首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tectonostratigraphic and geomorphic study of two post-obduction fluvial sedimentary systems on mainland New Caledonia and imaged offshore on seismic reflection lines provides a new perspective on the post-orogenic evolution of the New Caledonia ridge. Relations between sedimentary sequence boundaries, erosion surfaces and faults, both on land and on offshore seismic reflection profiles indicate that an episode of extensional tectonics initiated in the Early Neogene led to the disruption and collapse of the island landsurface previously shaped during a Latest Oligocene phase of planation. Microtectonic analysis further suggests early slip on the normal faults was associated with ridge-normal extension. A later set of faults accompanied ridge-parallel to ridge-oblique extension that is interpreted to result from a shift toward a transtensional regime driven by the initiation of east-verging subduction of the Australian plate beneath the Pacific plate starting at least in the late Mid-Miocene.  相似文献   

2.
The Massif du Sud is a large ophiolitic complex that crops out in the southern region of New Caledonia (SW Pacific). It is dominated by harzburgite tectonite that locally shows a transitional gradation to massive dunite up section. Clinopyroxene, orthopyroxene and plagioclase progressively appear in dunite up to the transition to layered wehrlite and orthopyroxene–gabbro. The dunite–wehrlite and wehrlite–gabbro contacts are parallel and the latter defines the paleo-Moho.Highly depleted modal, mineral and bulk rock compositions indicate that harzburgites are residues after high degrees (20–30%) of partial melting mainly in the spinel-stability field. Their relative enrichment in HFSE, LREE and MREE is due to re-equilibration of melting residues with percolating melts. Dunite formed in the Moho transition zone by reaction between residual mantle harzburgite and olivine-saturated melts that led to pyroxene dissolution and olivine precipitation. Rare clinopyroxene and plagioclase crystallized in interstitial melt pores of dunite from primitive, low-TiO2, ultra-depleted liquids with a geochemical signature transitional between those of island arc tholeiites and boninites.Ascending batches of relatively high-SiO2, ultra-depleted melts migrated through the Moho transition zone and generated wehrlite by olivine dissolution and crystallization of clinopyroxene, orthopyroxene and plagioclase in variable amounts. These liquids were more evolved and were produced by higher degrees of melting or from a more depleted source compared with melts that locally crystallized clinopyroxene in dunite. Ultra-depleted magmas, non-cogenetic with those that formed the Moho transition zone, ascended to the lower crust and generated gabbroic cumulates with subduction-related affinity. Thus, the ultramafic and mafic rocks in the Moho transition zone and lower crust of the Massif du Sud ophiolite are not products of fractional crystallization from a single magma-type but are the result of migration and accumulation of different melts in a multi-stage evolution.The record of high partial melting in the mantle section, and migration and accumulation of ultra-depleted subduction-related melts in the Moho transition zone and lower crust support that the Massif du Sud ophiolite is a portion of forearc lithosphere generated in an extensional regime during the early phases of the subduction zone evolution. Our results show the existence of different types of ultra-depleted melt compositions arriving at the Moho transition zone and lower crust of an infant intraoceanic paleo-arc. Ultra-depleted melts may thus be a significant component of the melt budget generated in oceanic spreading forearcs prior to aggregation and mixing of a large range of melt compositions in the crust.  相似文献   

3.
Supergene nickel deposits of New Caledonia that have been formed in the Neogene by weathering of obducted ultramafic rocks are controlled by fracture development. The relationship of tropical weathering and tectonic structures, faults and tension gashes, have been investigated in order to determine whether fractures play a passive role only, as previously thought; or alternatively, if brittle tectonics was acting together with alteration. Observation of time‐relationship, textures, and mineralogy of various fracture fills and fault gouges shows that active faulting has played a prominent role not only in facilitating drainage and providing room for synkinematic crystallization of supergene nickel silicate, but also in mobilizing already formed sparse nickel ore, producing the very high grade ore nicknamed “green gold”.  相似文献   

4.
Tectonic fold tests conducted in Namibia demonstrate that the inclination with respect to bedding of geoplumb (palaeovertical) tubular structures in the Marinoan (635 Ma) syndeglacial cap dolostone is mainly the result of tectonic strain. Therefore, tubestone inclination data cannot be used to estimate the gradient of the sea floor on the foreslope of the Otavi carbonate platform during the Marinoan glaciation. A gradient steeper than 0·1 (slope angle ca 5·7°), implying a glacial base‐level fall ≥0·5 km, is nevertheless supported by boulder‐size intraclast debrite in the falling‐stand wedge directly beneath the glacigenic sequence. Cryogenian oceans lacked skeletal carbonate production, raising the carbonate saturation state and persistent deep water anoxia excluded acid‐producing aerobic respiration, facilitating early diagenetic carbonate precipitation, lithification and steep submarine slopes.  相似文献   

