首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A Late Palaeozoic accretionary prism, formed at the southwestern margin of Gondwana from Early Carboniferous to Late Triassic, comprises the Coastal Accretionary Complex of central Chile (34–41°S). This fossil accretionary system is made up of two parallel contemporaneous metamorphic belts: a high‐pressure/low temperature belt (HP/LT – Western Series) and a low pressure/high temperature belt (LP/HT – Eastern Series). However, the timing of deformation events associated with the growth of the accretionary prism (successive frontal accretion and basal underplating) and the development of the LP/HT metamorphism in the shallower levels of the wedge are not continuously observed along this paired metamorphic belt, suggesting the former existence of local perturbations in the subduction regime. In the Pichilemu region, a well‐preserved segment of the paired metamorphic belt allows a first order correlation between the metamorphic and deformational evolution of the deep accreted slices of oceanic crust (blueschists and HP greenschists from the Western Series) and deformation at the shallower levels of the wedge (the Eastern Series). LP/HT mineral assemblages grew in response to arc‐related granitic intrusions, and porphyroblasts constitute time markers recording the evolution of deformation within shallow wedge material. Integrated P–T–t–d analysis reveals that the LP/HT belt is formed between the stages of frontal accretion (D1) and basal underplating of basic rocks (D2) forming blueschists at c. 300 Ma. A timeline evolution relating the formation of blueschists and the formation and deformation of LP/HT mineral assemblages at shallower levels, combined with published geochronological/thermobarometric/geochemistry data suggests a cause–effect relation between the basal accretion of basic rocks and the deformation of the shallower LP/HT belt. The S2 foliation that formed during basal accretion initiated near the base of the accretionary wedge at ~30 km depth at c. 308 Ma. Later, the S2 foliation developed at c. 300 Ma and ~15 km depth shortly after the emplacement of the granitoids and formation of the (LP/HT) peak metamorphic mineral assemblages. This shallow deformation may reflect a perturbation in the long‐term subduction dynamics (e.g. entrance of a seamount), which would in turn have contributed to the coeval exhumation of the nearby blueschists at c. 300 Ma. Finally, 40Ar–39Ar cooling ages reveal that foliated LP/HT rocks were already at ~350 °C at c. 292 Ma, indicating a rapid cooling for this metamorphic system.  相似文献   

2.
The Yaoling tungsten deposit is a typical wolframite quartz vein‐type tungsten deposit in the South China metallogenic province. The wolframite‐bearing quartz veins mainly occur in Cambrian to Ordovician host rocks or in Mesozoic granitic rocks and are controlled by the west‐north‐west trending extensional faults. The ore mineralization mainly comprises wolframite and variable amounts of molybdenite, chalcopyrite, pyrite, fluorite, and tourmaline. Hydrothermal alteration is well developed at the Yaoling tungsten deposit, including greisenization, silicification, fluoritization, and tourmalinization. Three types of primary/pseudosecondary fluid inclusions have been identified in vein quartz, which is intimately intergrown with wolframite. These include two‐phase liquid‐rich aqueous inclusions (type I), two‐ or three‐phase CO2‐rich inclusions (type II), and type III daughter mineral‐bearing multiphase high‐salinity aqueous inclusions. Microthermometric measurements reveal consistent moderate homogenization temperatures (peak values from 200 to 280°C), and low to high salinities (1.3–39 wt % NaCl equiv.) for the type I, type II, and type III inclusions, where the CO2‐rich type II inclusions display trace amounts of CH4 and N2. The ore‐forming fluids are far more saline than those of other tungsten deposits reported in South China. The estimated maximum trapping pressure of the ore‐forming fluids is about 1230–1760 bar, corresponding to a lithostatic depth of 4.0–5.8 km. The δDH2O isotopic compositions of the inclusion fluid ranges from ?66.7 to ?47.8‰, with δ18OH2O values between 1.63 and 4.17‰, δ13C values of ?6.5–0.8‰, and δ34S values between ?1.98 and 1.92‰, with an average of ?0.07‰. The stable isotope data imply that the ore‐forming fluids of the Yaoling tungsten deposit were mainly derived from crustal magmatic fluids with some involvement of meteoric water. Fluid immiscibility and fluid–rock interaction are thought to have been the main mechanisms for tungsten precipitation at Yaoling.  相似文献   

