首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the spatial distributions of seismicity and seismic hazard were assessed for Turkey and its surrounding area. For this purpose, earthquakes that occurred between 1964 and 2004 with magnitudes of M ≥ 4 were used in the region (30–42°N and 20–45°E). For the estimation of seismicity parameters and its mapping, Turkey and surrounding area are divided into 1,275 circular subregions. The b-value from the Gutenberg–Richter frequency–magnitude distributions is calculated by the classic way and the new alternative method both using the least-squares approach. The a-value in the Gutenberg–Richter frequency–magnitude distributions is taken as a constant value in the new alternative method. The b-values calculated by the new method were mapped. These results obtained from both methods are compared. The b-value shows different distributions along Turkey for both techniques. The b-values map prepared with new technique presents a better consistency with regional tectonics, earthquake activities, and epicenter distributions. Finally, the return period and occurrence hazard probability of M ≥ 6.5 earthquakes in 75 years were calculated by using the Poisson model for both techniques. The return period and occurrence hazard probability maps determined from both techniques showed a better consistency with each other. Moreover, maps of the occurrence hazard probability and return period showed better consistency with the b-parameter seismicity maps calculated from the new method. The occurrence hazard probability and return period of M ≥ 6.5 earthquakes were calculated as 90–99% and 5–10 years, respectively, from the Poisson model in the western part of the studying region.  相似文献   

2.
In this paper we intend to analyze how the sublimation of ice from cometary nuclei affects changes of the moments of inertia. Our aim is to show general trends for different orientations of cometary nucleus’ rotation axis. Thus we apply numerical model of a hypothetical homogeneous and initially spherical nucleus composed of water ice and dust. As an example we present simulations for a model comet of the orbital elements and the nucleus size the same as determined for C/1995 O1 Hale-Bopp, a widely analyzed long-period comet. We calculated water production from the nucleus and changes of the shape (initially spherical) and of the moment of inertia versus time. Simulations are performed for the full range (0–90°) of inclinations I of the rotation axis. The second paramater related to the orientation of the rotation axis is the argument Φ (0–360°). The heat conductivity of the nucleus spans over the vast range, 0.04–4 W m−1 K1.  相似文献   

3.
 This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method – wavelet analysis residual kriging (WARK) – is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.  相似文献   

4.
Site response in the aftershock zone of 2001 Bhuj Mw 7.7 earthquake has been studied using the H/V spectral ratio method using 454 aftershocks (Mw 2.5–4.7) recorded at twelve three-component digital strong motion and eight three-component digital seismograph sites. The mean amplification factor obtained for soft sediment sites (Quaternary/Tertiary) varies from 0.75–6.03 times for 1–3 Hz and 0.49–3.27 times for 3–10 Hz. The mean amplification factors obtained for hard sediment sites (hard Jurassic/Mesozoic sediments) range from 0.32–3.24 times for 1–3 Hz and 0.37–2.18 times for 310 Hz. The upper bounds of the larger mean amplification factors for 1–3 Hz are found to be of the order of 3.13–6.03 at Chopadwa, Vadawa, Kavada, Vondh, Adhoi, Jahwarnagar and Gadhada, whereas, the upper bounds of the higher mean amplification factors at 3–10 Hz are estimated to be of the order of 2.00–3.27° at Tapar, Chopadwa, Adhoi, Jahwarnagar, Gandhidham and Khingarpur. The site response estimated at Bhuj suggests a typical hard-rock site behavior. Preliminary site response maps for 1–3 Hz and 310 Hz frequency ranges have been prepared for the area extending from 23–23.85 °N and 69.65–70.85°E. These frequency ranges are considered on the basis of the fact that the natural frequencies of multi-story buildings (3 to 10 floor) range between 1–3 Hz, while the natural frequencies for 1 to 3 story buildings vary from 3–10 Hz. The 1–3 Hz map delineates two distinct zones of maximum site amplification (>3 times): one lying in the NW quadrant of the study area covering Jahwarnagar, Kavada and Gadadha and the other in the SE quadrant of the study area with a peak of 6.03 at Chopadwa covering an area of 70 km × 50 km. While the 3–10 Hz map shows more than 2 times site amplification value over the entire study area except, NE quadrant, two patches in the southwest corner covering Bhuj and Anjar, and one patch at the center covering Vondh, Manfara and Sikara. The zones for large site amplification values (∼3 times) are found at Tapar, Chopadwa, Adhoi and Chobari. The estimated site response values show a good correlation with the distribution of geological formations as well as observed ground deformation in the epicentral zone.  相似文献   

