首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Here we systematically investigated δD values of long-chain n-alkanes from modern aquatic plants, both near-shore and off-shore surface sediments, surrounding terrestrial plant litters, as well as river water and lake water in Lake Qinghai and its satellite lakes on the northeastern Qinghai-Tibet Plateau. Our data showed that(i) δD values of long-chain n-alkanes from aquatic plants varied from-184‰ to-132‰ for n-C27, from-183‰ to-138‰ for n-C29, and from-189‰ to-130‰ for n-C31, respectively, with no significant differences among the three n-alkanes homologues;(ii) δD values of long-chain n-alkanes from aquatic plants were generally more positive than those from surrounding terrestrial plants, possibly because that they recorded the D-enrichment of lake water in this semi-arid region;(iii) δD values of long-chain n-alkanes from surface sediments showed significant differences among the three n-alkanes homologues, due to the larger aquatic input of n-C27 to the sedimentary lipid pool than that of n-C31, and(iv) n-C27 δD values of near-shore aquatic plants and near-shore sediments are more negative than those from off-shore as a result of lower δD values of near-shore lake water. Our findings indicate that in this region(i) the offset between sedimentary n-C27 and n-C31 δD values(ΔδDC27-C31) could potentially be used to evaluate if sedimentary long-chain n-alkanes are derived from a single source;(ii) while δD values of n-C27 may be influenced by lake water hydrological changes, sedimentary n-C31 is derived predominantly from terrestrial plants and thus its δD can serve as a relatively reliable indicator for terrestrial paleoclimatic and paleohydrological reconstructions.  相似文献   

2.
Neogene eolian successions are one of the most important terrestrial palaeoenvironmental archives in East Asia.However, they have received far less attention than Quaternary loess deposits, especially in the case of lipid biomarker analysis.In order to obtain a better insight into the early-middle Miocene palaeoenvironment, we conducted a study of n-alkane biomarkers from sediments of the QA-I section(Qinan) in the western Chinese Loess Plateau, and compared the results with those of previous n-alkane analyses of eolian and aquatic sediments of varying age. Our principal results are as follows:(1) All QA-I samples contain n-alkanes ranging from C_(14) to C_(35), among which the relative content of short-chain n-alkanes(C_(14)–C_(20)) from microorganisms is significantly greater than that of long-chain n-alkanes(C_(26)–C_(35)) from the waxes of terrestrial higher plants;the main peak is at C_(16)–C_(18). All samples have a relatively lower abundance of medium-chain n-alkanes(C_(21)–C_(25)) than that of long-and short-chain n-alkanes, similar to strongly weathered palaeosols in Quaternary loess and Late Miocene-Pliocene Hipparion Red-Earth; however, this distribution is significantly different from that in weakly-weathered loess of Quaternary loess and Late Miocene-Pliocene Hipparion Red-Earth, as well as from aquatic sediments.(2) Despite some odd-over-even carbon predominance of long-chain n-alkanes in the QA-I samples, the carbon preference index(CPI) values are significantly lower than those of most of the weakly-weathered sediments. Our results show that strong weathering and microbial processes have significantly altered the n-alkanes in the Miocene eolian deposits in Qinan, and led to a significant oxidation and degradation of long-chain n-alkanes and the predominance of short-chain n-alkanes from bacteria. Therefore, the contribution of microorganism to total organic carbon(TOC) and its resulting in carbon isotopic composition should be carefully assessed in future studies.  相似文献   