3.
Contrasting compositions and densities of fluid inclusions were revealed in siderite–barite intergrowths of the Dro?diak polymetallic vein hosted in Variscan basement of the Gemeric unit (Central European Carpathians). Primary two‐phase aqueous inclusions in siderite homogenized between 101 and 165 °C, total salinity ranged between 18 and 27 wt%, and CaCl2/(NaCl + CaCl2) weight ratios were fixed at 0.1–0.3. By contrast, mono‐ and two‐phase aqueous inclusions in barite exhibited total salinities between 2 and 22 wt%, and the CaCl2/NaCl ratios ranged from NaCl‐ to CaCl2‐dominated compositions. The aqueous inclusions in barite were closely associated with very high‐density (0.55–0.745 g cm?3) nitrogen inclusions, in some cases containing up to 16 mol.% CO2. Crystallization P–T conditions of siderite (175–210 °C, 1.2–1.7 kbar) constrained by the vertical oxygen isotope gradient along the studied vein, isochores of fluid inclusions and the K/Na exchange thermometer corresponded to minimal palaeodepths between 4.3 and 6.3 km, assuming lithostatic load and average crust density of 2.75 g cm?3. Maximum fluid pressure during barite crystallization attained 3.6–4.4 kbar at 200–300 °C, and the most dense nitrogen inclusions maintained without decrepitation the residual internal pressure of 2.2 kbar at 25 °C. Contrasting fluid compositions, increasing depths of burial (~4–14 km) and decreasing thermal gradients (~40–15 °C km?1) during initial mineralization stages of the Dro?diak vein reflect Alpine orogenic processes, rather than an incipient Permian rifting suggested in previous metallogenetic models. Siderite crystallized at rising P–T in a closed, rock‐buffered hydrothermal system developed in the Variscan basement during the north‐vergent Cretaceous thrusting and thickening of the Gemeric crustal wedge. Variable salinities of the barite‐hosted inclusions reflect a fluid mixing in open hydrothermal system, and re‐equilibration textures (lengths of decrepitation cracks proportional to fluid inclusion sizes) correspond to retrograde crystallization trajectory coincidental with transpression or unroofing. Maximum recorded fluid pressures indicate ~12‐km‐thick pile of imbricated nappe units accumulated over the Gemeric basement during the Cretaceous collision.  相似文献   

4.
The Nianzha gold deposit,located in the central section of the Indus-Yarlung Tsangpo suture(IYS) zone in southern Tibet,is a large gold deposit(Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision(~65-41 Ma).The main orebody is 1760 m long and 5.15 m thick,and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south.High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange.The wall-rock alteration is characterized by silicification in the fracture zone,serpentinization and the formation of talc and magnesite in the ultramafic unit,and chloritization and the formation of epidote and calcite in diorite.Quartz veins associated with Au mineralization can be divided into three stages.Fluid inclusion data indicate that the deposit formed from H_2O-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt%NaCl equivalent.The quartz veins yield δ~(18)O_(fluid) values of 0.15‰-10.45‰,low δD_(V-SMOW)values(-173‰ to-96‰),and the δ~(13)C values of-17.6‰ to-4.7‰,indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids.The pyrite within the diorite has δ~(34)S_(V-CDT) values of-2.9‰-1.9‰(average-1.1‰),~(206)Pb/~(204)Pb values of 18.47-18.64,~(207)Pb/~(204)Pb values of 15.64-15.74,and ~(208)Pb/~(204)Pb values of 38.71-39.27,all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle.The presence of the Nianzha,Bangbu,and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits.We identified three types of mineralization within the IYS,namely Bangbu-type accretionary,Mayum-type microcontinent,and Nianzha-type ophiolite-associated orogenic Au deposits.The three types formed at different depths in an accretionary orogenic tectonic setting.The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.  相似文献   

