (N. Chile) reflect alternating recharge events with two chemically distinct mafic magmas. These magmas are characterized by low and high Sr contents, similar to two recent mafic flank eruptions. One end-member basaltic andesite shows large Sr enrichment and Heavy Rare Earth depletions and thus equilibrated with lower-crustal rocks at depth where plagioclase (high Sr) is unstable, and garnet (high HREE, Y) is stable. A second end-member magma is lower in Sr, Ba contents and has REE patterns typical for parent magmas elsewhere in the Central Andes.

The number of recorded recharge events increases after a catastrophic sector collapse and during the subsequent rebuilding of the stratocone. Variations of An, Fe and Mg contents and morphology of zones suggest also changes in water pressure, including decompression under water under-saturated and water-saturated conditions. Evidence for decompression is more present in post-collapse samples, suggesting that the change in the volcano dynamics involves changes in magma chamber location. This shows the importance of the cone collapse event in the volcano's magmatic evolution. We propose that both end-members are only seen at the surface of Parinacota Volcano because of the particular dynamics of this volcanic system and that similar processes might occur in other volcanic centres of the Central Volcanic Zone.  相似文献   


20.
Meru volcano is located within the Northern Tanzanian Divergence Zone where the east branch of the East African Rift splits into several branches. The 4565-m-high Meru volcano is breached on the east flank by a horseshoe-shaped scar following a major collapse associated with the Momella debris avalanche approximately 9000 years ago. Remote sensing combined with detailed field mapping allowed the characterisation of the Momella debris avalanche deposit, structure, and texture. Hummocks, ridges, lineaments, lobes, grabens and shear zones are observed on the surface of the deposit. The most common facies observed are the mixed facies with indurated and shattered outcrops and the matrix facies. The collapse involved a volume of 20 ± 2 km3 with a deposit that spread over an area of 1250 km2, up to the base of Kilimanjaro. Based on field evidence, we suggest that water played a key role in the deformation, facies formation, avalanche emplacement and mobility of the entire deposit but to a lesser extent south of Ngurodoto complex. The deformation and emplacement of the avalanche were accommodated by both extension and shearing on a water-fluidised basal layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号