3.
The hydrogen isotopic composition(δD) of n-alkanes in lacustrine sediments is widely used in palaeoenvironmental studies, but the heterogeneous origins and relative contributions of these lipids provide challenges for the interpretation of the increasing dataset as an environment and climatic proxy. We systematically investigated n-alkane δD values from 51 submerged plants(39 Potamogeton, 1 Myriophyllum, and 11 Ruppia), 13 algae(5 Chara, 3 Cladophora, and 5 Spirogyra) and 20 terrestrial plants(10 grasses and 10 shrubs) in and around 15 lakes on the Tibetan Plateau. Our results demonstrate that δD values of C_(29) nalkane are correlated significantly with the lake water δD values both for algae(R~2=0.85, p0.01, n=9) and submerged plants(R~2=0.90, p0.01, n=25), indicating that δD values of these algae and submerged plants reflect the δD variation of lake water. We find that apparent hydrogen isotope fractionation factors between individual n-alkanes and water(εa/w) are not constant among different algae and submerged plants, as well as in a single genus under different liminological conditions, indicating that the biosynthesis or environmental conditions(e.g. salinity) may affect their δD values. The δD values of submerged plant Ruppia in the Xiligou Lake(a closed lake) are significant enriched in D than those of terrestrial grasses around the lake(one-way ANOVA,p0.01), but the algae Chara in the Keluke Lake(an open lake) display similar δD values with grasses around the lake(one-way ANOVA, p=0.8260.05), suggesting that the n-alkane δD values of the algae and submerged plants record the signal of D enrichment in lake water relative to precipitation only in closed lakes in arid and semi-arid area. For each algae and submerged plant sample, we find uniformed δD values of different chain length n-alkanes, implying that, in combination with other proxies such as Paq and Average Chain Length, the offset between the δD values of different chain length n-alkanes can help determine the source of sedimentary n-alkanes as well as inferring the hydrological characteristics of an ancient lake basin(open vs closed lake).  相似文献   

4.
As an important biomarker, fatty acids(FAs) have been extensively used to trace the origin of organic matter in sediments and soils. However, studies of the distribution and abundance of FAs in alpine grassland soils are still rare, especially on the Qinghai-Tibetan Plateau(QTP), the highest plateau in the world, which contributes sediments to many large rivers in Asia. This study investigates the composition, distribution and source of FAs with increasing soil depths from 17 typical alpine grassland sites in the QTP. The most abundant FAs included the ubiquitous C16 FA and even-numbered long-chain FAs(C20–C30), indicating mixed inputs from microbial and higher plant sources. Source apportionment showed that higher plants were the dominant contributor of FAs(approximately 40%) in QTP soils. The abundance of FAs decreased with soil depth, with the highest value(1.08±0.09 mg/g C) at a 0–10 cm depth and the lowest value(0.46±0.12 mg/g C) at a 50–70 cm depth, due to much lower plant inputs into the deeper horizons. The total concentration of FAs was negatively correlated to the mean annual temperature(MAT; P0.05) and soil p H(P0.01), suggesting that the preservation of FAs was favored in low-MAT and low-p H soils on the QTP. The abundance of fresh C source FAs increased significantly with the mean annual precipitation(MAP; P0.05), indicating that high MAP facilitates the accumulation of fresh FAs in QTP soils. Other environmental parameters, such as the soil mineral content(aluminum and iron oxide), microbial community composition as well as litter quality and quantity, may also exert a strong control on the preservation of FAs in QTP soils and warrant further research to better understand the mechanisms responsible for the preservation of FAs in QTP soils.  相似文献   

5.
Total 26 modern soil samples were collected from various regions under different climate conditions from tropical to arid temperate in China and systematically analyzed for their organic matters by GC/MS in order to evaluate climatic impacts on soil organic components. Abundant lipids molecules were recognized, including n-alkanes, n-alkenones, and long-chain branched alkanes. We find the pre- dominance of main peaks of long-chain n-alkanes (nC29, nC31, nC33) and short-chain ones (nC16, nC17, nC18) records information of soil generation in warm-humid and cold-dry regions. The proportion of n-alkanes (nC16 nC17 nC18) to (nC29 nC31 nC33) varies in good agreement with moisture-heat conditions and thus probably can serve as a new index for climate change. The ratios of C21-/nC22 , nC17/nC31 and (nC15 nC17 nC19) / ( nC27 nC29 nC31) of n-alkanes, indicating respectively input ratios of lower bacterial alga, aquatic organisms, and higher plants and terraneous organisms, co-vary well in different climate regions from forest to grassland and desert, suggesting that they have also reflected the difference of climates between monsoon region and inland one. The C21-/C22 ratio of n-alkan-2-one records largely the discrepancy of temperature from north to south of China bordered by the Qinling Mountains, but less humidity. The C21-/C22 ratio of n-alkan-3-ones changes well with climatic factors, such as tem- perature and humidity. The biogenic source of series A-D long-chain branched alkanes may be derived from some kinds of special epiphyte that most likely live in weak oxic-anoxic and moisture-heat envi- ronments, suggesting their distribution record as well some information on climatic change. All these researches demonstrate that the distributions of lipids molecules in modern soils in China record well signals of climates from quite different climatic regions, and can serve as important climatic proxies to reveal climatic change over China.  相似文献   