5.
CO2 inclusions with density up to 1,197 kg m−3 occur in quartz–stibnite veins hosted in the low-grade Palaeozoic basement of the Gemericum tectonic unit in the Western Carpathians. Raman microanalysis corroborated CO2 as dominant gas species accompanied by small amounts of nitrogen (<7.3 mol%) and methane (<2.5 mol%). The superdense CO2 phase exsolved from an aqueous bulk fluid at temperatures of 183–237°C and pressures between 1.6 and 3.5 kbar, possibly up to 4.5 kbar. Low thermal gradients (∼12–13°C km−1) and the CO2–CH4–N2 fluid composition rule out a genetic link with the subjacent Permian granites and indicate an external, either metamorphogenic (oxidation of siderite, dedolomitization) or lower crustal/mantle, source of the ore-forming fluids.According to microprobe U–Pb–Th dating of monazite, the stibnite-bearing veins formed during early Cretaceous thrusting of the Gemeric basement over the adjacent Veporic unit. The 15- to 18-km depth of burial estimated from the fluid inclusion trapping PT parameters indicates a 8- to 11-km-thick Upper Palaeozoic–Jurassic accretionary complex overlying the Gemeric basement and its Permo-Triassic autochthonous cover.  相似文献   

6.
Out-of-sequence thrusts (OSTs) exposed in ancient accretionary prisms are considered as fossil analogs of present-day megasplay faults in subduction margins and can provide direct information about the conditions of deformation during thrust activity. In modern as well as in ancient accretionary prisms, first-order megasplay faults or OSTs truncate or merge with faults of lesser importance called second-order OSTs. Structural analysis of the Makinokuchi fault, a branch of an Oligocene to lower Miocene second-order OST in the Tertiary Shimanto Belt of central Kyushu, SW Japan, brings information about the conditions of deformation at the time of thrusting. The studied exposure shows that the fault footwall and, to a much lesser extent, the fault hanging-wall, consist of quartz-cemented syntectonic dilatant hydraulic breccias testifying to pore fluid pressures larger than the least principal stress component. The footwall sandstones are crossed by several centimeters thick quartz veins that merge with the footwall breccias. The continuity between the veins and the breccias suggest that the veins acted as conduits which likely collected fluids from the footwall side sandstones upward and toward the fault. Fluid inclusions indicate that the quartz cementing the breccias and that filling the feeder veins crystallized from similar fluids and under similar pressure and temperature conditions (245–285 °C and 5–8 km depth). These similarities suggest that the fluids responsible for syn-tectonic hydraulic brecciation were collected from the footwall through the conduits. The fluid inclusion trapping temperatures are close to the temperatures expected to be reached along the seismogenic zone. Our analysis shows that fluid overpressures can play a key role in the growth and activity of second-order OSTs in accretionary prisms and suggests that fluids collected along second-order OSTs or splay faults may flow upward along first-order OSTs or megasplay faults.  相似文献   

7.
Fluid inclusions and geological relationships indicate that rodingite formation in the Asbestos ophiolite, Québec, occurred in two, or possibly three, separate episodes during thrusting of the ophiolite onto the Laurentian margin, and that it involved three fluids. The first episode of rodingitization, which affected diorite, occurred at temperatures of between 290 and 360°C and pressures of 2.5 to 4.5 kbar, and the second episode, which affected granite and slate, occurred at temperatures of between 325 and 400°C and pressures less than 3 kbar. The fluids responsible for these episodes of alteration were moderately to strongly saline (~1.5 to 6.3 m eq. NaCl), rich in divalent cations and contained appreciable methane. A possible third episode of alteration is suggested by primary fluid inclusions in vesuvianite-rich bodies and secondary inclusions in other types of rodingite, with significantly lower trapping temperatures, salinity and methane content. The association of the aqueous fluids with hydrocarbon-rich fluids containing CH4 and higher order alkanes, but no CO2, suggests strongly that the former originated from the serpentinites. The similarities in the composition of the fluids in all rock types indicate that the ophiolite had already been thrust onto the slates when rodingitization occurred.  相似文献   