5.
刘家铎 《沉积学报》1992,10(4):137-145
洛亚蒂盆地沉积物是棕黄色软泥和生物碎屑砂。它们有5个来源:新喀里多尼亚堤礁、深海生物群落、浮游生物群体和火山碎屑。沉积物由浊流和半深海沉积物的互层组成,可以通过粒度分析,矿物成分和生物碎屑的分析将两者加以区分。通过对蒂奥和利富之间的岩心的研究,认识到在蒂奥水道对面,分布着一个展布广阔,但幅度很小、延伸50km的海底扇。  相似文献   

6.
Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere started to subduct, and whether the Indian continental crust has injected into the mantle beneath southern Lhasa block, are not clear. Here we report new results from the Quguosha gabbros of southern Lhasa block, southern Tibet. LA-ICP-MS zircon U–Pb dating of two samples gives a ca. 35 Ma formation age (i.e., the latest Eocene) for the Quguosha gabbros. The Quguosha gabbro samples are geochemically characterized by variable SiO2 and MgO contents, strongly negative Nb–Ta–Ti and slightly negative Eu anomalies, and uniform initial 87Sr/86Sr (0.7056–0.7058) and εNd(t) (− 2.2 to − 3.6). They exhibit Sr–Nd isotopic compositions different from those of the Jurassic–Eocene magmatic rocks with depleted Sr–Nd isotopic characteristics, but somewhat similar to those of Oligocene–Miocene K-rich magmatic rocks with enriched Sr–Nd isotopic characteristics. We therefore propose that an enriched Indian crustal component was added into the lithospheric mantle beneath southern Lhasa by continental subduction at least prior to the latest Eocene (ca. 35 Ma). We interpret the Quguosha mafic magmas to have been generated by partial melting of lithospheric mantle metasomatized by subducted continental sediments, which entered continental subduction channel(s) and then probably accreted or underplated into the overlying mantle during the northward subduction of the Indian continent. Continental subduction likely played a key role in the formation of the Tibetan plateau at an earlier date than previously thought.  相似文献   

7.
Soils‐based evidence derived from thin section micromorphology is used to explore contrasts in pre‐Hispanic and Hispanic arable land management practices associated with raised fields in an inter‐Andean valley of Ecuador. Differences in textural pedofeature characteristics suggest that, where they are found in the same locality, camellón systems were more intensively manured and cultivated than wachu systems. Both, however, were more intensively managed than traditional Hispanic arable fields. The importance of the camellón in pre‐Hispanic agriculture is emphasized by soils‐based evidence that highlights the efforts made to clear these fields of volcanic ash after the Quilotoa eruption of ca. A.D. 1280. This research suggests that, in an andosol context, pre‐Hispanic and Hispanic arable land management practices leave relict and fossil soil micromorphology features that can be used to interpret land use intensities. © 2002 Wiley Periodicals, Inc.  相似文献   

8.
Reconstruction of early Cenozoic deep‐water circulation is one of the keys to modelling Earth's greenhouse‐to‐icehouse surface evolution, but it has long been hampered by the paucity of information from the central South Pacific. To help overcome this knowledge gap, we present new micropalaeontological data from dredged carbonates (R/V Sonne Expedition SO193) at several eastern volcanic salients of the Manihiki Plateau. Interestingly, despite appreciable longitudinal separations among the dredged sites, ages indicated by the foraminiferal assemblages are consistently around the Middle Eocene (including mixed Turonian [Late Cretaceous]/Eocene at a single site), suggesting widespread post‐Eocene cessation of the pelagic sedimentation. By integrating with independent seismic and chronostratigraphic data (Deep Sea Drilling Project Leg 33) for large‐scale erosion of top‐Eocene–Oligocene sedimentary units on the eastern Manihiki Plateau, our results can be viewed as novel physical evidence for the intensification of central South Pacific deep‐water circulation since the Eocene/Oligocene climatic transition.  相似文献   