5.
When formulated properly, most geophysical transport-type process involving passive scalars or motile particles may be described by the same space–time nonlocal field equation which consists of a classical mass balance coupled with a space–time nonlocal convective/dispersive flux. Specific examples employed here include stretched and compressed Brownian motion, diffusion in slit-nanopores, subdiffusive continuous-time random walks (CTRW), super diffusion in the turbulent atmosphere and dispersion of motile and passive particles in fractal porous media. Stretched and compressed Brownian motion, which may be thought of as Brownian motions run with nonlinear clocks, are defined as the limit processes of a special class of random walks possessing nonstationary increments. The limit process has a mean square displacement that increases as tα+1 where α > −1 is a constant. If α = 0 the process is classical Brownian, if α < 0 we say the process is compressed Brownian while if α > 0 it is stretched. The Fokker–Planck equations for these processes are classical ade’s with dispersion coefficient proportional to tα. The Brownian-type walks have fixed time step, but nonstationary spatial increments that are Gaussian with power law variance. With the CTRW, both the time increment and the spatial increment are random. The subdiffusive Fokker–Planck equation is fractional in time for the CTRW’s considered in this article. The second moments for a Levy spatial trajectory are infinite while the Fokker–Planck equation is an advective–dispersive equation, ade, with constant diffusion coefficient and fractional spatial derivatives. If the Lagrangian velocity is assumed Levy rather than the position, then a similar Fokker–Planck equation is obtained, but the diffusion coefficient is a power law in time. All these Fokker–Planck equations are special cases of the general non-local balance law.  相似文献   

6.
Orissa State, a meteorological subdivision of India, lies on the east coast of India close to north Bay of Bengal and to the south of the normal position of the monsoon trough. The monsoon disturbances such as depressions and cyclonic storms mostly develop to the north of 15° N over the Bay of Bengal and move along the monsoon trough. As Orissa lies in the southwest sector of such disturbances, it experiences very heavy rainfall due to the interaction of these systems with mesoscale convection sometimes leading to flood. The orography due to the Eastern Ghat and other hill peaks in Orissa and environs play a significant role in this interaction. The objective of this study is to develop an objective statistical model to predict the occurrence and quantity of precipitation during the next 24 hours over specific locations of Orissa, due to monsoon disturbances over north Bay and adjoining west central Bay of Bengal based on observations to up 0300 UTC of the day. A probability of precipitation (PoP) model has been developed by applying forward stepwise regression with available surface and upper air meteorological parameters observed in and around Orissa in association with monsoon disturbances during the summer monsoon season (June-September). The PoP forecast has been converted into the deterministic occurrence/non-occurrence of precipitation forecast using the critical value of PoP. The parameters selected through stepwise regression have been considered to develop quantitative precipitation forecast (QPF) model using multiple discriminant analysis (MDA) for categorical prediction of precipitation in different ranges such as 0.1–10, 11–25, 26–50, 51–100 and >100 mm if the occurrence of precipitation is predicted by PoP model. All the above models have been developed based on data of summer monsoon seasons of 1980–1994, and data during 1995–1998 have been used for testing the skill of the models. Considering six representative stations for six homogeneous regions in Orissa, the PoP model performs very well with percentages of correct forecast for occurrence/non-occurrence of precipitation being about 96% and 88%, respectively for developmental and independent data. The skill of the QPF model, though relatively less, is reasonable for lower ranges of precipitation. The skill of the model is limited for higher ranges of precipitation. accepted September 2006  相似文献   