6.
Carbon preference index (CPI) of long-chain n-alkanes preserved in surface soil increases gradually from southeastern China to the north margin of Loess Plateau.Along this latitudinal transect,the CPI value correlates to relative humidity,precipitation,and temperature with a negative linear relationship,respectively,whereas the correlation of CPI to temperature is relatively weak.In the Wuyi,Shennongjia,and Tianshan Mountains,CPI values do not change systemically with altitude increasing (or temperature decreasing).However,mean value of CPI for the individual mountain increases in turn from the humid mountain to the arid.These results jointly suggest that aridity (or humidity) is a dominate climate factor in altering soil CPI value.High CPI values of geological records therefore indicate the arid paleoclimate.Though long-chain n-alkanes in soil are derived mainly from leaf wax of terrestrial vascular plants,the regular latitudinal variations of soil CPI might not be caused by the change of vegetation.We speculate that increased long-chain n-alkanes from microbes and/or enhanced biodegradation in the humid climate lead to the decrease of soil CPI.  相似文献   

7.
Lower Cretaceous C-isotope records show intermittent negative/positive spikes,and consistent patterns of coeval chemostratigraphic curves thus document shifts that signal simultaneous responses of temporal changes in the global carbon reservoir.The standard pattern registered by theδ~(13)C_(org)andδ~(13)C_(carb)in Lower Aptian sediments includes distinct isotope segments C1 to C8(Menegatti et al.,1998).In the El Pui section,Organya Basin,Spain,C-isotope segment C2 is the longest interval preceding segments C3-C6 associated with oceanic anoxic event la(OAE la),and reveals a distinct negative shift of~1.8‰to~2.23‰defining the C-isotope pattern within that interval.Total inorganic carbon(TIC),total organic carbon(TOC),δ~(13)C_(org),microfacies,n-alkanes show no difference before,during,or after the negative inflection.The biomarkers indicate that organic matter(OM)mainly originates from algal/microbial sources because short-chain length homologues(≤nC_(19))dominate.nC_(20)through nC_(25)indicate some contribution from aquatic vegetation,but little from higher plants(nC_(25)),as also suggested by the terrestrial/aquatic ratio of n-alkanes or(TAR)=[(nC_(27)+nC_(29)+nC_(31))/(nC_(15)+nC_(17)+nC_(19))](averages 0.085).We suggest that conjoint pulses of contemporaneous LIPs(Ontong Java)and massive explosive volcanism in northeast Asia,the Songliao Basin(SB-V),best conform to plausible causes of the negative intra-C2 carbon isotopic excursion(CIE)at that time.Because of its apparent common occurrence the intra-C2 inflection could be a useful marker harbinger to the more pronounced CIE C3,the hallmark of OAE1a.  相似文献   