9.
印度-亚洲大陆的碰撞开始于65Ma左右,大约在45/40Ma完成,之后转入碰撞后阶段至今。碰撞过程(~65~40Ma)中,已消减的新特提斯大洋板片回转,不仅导致会聚速率提高,还诱使青藏岩石圈之下的对流软流圈上涌,并发生减压熔融,产生碰撞期(或同碰撞)火山作用。西藏中部和南部的古新世一始新世早期(~65~40Ma)火山岩即是此碰撞期(或同碰撞)火山作用的产物。该碰撞期(或同碰撞)火山岩系并非是单一的长英质中酸性火山岩,其成分变化很宽.从玄武质到流纹质均有发育。它们源于成分为ENd(t)≈+3、87Sr/88Sr(f)≈0.705和La/Nb≈0.8的软流圈源。根据岩石地球化学数据,古新世一始新世早期基性熔岩可以划分为高Ti/Y(HT,Ti/Y≥500)和低Ti/Y(LT,Ti/Y〈500)两个岩浆类型。LT熔岩又可以进一步划分为LT1和LT2等两个亚类。HT和LT1熔岩为未遭受地壳混染的基性熔岩,以具有高Nb/La值(0.88~1.53)和原始地幔标准化分配曲线上缺乏Nb、Ta和Ti负异常为特征;而LT2熔岩却为受到了强烈地壳混染的基性熔岩.其Nb/La值很低(O.20~0.49),Nb、Ta和Ti明显亏损。西藏中部拉嘎拉玄武岩和邦达错碱性玄武岩的化学演化受控于橄榄石(ol)+单斜辉石(cpx)结晶分离作用;而西藏南部林子宗火山岩系的化学变异则是经受了辉长质结晶分离作用。元素和同位素数据表明.青藏高原古新世一始新世早期基性熔岩并不是单一母岩浆结晶分离的产物。遭受地壳混染的LT2熔岩的Sr—Nd同位素变化特点与其软流圈源熔体上升过程中所卷入的不同岩石圈组分有关。下地壳组分的卷入导致典中组、帕那组和拉嘎拉玄武岩的LT2熔岩具有低-负εNd(t)值(+1.3~-3.9)和较低87St/86Sr(f)值(0.7046~-0.7065);而达孜基性火山岩和年波组的LT2?  相似文献   

10.
Ophiolites are widespread across the Anatolian plate and formed during the termination of different branches of the Neotethys ocean. The Tekirova ophiolite, situated in the Antalya ophiolite nappes in Southwest Anatolia, originated in the southern branch of the Neotethys. The former ophiolite consists of mantle and crustal sequences, in which, it is predominantly crosscut by the isolated diabasic dikes. Here, we have distinguished two dike types on the basis of their petrographic features and also degree of alteration. The relatively fresh types are generally named as diabase dikes. While the altered types are called as metasomatised dikes, and these dikes display ophitic to subophitic textures. The diabase and metasomatised dikes show enrichment in LILEs and depletion in HFSEs, indicating characteristics of suprasubduction zone ophiolites. This depletion of mobile elements may have been caused by metasomatism. The HFSEs versus HREEs diagrams show that the dikes were formed from 10 to 30% melting of extracted melts from previous mantle melting in which modified by subduction-derived fluids.  相似文献   

11.
The Na, K, Mg and Ca contents of certain deep‐origin groundwater discharges have been used by Giggenbach (1988) to define a series of ‘geoindicators’, which may provide hints on the up‐flow depth of origin, on the duration of the fluid ascent to the ground surface and on the associated CO2 flux. On occurrence of a Mw = 6.0 Vrancea earthquake, significant fluctuations of Giggenbach’s geoindicators have been recorded in a saline spring, some 50 km away from the epicentre. A pre‐seismic overall anomaly was monitored for 1 year and a half, the sharpest variations occurring about 3 months before the earthquake. Processes controlling the geoindicator fluctuations assumedly took place at 7–8 km depth, while the earthquake hypocenter depth was about 100 km. This could be an evidence for a mechanical coupling still existing between the seismogenic body in the lithosphere and the overlying crust.  相似文献   