7.
In this paper, the formulations of the primitive equations for shallow water flow in various horizontal co-ordinate systems and the associated finite difference grid options used in shallow water flow modelling are reviewed. It is observed that horizontal co-ordinate transformations do not affect the chosen co-ordinate system and representation in the vertical, and are the same for the three- and two-dimensional cases. A systematic derivation of the equations in tensor notation is presented, resulting in a unified formulation for the shallow water equations that covers all orthogonal horizontal grid types of practical interest. This includes spherical curvilinear orthogonal co-ordinate systems on the globe. Computational efficiency can be achieved in a single computer code. Furthermore, a single numerical algorithmic code implementation satisfies. All co-ordinate system specific metrics are determined as part of a computer-aided model grid design, which supports all four orthogonal grid types. Existing intuitive grid design and visual interpretation is conserved by appropriate conformal mappings, which conserve spherical orthogonality in planar representation. A spherical curvilinear co-ordinate solution of wind driven steady channel flow applying a strongly distorted grid is shown to give good agreement with a regular spherical co-ordinate model approach and the solution based on a β-plane approximation. Especially designed spherical curvilinear boundary fitted model grids are shown for typhoon surge propagation in the South China Sea and for ocean-driven flows through Malacca Straits. By using spherical curvilinear grids the number of grid points in these single model grid applications is reduced by a factor of 50–100 in comparison with regular spherical grids that have the same horizontal resolution in the area of interest. The spherical curvilinear approach combines the advantages of the various grid approaches, while the overall computational effort remains acceptable for very large model domains.  相似文献   

8.
 Logarithmic sensitivities and plausible relative errors are studied in a simple no-crossflow model of a transient flowmeter test (TFMT). This model is identical to the model of a constant-rate pumping test conducted on a fully penetrating well with wellbore storage, surrounded by a thick skin zone, and situated in a homogeneous confined aquifer. The sensitivities of wellbore drawdown and wellface flowrate to aquifer and skin parameters are independent of the pumping rate. However, the plausible relative errors in the aquifer and skin parameters estimated from drawdown and wellface flowrate data can be proportionally decreased by increasing the pumping rate. The plausible relative errors vary by many orders of magnitude from the beginning of the TFMT. The practically important flowrate and drawdown measurements in this test, for which the plausible relative errors vary by less than one order of magnitude from the minimum plausible relative errors, can begin approximately when the dimensionless wellface flowrate exceeds q D =q/Q≈0.4. During most of this stage of the test, the plausible relative errors in aquifer hydraulic conductivity (K a ) are generally an order of magnitude smaller than those in aquifer specific storativity. The plausible relative errors in the skin hydraulic conductivity (K s ) are generally larger than the plausible relative errors in the aquifer specific storativity when the thick skin is normal (K s >K a ) and smaller when the thick skin is damaged (K s <K a ). The specific storativity of the skin zone would be so biased that one should not even attempt to estimate it from the TFMT. We acknowledge Wiebe H. van der Molen for recommending the De Hoog algorithm and sharing his code. This research was partially supported by the US Geological Survey, USGS Agreement #1434-HQ-96-GR-02689 and North Carolina Water Resources Research Institute, WRRI Project #70165.  相似文献   

9.
Persistent organochlorine pollutants (POPs) are analyzed for the dropping-amended soils from the habitats of Antarctic seabirds and seals in Fildes Peninsula and Ardley Island. The concentration ranges are 0.21 to 3.85 ng/g for polychlorinated biphenyls (ΣPCBs),0.09 to 2.01 ng/g for organochlorine pesticides (ΣDDT),and 0.06 to 0.76 ng/g for hexachlorocyclohexanes (HCHs). Among these,hepata-chlorobiphenyls,hexachlorobiphenyls,p,p′-DDE and α-HCH compounds are dominant. The concentra-tion ranges of ΣPCB,DDT and HCH in the eggs of skuas were 91.9―515.5 ng/g,56.6―304.4 ng/g and 0.5―2.0 ng/g respectively; those in the eggs of penguins were 0.4―0.9 ng/g,2.4―10.3 ng/g and 0.1― 0.4 ng/g; and those in the eggs of giant petrel were 38.1―81.7 ng/g,12.7―53.7 ng/g and 0.5―1.5 ng/g respectively. The dominant POP compounds in the eggs are PCB180,PCB153,p,p′-DDE and hexa-chlorobenzene (HCB). The present study shows that the concentration of POPs in the sea-bird-inhabited-dropping-amended soil varies with the extent of predation and nest occupancy of dif-ferent seabird populations. Statistical analysis on the POP concentrations from the different seabird eggs implies that the difference in the bio-concentration levels of the birds depends on the bio-habits of the species,such as the range of activity,distance of immigration,feeding pattern,and nest occupation. Among these,the most important factor is the location of the seabirds in the food chain and their feeding pattern. This shows that POPs accumulated in the seabirds resulted from the bio-concentration through the food chain. In addtion,210Pb dating for the dropping-amended soils (AD1-a and AD2) was performed,which provided the POP accumulation rate and the historic record for the soil profile. It indicates that POP will continuously affect the Antarctic ecosystem for a long time.  相似文献   