8.
Based on the total phosphorous (TP) concentration in sediment core, the TP concentration in lake water quantitatively reconstructed from fossil diatoms and diatom-TP transfer function in the Longgan Lake during the last 200 years, the temperature and precipitation data from meteorological observation for the last 50 years, the temperatures and precipitation sequences of climate simulation for the last 200 years, as well as the amount of the agricultural phosphate fertilizer in Longgan area for nearly 50 years, the characteristic and the law of the nutrient status evolution were analyzed, and the influence of the climatic factor, the anthropologic factor and the aquatic biology factor on the nutrient status evolution and its mechanism were discussed for the Longgan Lake during the last 200 years. The results showed that, in the nearly 200 years, the TP concentration in the sediment core of the Longgan Lake gradually increased, its range of variation was situated between 330-580 mg/kg, the mean value was 388 mg/kg, a nearly 30-year vibration adjustment period existed at 1950 around. The TP concentration in lake water changed in a different way. Before 1950, it had a slow increasing tendency in fluctuated background, to 1950 around it reached up to the mean value (52.18μg/L), and vibrated and adjusted around the mean value, then it fast declined, its change range was situated between 37.75-62.33μg/L. The analyses indicated that, in the centennial time scale, the climate change was the main controlling factor, while in the decadal time scale in the recent 50 years, human activities were the leading factors for the nutrient status evolution of the Longgan Lake. 60% of the variability of the TP concentration in the sediments and 57% of that in lake water were due to human activities. The differentiation between phosphorus concentration in the sediment and in the lake water reflected the response processes and the adjustment abilities of the lake aquatic ecosystems to the lake nutrient level, implying the maintenance and the destruction of the balances between the algae and the aquatic plants, as well as the corresponding accumulating characteristics of the phosphorus.  相似文献   

9.
The carbon and nitrogen isotopes in the surface sediments,plants,and soil in the upper reaches of the Chaobai River have been researched.The results showed 27.75‰-21.58‰ and 1.32‰-6.74‰ for carbon and nitrogen isotopic ratios in the surface sediments,respectively.The sources of sedimentary organic matter in this area are soil organic matter,aquatic vascular plants,and riverine plankton,respectively,and a significant contributor to sediment in the Chaohe River,the Baihe River,and the Miyun Reservoir areas is soil organic matter.Furthermore,part of sedimentary organic matter in the Miyun Reservoir is attributed to the input from the Chaohe River and the Baihe River,the other is from C4 vegetation growing around individual point stations at the Miyun Reservoir.Compared with the situation in Hebei Province,the contribution of soil organic matter decreased significantly and river plankton and aquatic vascular plants increased significantly in Beijing municipal areas.This study reveals that the source of organic matter has a close relationship with the soil erosion.  相似文献   

10.
The nature and dynamics of climate change in central Asia since the late Pleistocene are controversial. Moreover,most of the published studies focus mainly on the evolution of moisture conditions, and there have been few attempts to address changes in seasonality. In this study, records of δ13Corg, TOC, TN, C/N and grain size were obtained from lacustrine sediments at Yili Basin, Xinjiang, NW China. Our aim was to reconstruct the trend in seasonality of precipitation from the last glaciation to the Holocene. The organic matter content of the sediments is derived predominantly from terrestrial plants. The δ13Corgvalues vary from-19.4‰ to-24.8‰, indicating that the vegetation was dominated by C_3 plants. Winter-spring precipitation is identified as the factor determining the relative proportions of C_3 and C_4 plants in the region. A negative trend in δ13Corgcorresponding to an increase in the relative abundance of C_3 plants indicate a trend of increasing winter-spring precipitation from the last glaciation to the Holocene. The increased incidence of wintertime storms in the interior of Asia is suggested to result in the increase of winterspring precipitation in the Holocene.  相似文献   