8.
A comprehensive study of authigenic carbonates and associated fauna in Late Albian organic‐rich, deep‐water deposits (the Black Flysch Group) reveals that carbonate precipitation was a by‐product of the anaerobic oxidation of hydrocarbon‐rich hydrothermal fluids. The authigenic carbonates are exposed along the Kardala and Alkolea sea cliffs in the western Pyrenees. The two vent carbonates occur 1 km apart adjacent to the synsedimentary, right‐reverse Mutriku fault, but in contrasting structural domains: the Kardala carbonates occur on a structural ridge (hangingwall) and the Alkolea carbonates are positioned at the base of an erosional scarp (folded downward footwall). The similarity in pattern of the carbonate phases and complex paragenetic events for both vent precipitates implies that hydrothermal fluid generation processes and pore‐water evolution during early and late diagenesis were similar. Nevertheless, a comparison of the geochemistry, fossil fauna and morphology of carbonate structures of both precipitates suggests that the vented hydrocarbon type, flow intensity and temperature of hydrothermal fluids were different. At the Kardala vent, intense focused flow of hot (up to 109 °C), oil‐rich fluids were generated, allowing the development of a relatively abundant chemosynthesis‐based fauna. In contrast, at the Alkolea vent, diffuse flows of warm, thermogenic methane‐rich fluids were expelled to the sea floor and no chemosynthetic fauna developed. These differences are related to the contrasting structural setting of each locality. Similar δ13Corg values for both pyrobitumen‐fills and host unit organic matter suggest that the hydrocarbon source was the Black Flysch Group. Contact alteration of these organic‐rich sediments by syndepositional hydrothermal fluids generated hydrothermal petroleum (oil and gas hydrocarbons) which probably migrated updip to the sea floor by contemporary compression tectonics.  相似文献   

9.
The partly dolomitized Swan Hills Formation (Middle‐Upper Devonian) in the Simonette oil field of west‐central Alberta underwent a complex diagenetic history, which occurred in environments ranging from near surface to deep (>2500 m) burial. Five petrographically and geochemically distinct dolomites that include both cementing and replacive varieties post‐date stylolites in limestones (depths >500 m). These include early planar varieties and later saddle dolomites. Fluid inclusion data from saddle dolomite cements (Th=137–190 °C) suggest that some precipitated at burial temperatures higher than the temperatures indicated by reflectance data (Tpeak=160 °C). Thus, at least some dolomitizing fluids were ‘hydrothermal’. Fluorescence microscopy identified three populations of primary hydrocarbon‐bearing fluid inclusions and confirms that saddle dolomitization overlapped with Upper Cretaceous oil migration. The source of early dolomitizing fluids probably was Devonian or Mississippian seawater that was mixed with a more 87Sr‐rich fluid. Fabric‐destructive and fabric‐preserving dolostones are over 35 m thick in the Swan Hills buildup and basal platform adjacent to faults, thinning to less than 10 cm thick in the buildup between 5 and 8 km away from the faults. This ‘plume‐like’ geometry suggests that early and late dolomitization events were fault controlled. Late diagenetic fluids were, in part, derived from the crystalline basement or Palaeozoic siliciclastic aquifers, based on 87Sr/86Sr values up to 0·7370 from saddle dolomite, calcite and sphalerite cements, and 206Pb/204Pb of 22·86 from galena samples. Flow of dolomitizing and mineralizing fluids occurred during burial greater than 500 m, both vertically along reactivated faults and laterally in the buildup along units that retained primary and/or secondary porosity.  相似文献   

10.
Gold mineralization of the Seolhwa mine occurs in a single stage of massive quartz veins which filled the north‐east‐trending fault shear zones in the Jurassic granitoid of 161 Ma within the Gyeonggi Massif. The vein quartz contains three main types of fluid inclusions at 25°C: (i) aqueous type I inclusions (0–15 wt.% NaCl) containing small amounts of CO2; (ii) gas‐rich (more than 70 vol. %), vapor‐homogenizing, aqueous type II inclusions; and (iii) low‐salinity (less than 5 wt.% NaCl), liquid CO2‐bearing, type III inclusions. The H2O‐CO2‐CH4‐N2‐NaCl inclusions represent immiscible fluids trapped earlier along the solvus curve in the temperature range 250–430°C at pressures of ~1 kb. Detailed fluid inclusion chronologies suggest a progressive decrease in pressure during the mineralization. Aqueous inclusion fluids represent either later fluids evolved through extensive fluid unmixing from a homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters. Initial fluids were homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluids as follows: 250° to 430°C, 16–62 mol% CO2, 5–14 mol% CH4, 0.06–0.31 mol% N2 and salinities of 0.4–4.9 wt.% NaCl. The T‐X data for the Seolhwa mine suggest that the hydrothermal system has been probably located nearer to the granitic melt, which facilitated the CH4 formation and resulted in a reduced fluid state indicated by the predominance of pyrrhotite. Measured and calculated isotopic compositions of the hydrothermal fluids [δ18O = 5.3–6.5‰; δD =?69 to ?84‰] provide evidence of the CH4‐H2O equilibria and further indicate that the auriferous fluids were magmatically derived. Both the dominance of δ34S values of sulfides close to the meteoric reference (?0.6–1.4‰; δ34SΣS values of 0.3–1.1‰) and the available δ13C data (?4‰) are consistent with their deep igneous source. The Seolhwa mine was probably formed by extensive fracturing and veining due to the thermal expansion of water derived from the Jurassic granitoid melt.  相似文献   