12.
We clarified three stages of dolomitization and secondary changes by studying the petrology and geochemistry characteristics of dolomite from the Ma55–Ma510 sub-members of the Ordovician Majiagou Formation in the Jingxi area in the Ordos Basin: (1) Syngenetic microbial dolomitization is characterized by formation of dolomite with a mainly micrite structure and horse tooth-shape dolomite cements. (2) Seepage reflux dolomitization during the penecontemporaneous period superposed adjustment functions such as recrystallization and stabilization in the middle-deep burial stage, forming dolomites mainly consisting of micro crystal and powder crystal structure. (3) Powder dolomite, fine dolomite, and medium-coarse crystalline dolomite formed in pores and fractures in the middle-deep burial stage. The secondary concussive transgression-regression under a regressive background is an important condition for the occurrence of many stages of dolomitization in the study area. The basin was an occlusive epicontinental sea environment in the Ma5 member of the Ordovician Majiagou Formation sedimentary period. In the sediments, sulfate content was high, which is conducive to the preservation of microbial activity and microbial dolomitization. Micritic dolomite formed by microbial dolomitization provides good migration pathways for seepage reflux dolomitization. Affected by evaporation seawater with increased Mg/Ca ratio, seepage reflux dolomitization was widely developed and formed large-scale dolomite, and underwater uplifts and slopes are favorable areas for dolomite. In the middle-deep burial stage, dolomitizing fluid in the stratum recrystallized or stabilized the previous dolomite and formed a small amount of euhedral dolomite in the pores and fractures.  相似文献   

13.
<正>Leaf beetles Chrysomelidae of Rovno amber,from the Late Eocene,are recorded and described. Chrysomelidae of Rovno amber are represented by three subfamilies:Galerucinae(Alticini),Chrysomelinae,and Eumolpinae.Two new genera and three new species of Alticini:Manobiomorpha Nadein,gen.nov.(type species Manobiomorpha eocenica Nadein,sp.nov.),Psyllototus Nadein,gen.nov.(type species Psyllototus progenitor Nadein,sp.nov.),and Crepidodera decolorata Nadein et Perkovsky,sp.nov.are described.A new chrysomeline genus and species Paleophaedon minutus Nadein gen.nov.et sp.nov.is described.Probable trophic association of Crepidodera decolorata sp.nov.,the taxonomic positions of Manobiomorpha gen.nov.and Psyllototus gen.nov., and the composition of leaf beetle faunas of Middle and Late Eocene of Europe are discussed.  相似文献   

14.
Evidence for ultrahigh‐pressure metamorphism (UHPM) in the Rhodope metamorphic complex comes from occurrence of diamond in pelitic gneisses, variably overprinted by granulite facies metamorphism, known from several areas of the Rhodopes. However, tectonic setting and timing of UHPM are not interpreted unanimously. Linking age to a metamorphic stage is a prerequisite for reconstruction of these processes. Here, we use monazite in diamond‐bearing gneiss from Chepelare (Bulgaria) to date the diamond‐forming UHPM event in the Central Rhodopes. The diamond‐bearing gneiss comes from a strongly deformed, lithologically heterogeneous zone (Chepelare Mélange) sandwiched between two migmatized orthogneiss units, known as Arda‐I and Arda‐II. Diamond, identified by Raman micro‐spectroscopy, shows the characteristic band mostly centred between 1332 and 1330 cm?1. The microdiamond occurs as single grains or polyphase diamond + carbonate inclusions, rarely with CO2. Thermodynamic modelling shows that garnet was stable at UHP conditions of 3.5–4.6 GPa and 700–800 °C, in the stability field of diamond, and was re‐equilibrated at granulite facies/partial melting conditions of 0.8–1.2 GPa and 750–800 °C. The texture of monazite shows older central parts and extensive younger domains which formed due to metasomatic replacement in solid residue and/or overgrowth in melt domains. The monazite core compositions, with distinctly lower Y, Th and U contents, suggest its formation in equilibrium with garnet. The U–Th–Pb dating of monazite using electron microprobe analysis yielded a c. 200 Ma age for the older cores with low Th, Y, U and high La/Nd ratio, and a c. 160 Ma age for the dominant younger monazite enriched in Th, Y, U and HREE. The older age of c. 200 Ma is interpreted as the timing of UHPM, whereas the younger age of c. 160 Ma as granulite facies/partial melting overprint. Our results suggest that UHPM occurred in Late Triassic to Early Jurassic time, in the framework of collision and subduction of continental crust after the closure of Paleotethys.  相似文献   