11.
The compound-specific stable carbon isotope compositions(δ~(13)C) of leaf wax n-alkanes from two short sediment cores recovered off the Pearl River estuary(PRE) were analyzed to check for their capability of indicating decadal scale catchment environmental change. Sedimentary long-chain n-alkanes exhibited an odd-over-even predominance, with a maximum at n-C_(29) or n-C_(31), indicating their leaf wax origin was from vascular plants. The δ~(13)C values of C_(29) and C_(31) n-alkane in all the sediment samples were in the range of -28.8‰ to -31.2‰, consistent with the C_3 plant-dominated vegetation in the Pearl River catchments. The time series of δ~(13)C records from the two cores were comparable and displayed a decreasing trend from the early 20 th century to the end of the 1970s, followed by a reversal in that change leading to continued increase for ca. 15 years. After being corrected for the effect of atmospheric CO_2 rise and δ~(13)C_(atm) decline, the δ~(13)C_(29) records largely retained their raw changing pattern; the post-1980 increase being more conspicuous. The slightly decreasing trend in corrected δ~(13)C records before around 1980 may have been caused by an increase in precipitation, whereas the subsequent increase of δ~(13)C is likely associated with the observed dry climate and/or intensive anthropogenic deforestation. Our results thus demonstrate that leaf wax n-alkanes buried in the sediments off the PRE may well reflect change in the regional climate and/or human activity in the river catchments over the past century.  相似文献   

12.
The sedimentary environment change, trophic evolution and heavy metals pollution history of the northern Taihu Lake in the last 100 years are studied according to the sedimentary geo-chemical proxies of the core sediments, such as grain size, nutrients, heavy metals, diatom, etc. The nutrients in the sediments depended mainly on the lake internal circulation and the heavy metals were from natural geogenic sources before the 1920s, which were not influenced by human activities generally, and grain size was one of the key factors influencing heavy metals content in the sediments. The alternation of manner and strength of human activities in Taihu Lake catchment before and after the 1920s made the lake sediments coarser, and hence heavy metals and TP content decreased contrasted with that before the 1920s. TP content in sediments and water increased from the 1950s to late 1970s due to anthropogenic pollutants discharge, and the lake belonging to mesotrophic state. TN and TOC content and C/N ratio increased due to the increasing external pollutants into Taihu Lake by human activities, TP content also increased obviously in water and sediments, and the diatom association was dominated by eutrophic species since the late 1970s, indicating the eutrophication state of Taihu Lake in this period. Meanwhile the increasing in heavy metals content, such as Cu, Mn, Ni, Pb and Zn, and their proportion of valid fractions in the sediments indicates that they all result from human pollutants since the late 1970s. The heavy metals in the surface sediments have certain potential biological toxicity due to the higher SEM/AVS ratio.  相似文献   

13.
The significance of the various biogeochemical pathways that drive carbon cycling and the relative fractions of dissolved inorganic carbon(DIC) produced by these reactions within the sulfate-methane transition zone(SMTZ) are still being debated. Unraveling these processes is important to our understanding of the benthic DIC sources and their contributions to the global carbon cycle. Here, we measure pore water geochemistry(chlorine, sulfate, methane, Ca~(2+), Mg~(2+), DIC and δ~(13)C-DIC) as well as solid geochemistry(sedimentary organic carbon(SOC) and δ~(13)C of SOC) in nearshore sediments from Qi'ao Island in the Pearl River Estuary of the Southern China Sea. Our analysis indicates that SOC originates from the mixing of carbon from terrestrial and marine sources, and that terrestrial materials dominate the net loss of SOC during the degradation of organic matter, especially at sites located near the river outlets. Sulfate reduction via SOC degradation is not appreciable in the upper sediment layer due to conservative mixing-dilution by freshwater. However, below this layer, the anaerobic oxidation of methane(AOM) and methanogenesis occur. Within the SMTZ, the δ~(13)C mass balance shows that the proportions of DIC derived from organoclastic SO_4~(2-) reduction(OSR) and AOM are 50.3% to 66.7% and 0.1% to 17.9%, respectively, whereas methanogenesis contributes 17.0% to 43.9%. This study reveals that the upward diffusion of DIC from ongoing methanogenesis significantly influences carbon cycling within the SMTZ in these estuarine sediments. As a result, we suggest that the plots of the ratio of change in sulfate to change in DIC in pore water should be used with caution when discriminating between sulfate reduction pathways in methane-rich sediments.  相似文献   