11.
Characteristics of cold seeps at different geologic settings are the subject of this review primarily based on results of the Research Consortium SFB 574. Criteria are drawn from examples on the erosive convergent margin off Costa Rica, the accretionary margin off Chile supplemented by examples from the transform margin of the Golf of Cadiz and the convergent Hikurangi margin off New Zealand. Others are from well-studied passive margins of the Black Sea, the Golf of Mexico, the eastern Mediterranean Sea and the South China Sea. Seeps at all settings transport water and dissolved compounds to the ocean through the seafloor by different forcing mechanism and from different depths of the submerged geosphere (10s of meters to 10s of km). The compounds sustain oasis-type ecosystems by providing bioactive reductants sulfide, methane and hydrogen. Hereby, the interaction between fluid composition, flux rates and biota results in a diagnostic hydrocarbon–metazoan–microbe–carbonate association; currently, well over 100 active sites are known. The single most important reaction is microbially mediated anaerobic oxidation of methane with secondary reactions involving S-biogeochemistry and carbonate mineral precipitation. Seep fluids and their seafloor manifestations provide clues as to source depth, fluid–sediment/rock interaction during ascent, lifetime and cyclicity of seepage events but less so on the magnitude of return flow. At erosive margins, Cl-depleted and B-enriched fluids from clay dehydration provide criteria for source depth and temperature. The upward material flow generates mud volcanoes at the seafloor above the projected location of dehydration at depth. At accretionary margins, fluids are derived from more shallow depths by compaction of sediments as they ride on the incoming oceanic plate; they are emitted through thrust faults. At highly sedimented margins, organic-rich and evaporite-containing strata (when present) determine the final fluid composition, by emitting characteristically gas hydrate-derived methane, brine-associated non-methane hydrocarbons or leached elements and their isotopes (Li, δ7Li, B, Ba) from host sediments. Smectite–illite transformation and associated Cl-depletion from release of interlayer water is a pervasive process at these margins. Rare earth element pattern in conjunction with redox-sensitive metals retained in seep carbonates indicate whether or not they precipitated in contact with oxic bottom water or suboxic fluids; clear environmental characterization, though, currently remains inconclusive. More deeply sourced fluids as in transform margins may be characterized by their 87Sr/86Sr ratios from interaction with oceanic crustal rocks below. Quantification of flow and reliable estimates of total volatile output from fore-arcs remain a challenge to seep research, as does understanding the role of geologically derived methane in the global methane cycle.  相似文献   