15.
The dating of volcanic tephras forms a critical cornerstone of chronostratigraphy and is paramount for the resolution of the geological timescale. (U‐Th[‐Sm])/He dating is an emerging tool in Quaternary tephrochronology and ideally suited to date tephras <1 Ma. We present zircon, magnetite and apatite (U‐Th[‐Sm])/He combined with zircon U‐Pb data for a Pleistocene tephra in syn‐rift strata of the Woodlark Rift in Papua New Guinea. The results reveal a young He age mode (~0.5 to 0.8 Ma), consistent with an autocrystic zircon U‐Pb crystallisation age of 0.8 ± 0.1 Ma, as well as a broad range of older (U‐Th[‐Sm])/He (~1.6 to 10.2 Ma) and U‐Pb (~4.4 to 107 Ma) ages. These data demonstrate the potential of integrated U‐Pb and (U‐Th[‐Sm])/He multi‐method chronometry for dating the youngest coherent age mode, detecting contaminant grains and evaluating the isotopic systematics of these techniques.  相似文献   

16.
Through a multidisciplinary approach based on novel micropaleontological and geochemical analyses, the main paleoceanographic and paleoclimate changes that have influenced the surface‐ and deep‐water circulation in the SW Pacific Ocean (Chatham Rise, eastern New Zealand) during the last million years are reconstructed. This region represents a key area for investigating the climate evolution during the Pleistocene because here the largely wind‐driven Antarctic Circumpolar Current interacts with the west Pacific Ocean circulation via the Deep Western Boundary Current, the major source of deep water for the whole Pacific Ocean. To understand coupling or decoupling events between sea surface and bottom waters, a continuous marine sedimentary succession since 1.1 Ma, recovered by the IMAGES (International Marine Past Global Change Study) cruise in the SW Pacific Ocean (Core MD97‐2114), has been investigated based on calcareous planktonic and benthic microfossil content and C and O isotope record performed on planktonic and benthic foraminiferal tests. Results show the occurrence of long‐ and short‐term patterns of climate and ocean circulation in the last million years as the result of the interplay of ice‐sheet dynamics, surface tropical versus polar water inflow, and trophic status of the surface water. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Both Nb–Ta-mineralized and Nb–Ta-poor syenitic dikes in the Panxi region (SW China) are spatially and temporally associated with syenitic plutons, which are part of the ~ 260 Ma Emeishan large igneous province. These syenitic dikes are NW-striking, and have width varying from 1 to 5 m and length from 50 to 300 m. The dikes are mainly composed of K-feldspar, albite, aegirine and arfvedsonite, however, mineral modes are different in the Nb–Ta-mineralized and Nb–Ta-poor syenitic dikes. The major Nb–Ta-bearing mineral in the dikes is pyrochlore, which is closely associated with albite and occurs in places with intensive albitization. Rocks of the Nb–Ta-mineralized syenitic dikes contain more albite and less K-feldspar than the Nb–Ta-poor dikes, and have compositions more evolved than the Nb–Ta-poor dikes, indicating that the Nb–Ta-mineralized syenitic dikes formed from a highly evolved magma. We analyzed the B concentrations and B isotopic compositions of the samples of both Nb–Ta-mineralized and Nb–Ta-poor syenitic dikes and associated syenitic pluton using a single column purification method and ICP-AES and MC-ICP-MS techniques. The samples of the Nb–Ta-mineralized syenitic dikes have whole-rock B concentrations ranging from 11.4 to 23.9 ppm and δ11B values from − 17.95 to − 14.54‰, whereas the samples of the Nb–Ta-poor dikes and syenitic plutons have B concentrations varying from 3.32 to 16.5 ppm and δ11B values from − 13.45 to − 10.02‰. The high B concentration of the Nb–Ta-mineralized dikes relative to the Nb–Ta-poor dikes is consistent with that B is incompatible and tends to be rich in more evolved magma. The relatively low δ11B values of the Nb–Ta-mineralized dikes indicate that the B isotopes may have fractionated between fluids and rocks in a transitional, magmatic–hydrothermal stage. We propose that the highly evolved magmas in a transitional, magmatic–hydrothermal stage may have Nb– and Ta–fluorine complexes dissolved in the hydrothermal fluids in the presence of Na+. Albite crystallization due to intensive albitization in this stage resulted in the decrease of Na+ in the fluids, decomposing the Nb– and Ta–fluorine complexes. The released Nb and Ta from the complexes were then dissolved in the fluids and finally entered the lattice of pyrochlore crystals in the stage of albitization.  相似文献   