14.
Sediments contain abundant lipid compounds in general, which are used as biomarker compounds to study organic matter sources and reconstruct the pa-laeoenvironments[1—7]. However, lipid compounds in sediments are generally a mixture of various genetic components so that it is difficult to correctly decouple their biological sources only by the results of bio-chemical researches. Carbon isotopic studies of indi-vidual sedimentary lipid compounds can discover their genetic information, which pr…  相似文献   

15.
The sources and enrichment of organic matter in a sediment core in the first member of the Xiagou Formation(K_1g~1) from the Chang 2-2 borehole of the Jiuquan Basin,NW China,have been examined using Rock-Eval,maceral,carbon isotopes and biomarker data.This data indicates that highly variable organic matter sources and preservation conditions in response to climate change.TOC content,HI,and δ~(13)C value were strongly correlated with the abundance of gammacerane,woody organic matter content,steranes/hopanes ratio,and C_(29) sterane content.This correlation demonstrates the importance that the control of the salinity of the depositional environment and organic matter sources can have upon the enrichment,type,and carbon isotopic composition of organic matter.In the Jiuquan Basin's relatively high temperature and arid climate,high salinity lakes with high primary productivity of algae,planktons,and bacteria,and good organic matter preservation conditions(anoxic bottom water) resulted in the enrichment of isotopically-light algae-bacterial organic matter.In the Jiuquan Basin's regions with a relatively low temperature and wet climate,fresh lakes with low primary productivity of algae,planktons,and bacteria received significant terrigenous high plants input,resulting in the deposition of a low abundance of isotopically heavier terrestrial organic matter.  相似文献   

16.
Siliciclastic sedimentary rocks,including sandstones and associated shales,from the Permo-Carboniferous Kanawar Group of NW Tethys Himalaya,Spiti Region,India were examined geochemically to monitor the evolutionary changes in the upper continental crust in the Himalaya.The rocks are characterized by consistent rare earth element(REE) patterns with light REE enrichment(La_N/Yb_N = 5.3-28.2) and flat heavy REE patterns.The∑REE values are high(up to 281 ppm) with large negative Eu anomalies(avg.Eu/Eu~* = 0.57).The REE characteristics of the sediments are similar to those of postArchean Australian shales and North American shale composite.La/Th values(avg.2.34) correspond to a relatively felsic composition of the terrestrial igneous rocks standard(La/Th of G-1 = 2.3).The evolved felsic composition of the sediments probably relates to widespread acidic activity in the source.The REE patterns and Th/U values seem to have been affected by the sedimentary environment as well as by the provenance.The presence of positive Ce anomalies in some sediments may be the result of post-depositional processes.Moreover,the Permo-Carboniferous sediments indicate that hydraulic sorting,even over short transport distances,is capable of concentrating enough accessory phases to influence REE composition and to develop negative Eu anomalies.High ∑REE,La/Yb,and Th/U contents and large negative Eu anomalies reveal that the sediments were deposited in an oxidizing environment,suggesting the surficial environment became oxidizing around the Carboniferous-Permian boundary in the Indian craton.  相似文献   

17.
Forms of phosphorus in sediments from 25 lakes in the middle and lower reaches of Yangtze River were analyzed by the sequential extraction procedure. Contents and spatial distrubution of algal available phosphorus (AAP) in sediments of Lake Taihu, the third largest freshwater lake of China, were also studied. Relationships between phosphorus forms in sediment and macrophytes coverage in sample sites, as well as phosphorus forms in sediments and chlorophyal contents in lake water were discussed. Exchangeable form of phosphorus (Ex-P) in surface sediments was significantly positive correlative to total phosphorus (IP), dissolved total phosphorus (DTP) and soluble reactive phosphorus (SRP) contents in the lake water. Bioavailable phosphorus (Bio-P) contents in sediments from macrophytes dominant sites were significantly lower than that in no macrophyte sites. In Lake Taihu, Ex-P content in top 3 cm sediment was highest. However, content of ferric fraction phosphorus (Fe-P) was highest in 4 - 10 cm. Bioavalilble phosphorus (Bio-P) contents in surface sediments positively correlated to Chlorophyll a contents in water of Lake Taihu with significant difference. Therefore, contents of Bio-P and AAP could be acted as the indicators of risks of internal release of phosphorus in the shallow lakes. It was estimated that there were 268.6 ton AAP in top 1 cm sediments in Lake Taihu. Sediment suspension caused by strong wind-induced wave disturbance could carry plenty of AAP into water in large shallow lakes like Lake Taihu.  相似文献   