12.
The South Tien Shan (STS) belt results from the last collision event in the western Central Asian Orogenic Belt (CAOB). Understanding its formation is of prime importance in the general framework of the CAOB. The Atbashi Range preserves high‐P (HP) rocks along the STS suture, but still, its global metamorphic evolution remains poorly constrained. Several HP units have been identified: (a) a HP tectonic mélange including boudins of mafic eclogites in a sedimentary matrix, (b) a large (>100 km long) high‐P metasedimentary unit (HPMU) and (c) a lower blueschist facies accretionary prism. Raman Spectroscopy on carbonaceous material combined with phengite and chlorite multiequilibria and isochemical phase diagram modelling indicates that the HPMU recorded homogeneous P–T conditions of 23–25 kbar and 560–570°C along the whole unit. 40Ar/39Ar dating on phengite from the HPMU ranges between 328 and 319 Ma at regional scale. These ages are interpreted as (re‐) crystallization ages of phengite during Tmax conditions at a pressure range of 20–25 kbar. Thermobarometry on samples from the HP tectonic mélange provides similar metamorphic peak conditions. Thermobarometry on the blueschist to lower greenschist facies accretionary prism indicates that it underwent P–T conditions of 5–6 kbar and 290–340°C, highlighting a 17–20 kbar pressure gap between the HPMU‐tectonic mélange units and the accretionary prism. Comparison with available geochronological data suggests a very short time span between the prograde path (340 Ma), HP metamorphic peak (330 Ma), the Tmax (328–319 Ma) and the final exhumation of the HPMU (303–295 Ma). Extrusion of the HPMU, accommodated by a basal thrust and an upper detachment, was driven by buoyant forces from 70–75 km up to 60 km depth, which directly followed continental subduction and detachment of the HPMU. At crustal depths, extrusion was controlled by collisional tectonics up to shallow levels. Lithological homogeneity of the HPMU and its continental‐derived character from the North Tien Shan suggest this unit corresponds to the hyper‐extended continental margin of the Kazakh continent, subducted southward below the north continental active margin of the Tarim craton. Integration of the available geological data allows us to propose a general geodynamic scenario for Tien Shan during the Carboniferous with a combination of (a) N‐dipping subduction below the Kazakh margin of Middle Tien Shan until 390–340 Ma and (b) S‐dipping subduction of remaining Turkestan marginal basins between 340 and 320 Ma.  相似文献   

13.
Structural investigations, integrated with X‐ray diffraction, fluid inclusion microthermometry and oxygen‐stable isotope analyses are used to reconstruct the deformation history and the palaeo‐fluid circulation during formation of the low‐grade, turbidite‐dominated Early Palaeozoic Robertson Bay accretionary complex of north Victoria Land (Antarctica). Evidence for progressive deformation is elucidated by analysing the textural fabric of chronologically distinct, thrust‐related quartz vein generations, incrementally developed during progressive shortening and thickening of the Robertson Bay accretionary complex. Our data attest that orogenic deformation was mainly controlled by dissolution–precipitation creep, modulated by stress‐ and strain‐rate‐dependent fluid pressure cycling, associated with local and regional permeability variations induced by the distribution and evolution of the fracture network during regional thrusting. Fracture‐related fluid pathways constituted efficient conduits for episodic fluid flow. The dominant migrating fluid was pre‐to‐syn‐folding and associated with the migration of warm (160–200 °C) nitrogen‐ and carbonic (CO2 and CH4)‐bearing fluids. Both fluid advection and diffusive mass transfer are recognized as operative mechanisms for fluid–rock interaction and vein formation during continuous shortening. In particular, fluid–rock interaction was the consequence of dissolution–precipitation creep assisted by tectonically driven cooling fluids moving through the rock section as a result of seismic pumping. The most likely source of the migrating fluids would be the frontal part of the growing accretionary complex, where fluids from the deep levels in the hinterland are driven trough channelization operated by the thrust‐related fracture (fault) systems.  相似文献   