10.
The results of comparison of model calculations of the electron concentration N at ionospheric heights of 120–200 km to the experimental data obtained at a series of geographic points at various levels of solar activity in various seasons of the year in quiet and disturbed conditions are presented and discussed. The calculations are performed using the semiempirical model (SEM) developed by the authors and giving in a general form the relation of N to characteristics of the thermospheric neutral gas and the solar activity index. The data presented in the paper show that the calculations with the SEM in question in the majority of cases agree well with experiment (the difference between them is 10–20%). The authors believe that the results of the comparative analysis presented in the paper manifest a high degree of universality of the discussed SEM.  相似文献   

11.
We have performed a spectral analysis of variations in the E z component of a quasistatic electric field in the atmospheric surface layer in a wide band of internal gravity waves (from 5 min to 3 h) for quiet and seismically active conditions as well as high thunderstorm activity. Observational data of the field for September, 1999 and August–September, 2002, were used. It has been shown that, if there are no thunderstorms or earthquakes, the background spectrum includes oscillations with maxima at periods of T ∼ 1.8 and 1 h, 40, 30, 15, and 10–13 min. Their intensity in the range of periods of 0.5–3.0 h is two or more orders of magnitude higher than the intensity of maxima in the range of 5–30 min. Before earthquakes, with anomalies in diurnal variations of field intensity, there is a tendency of increased background spectrum at maxima noted there. In both ranges of oscillation periods, the spectral intensity increases by one to one and a half orders of magnitude. Under high thunderstorm activity, the variability is higher as compared to the spectra of earthquake precursors by both locations of maxima and their intensity. The intensity of maxima exceeds the maxima on the eve of earthquakes one to one and a half orders of magnitude in the range of periods 0.5–3.0 h and two and more orders of magnitude in the range of periods 5–30 min.  相似文献   

12.
An unstructured mesh model of the west coast of Britain, covering the same domain and using topography and open boundary forcing that are identical to a previous validated uniform grid finite difference model of the region, is used to compare the performance of a finite volume (FV) and a finite element (FE) model of the area in determining tide–surge interaction in the region. Initial calculations show that although qualitatively both models give comparable tidal solutions in the region, comparison with observations shows that the FV model tends to under-estimate tidal amplitudes and hence background tidal friction in the eastern Irish Sea. Storm surge elevations in the eastern Irish Sea due to westerly, northerly and southerly uniform wind stresses computed with the FV model tend to be slightly higher than those computed with the FE model, due to differences in background tidal friction. However, both models showed comparable non-linear tide–surge interaction effects for all wind directions, suggesting that they can reproduce the extensive tide–surge interaction processes that occur in the eastern Irish Sea. Following on from this model comparison study, the physical processes contributing to surge generation and tide–surge interaction in the region are examined. Calculations are performed with uniform wind stresses from a range of directions, and the balance of various terms in the hydrodynamic equations is examined. A detailed comparison of the spatial variability of time series of non-linear bottom friction and non-linear momentum advection terms at six adjacent nodes at two locations in water depths of 20 and 6 m showed some spatial variability from one node to another. This suggests that even in the near coastal region, where water depths are of the order of 6 m and the mesh is fine (of order 0.5 km), there is significant spatial variability in the non-linear terms. In addition, distributions of maximum bed stress due to tides and wind forcing in nearshore regions show appreciable spatial variability. This suggests that intensive measurement campaigns and very high-resolution mesh models are required to validate and reproduce the non-linear processes that occur in these regions and to predict extreme bed stresses that can give rise to sediment movement. High-resolution meshes will also be required in pollution transport problems.  相似文献   