18.
Multiproxy analysis of three littoral cores from western New Caledonia supports the hypothesis that the main controlling factors of environmental changes are sea-level change, ENSO variability and extra-tropical phenomena, such as the Medieval Warm Period (MWP) marked by a tendency for La Niña-like conditions in the tropical Pacific. The record starts during the late Holocene sea-level rise when the terrestrial vegetation indicated wet and cool conditions. The site was a coastal bay definitely transformed into a freshwater swamp at around 3400 cal yr BP, after the rapid drawdown of sea level to its current level. Sediments and foraminiferal assemblages indicated subsequent episodes of freshwater infillings, emersion or very high-energy conditions, likely related to climatic changes and mostly controlled by ENSO variability. Between 2750 and 2000 cal yr BP, relatively dry and cool climate prevailed, while wetter conditions predominated between ca. 1800 and 900 cal yr BP. The Rhizophoraceae peak between ca. 1080 and 750 cal yr BP, coeval with the MWP, may indicate a global phenomenon. Microcharcoal particles present throughout the record increased after 1500 cal yr BP, suggesting an anthropogenic source. From ca. 750 cal yr BP the appearance of current type of vegetation marks the human impact.  相似文献   

19.
《Earth》2008,89(3-4):145-166
Using the most up-to-the-date information available, we present a considerably revised plate tectonic and paleogeographic model for the Indian Ocean bordering continents, from Gondwana's Middle Jurassic break-up through to India's collision with Asia in the middle Cenozoic. The landmass framework is then used to explore the sometimes complex and occasionally counter-intuitive patterns that have been observed in the fossil and extant biological records of India, Madagascar, Africa and eastern Eurasia, as well those of the more distal continents.Although the paleogeographic model confirms the traditional view that India became progressively more isolated from the major landmasses during the Cretaceous and Paleocene, it is likely that at various times minor physiographic features (principally ocean islands) provided causeways and/or stepping-stone trails along which land animals could have migrated to/from the sub-continent. Aside from a likely link (albeit broken by several marine gaps) to Africa for much of this time (it is notable, that the present-day/recent biota of Madagascar indicates that the ancestors of five land-mammal orders, plus bats, crossed the > 400-km-wide Mozambique Channel at different times in the Cenozoic), it is possible that the Kerguelen Plateau connected India and Australia–Antarctica in the mid-Cretaceous (approximately 115–90 Ma). Later, the Seychelles–Mascarene Plateau and nearby elevated sea-floor areas could have allowed faunas to pass between southern India and Madagascar in the Late Cretaceous, from around 85–65 Ma, with an early Cenozoic extension to this path forming as a result of the Reunion hot-spot trace islands growing on the ocean floor to the SSW of India. The modelling also suggests that India's northward passage towards Asia, with eventual collision at 35 Ma, involved the NE corner of the sub-continent making a glancing contact with Sumatra, followed by Burma from ~ 57 Ma (late Paleocene) onwards, a scenario which is compatible with the fossil record indicating that India–Asia faunal exchanges began occurring at about this time. Finally, we contend that a number of biologically-based direct terrestrial migration routes that have been proposed for last 15 m.y. of the Cretaceous (Asia to India; Antarctica to Madagascar and/or India) can probably be dismissed because the marine barriers, likely varying from > 1000 up to 2500 km, were simply too wide.  相似文献   

20.
Abstract Past oceanic sulphate concentration is important for understanding how the oceans’ redox state responded to atmospheric oxygen levels. The absence of extensive marine sulphate evaporites before ~1.2 Gyr probably reflects low seawater sulphate and/or higher carbonate concentrations. Sulphate evaporites formed locally during the 2.22–2.06 Gyr Lomagundi positive δ13C excursion. However, the ~2.2–2.1 Gyr Lucknow Formation, South Africa, provides the first direct evidence for seawater sulphate precipitation on a carbonate platform with open ocean access and limited terrestrial input. These marginal marine deposits contain evidence for evaporite molds, pseudomorphs after selenite gypsum, and solid inclusions of Ca‐sulphate in quartz. Carbon and sulphur isotope data match the global record and indicate a marine source of the evaporitic brines. The apparent precipitation of gypsum before halite requires ≥2.5 mm L?1 sulphate concentration, higher than current estimates for the Paleoproterozoic. During the Lomagundi event, which postdates the 2.32 Gyr initial rise in atmospheric oxygen, seawater sulphate concentration rose from Archean values of ≤200 μm L?1, but dropped subsequently because of higher pyrite burial rates and a lower oceanic redox state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号