14.
The Yingchengzi gold deposit, located 10 km west of Shalan at the eastern margin of the Zhangguangcai Range, is the only high commercially valuable gold deposit in southern Heilongjiang Province, NE China. This study investigates the chronology and geodynamic mechanisms of igneous activity and metallogenesis within the Yingchengzi gold deposit. New zircon U–Pb data, fluid inclusion 40Ar/39Ar dating, whole‐rock geochemistry and Sr–Nd isotopic analysis is presented for the Yingchengzi deposit to constrain its petrogenesis and mineralization. Zircon U–Pb dating of the granite and diabase–porphyrite rocks of the igneous complex yields mean ages of 471.7 ± 5.5 and 434 ± 15 Ma respectively. All samples are high‐K calc‐alkaline or shoshonite rocks, are enriched in light rare earth elements and large ion lithophile elements, and are depleted in high field strength elements, consistent with the geochemical characteristics of arc‐type magmas. The Sr–Nd isotope characteristics indicate that the granite formed by partial melting of the lower crust, including interaction with slab‐derived fluids from an underplated basaltic magma. The primary magma of the diabase–porphyrite was likely derived from the metasomatized mantle wedge by subducted slab‐derived fluids. Both types of intrusive rocks were closely related to subduction of the ocean plate located between the Songnen–Zhangguangcai Range and Jiamusi massifs. However, fluid inclusion 40Ar/39Ar dating indicates that the Yingchengzi gold deposit formed at ~249 Ma, implying that the mineralization is unrelated to both the granite (~472 Ma) and diabase–porphyrite (~434 Ma) intrusions. Considering the tectonic evolution of the study area and adjacent regions, we propose that the Yingchengzi gold deposit was formed in a late Palaeozoic–Early Triassic continental collision regime following the closure of the Paleo‐Asian Ocean. In addition, the Yingchengzi deposit could be classified as a typical orogenic‐type gold deposit occuring in convergent plate margins in collisional orogens, and unlikely an intrusion‐related gold deposit as reported by previous studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Lherzolite xenoliths containing fluid inclusions from the Ichinomegata volcano, located on the rear-arc side of the Northeast Japan arc, may be considered as samples of the uppermost mantle above the melting region in the mantle wedge. Thus, these fluid inclusions provide valuable information on the nature of fluids present in the sub-arc mantle. The inclusions in the Ichinomegata amphibole-bearing spinel–plagioclase lherzolite xenoliths were found to be composed mainly of CO2–H2O–Cl–S fluids. At equilibrium temperature of 920 °C, the fluid inclusions preserve pressures of 0.66–0.78 GPa, which correspond to depths of 23–28 km. The molar fraction of H2O and the salinity of fluid inclusions are 0.18–0.35 and 3.71 ± 0.78 wt% NaCl equivalent, respectively. These fluid inclusions are not believed to be fluids derived directly from the subducting slab, but rather fluids exsolved from sub-arc basaltic magmas that are formed through partial melting of mantle wedge triggered by slab-derived fluids.  相似文献   

17.
18.
The Schistes Lustrés (SL) suture zone occupies a key position in the Alpine chain between the high‐pressure (HP) Brianconnais domain and the ultrahigh‐pressure (UHP) Dora Maira massif, and reached subduction depths ranging from c. 40–65 km (Cottian Alps). In order to constrain the timing of HP metamorphism and subsequent exhumation, several phengite generations were differentiated, on the basis of habit, texture, paragenesis and chemistry, as belonging to the first or second exhumation episode, respectively, D2 or D3, or to earlier stages of the tectono‐metamorphic evolution. Ten carefully selected samples showing D2, D3 (D2 + D3), or earlier (mostly peak temperature) phengite population(s) were subjected to laser probe 40Ar/39Ar analysis. The data support the results of the petrostructural study with two distinct age groups (crystallization ages) for D2 and D3 phengite, at 51–45 and 38–35 Ma, respectively. The data also reveal a coherent age cluster, at 62–55 Ma, for peak temperature phengite associated with chloritoid which were preserved in low strain domains. The age of the D3 event in the SL complex appears very similar to ages recently obtained for greenschist facies deformation on the border of most internal crystalline massifs. Exhumation rates of the order of 1–2 mm yr?1 are obtained for the SL complex, which are compatible with velocities documented for accretionary wedge settings. Similarly, cooling velocities are only moderate (c.5 °C Myr?1), which is at variance with recent estimates in the nearby UHP massifs.  相似文献   

19.
Seep‐carbonates (13C‐depleted) are present at different levels within the Miocene terrigenous succession of Deruta (Marnoso‐arenacea Formation, central Italy); they are associated with pebbly sandstones and conglomerates in a tectonically active fan‐delta slope depositional system. Most of these seep‐carbonates are included in slide/slump horizons as scattered blocks. The occurrence of seep‐carbonates is clear evidence of the flow of methane‐rich fluids pervading the sediments. Fluids, probably of biogenic origin, may have reached the sea‐bottom through thrust faults and selectively infiltrated the more permeable coarse‐grained horizons deposited along the slope. Different stages of fluid emissions are documented: slow flux stage, corresponding to the development of large carbonate bodies and dense chemosynthetic communities; and fast fluid flow associated with intense carbonate brecciation, pipes and veins. Large amounts of authigenic carbonates are reworked by slope failures triggered by tectonics and fluids reducing sediment strength; in situ cementation of slide blocks may also have occurred due to remobilization of methane‐rich fluids by mass‐wasting processes.  相似文献   

20.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号