18.
Mercury(Hg) is well known as one of the most toxic elements to man.The coastal environments adjacent to industrial areas are reported to often be contaminated with mercury.Mercury becomes more toxic in the form of methylmercury(Me-Hg) which is converted from inorganic mercury in aqueous systems by microbial activity and can bio-magnify through the food chain.A simple method for the determination of total mercury and methylmercury in sediments was optimized by slightly modifying an old method using the direct mercury analyzer technique.Core sediment samples from Thane Creek,Mumbai,India were collected and analysed for total mercury and methylmercury.The Hg concentration in the creek varied between 0.54 to 16.03 μg g~(-1) while Me-Hg concentrations ranged between0.04 to 1.07 μg g~(-1).In surface sediment,mercury concentrations ranged from 4.33 μg g~(-1) to 12.16μg g~(-1).Total organic carbon content was found to be around 2 percent in different layers of the sediments.The enrichment factors,which indicate the extent of pollution in sediments,were estimated to range from 26 to 50 at different locations in the creek.Lithogenic and anthropogenic concentrations of mercury in the creek were also determined to compare the impact of anthropogenic and natural sources.Anthropogenic inventories were about 5-70 times more in concentration than the lithogenic in the different core sediments.  相似文献   

19.
In this paper, Lake Taihu, a large shallow freshwater lake in China, is chosen as an example of reconstruction of eutrophication through the comparison between stable isotopes from dissolved nutrients and plants and water column nutrient parameters and integration of multiple proxies in a sediment core from Meiliang Bay including TN, TP, TOC, C/N,δ15N,δ13C, etc. Differences in aquatic plant species and trophic status between East Taihu Bay and Meiliang Bay are indicated by their variations inδ13C andδ15N of aquatic plants andδ15N of NH4 . A significant influence of external nutrient inputs on Meiliang Bay is reflected in temporal changes inδ15N of NH4 and hydro-environmental parameters. The synchronous change betweenδ13C andδ15N values of sedi-mented organic matter (OM) has been attributed to elevated primary production at the beginning of eutrophication between 1950 and 1990, then recent inverse correlation between them has been caused by the uptake of 15N-enriched inorganic nitrogen by phytoplankton grown under eutrophication and subsequent OM decomposition and denitrification in surface sediments, indicating that the lake has suffered from progressive eutrophication since 1990. Based on the use of a combination of stable isotopes and elemental geochemistry, the eutrophication of Meiliang Bay in Lake Taihu could be better traced. These transitions of the lake eutrophication respectively occurring in the 1950s and 1990s have been suggested as a reflection of growing impacts of human activities, which is coincident with the instrumental data.  相似文献   

20.
吴化前  李安邦 《湖泊科学》1998,10(S1):111-116
Taihu Lake is a mutiple-function fresh water lake situated in the delta of Yangtze River. Nowadays, the serious pollution mainly created by industry and residents'' life has made the water quality of the lake decline continuously. Eutrophication is the main characteristic of the water pollution. The water pollution not only affect the several functions of the lake, but also cause the changes of the aquatic biological community.The pollution control strategies to be adopted include the treatment of the industrial waste water and residents'' life sewage, as well as the agricultural non-point polluting source. Ecological engineering is the useful measure for diminishing the nutrition salts in water. On the basis of pollution control, the ecological restoration methods include the transplanting of the emerged and/loading anchored aquatic plants at first and the restoration of the submerged plants in the next.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号