13.
 Physical properties of cryptodome and remelted samples of the Mount St. Helens grey dacite have been measured in the laboratory. The viscosity of cryptodome dacite measured by parallel–plate viscometry ranges from 10.82 to 9.94 log10 η (Pa s) (T=900–982  °C), and shrinkage effects were dilatometrically observed at T>900  °C. The viscosity of remelted dacite samples measured by the micropenetration method is 10.60–9.25 log10 η (Pa s) (T=736–802  °C) and viscosities measured by rotational viscometry are 3.22–1.66 log10 η (Pa s) (T=1298–1594  °C). Comparison of the measured viscosity of cryptodome dacitic samples with the calculated viscosity of corresponding water-bearing melt demonstrates significant deviations between measured and calculated values. This difference reflects a combination of the effect of crystals and vesicles on the viscosity of dacite as well as the insufficient experimental basis for the calculation of crystal-bearing vesicular melt viscosities at low temperature. Assuming that the cryptodome magma of the 18 May 1980 Mount St. Helens eruption was residing at 900  °C with a phenocryst content of 30 vol.%, a vesicularity of 36 vol.% and a bulk water content of 0.6 wt.%, we estimate the magma viscosity to be 1010.8 Pa s. Received: 25 August 1996 / Accepted: 19 July 1997  相似文献   

14.
An upgrade of the Siberian Solar Radio Telescope (SSRT) [Smolkov et al., 1986; Grechnev et al., 2003] to a multiwave radio heliograph has been started. The radio heliograph being created will be designed mainly to measure coronal magnetic fields, to determine the locations of solar-flare energy release, and to investigate coronal mass ejections. These tasks define the parameters of next-generation radio heliographs. A high spatial resolution, a high image acquisition rate, and a high sensitivity are required simultaneously. All these parameters should be realized in the widest possible frequency range—from fractions to tens of GHz). The expected parameters of the future SSRT-based radio heliograph are listed below: spatial resolution 12″–24″, temporal resolution 0.02–1.0 s, frequency range 4–8 GHz, sensitivity up to 100 K, left-hand and right-hand circular polarizations, data rate 0.5–20 Mb s−1 (normal and flare modes). In this paper, we describe the broadband antennas, analog optical data transmission lines, and correlator used in the 10-antenna radio heliograph prototype.  相似文献   

15.
Source mechanism and source parameters of May 28, 1998 earthquake,Egypt   总被引:1,自引:0,他引:1  
On May 28, 1998, a moderate size earthquake of mb 5.5 occurred offshore the northwestern part of Egypt (latitude 31.45°N and longitude 27.64°E). It was widely felt in the northern part of Egypt. Being the largest well-recorded event in the area for which seismic data from the global digital network are available, it provides an excellent opportunity to study the tectonic process and present day stress field occurring along the offshore Egyptian coast. The source parameters of this event are determined using three different techniques: modeling of surface wave spectral amplitudes, regional waveform inversion, and teleseismic body waveform inversion. The results show a high-angle reverse fault mechanism generally trending NNW–SSE. The P-axis trends ENE–WSW consistently with the prevailed compression stress along the southeastern Hellenic arc and southwestern part of the Cyprean arc. This unexpected mechanism is most probably related to a positive inversion of the NW trending offshore normal faults and confirms an extension of the back thrusting effects towards the African margin. The estimated focal depth ranges from 22 to 25 km, indicating a lower crustal origin earthquake owing to deep-seated tectonics. The source time function indicates a single source with rise time and total rupture duration of 2 and 5 s, respectively. The seismic moment (M o) and the moment magnitude (M w) determined by the three techniques are 1.03 × 1017 Nm, 5.28; 1.24 × 1017 Nm, 5.33; and 1.68 × 1017 Nm, 5.42; respectively. The calculated fault radius, stress drop, and the average dislocation assuming a circular fault model are 7.2 km, 0.63 Mpa, and 0.11 m, respectively.  相似文献   

16.
Microseismic noise was studied in the frequency range 0.5–30 Hz in the conditions prevailing in the town of Vorkuta. A seismic noise model was developed consisting of power spectral densities of ground motion velocity separately for daytime and nighttime in different frequency ranges. The absolute noise level for frequencies of 1–5 Hz in Vorkuta varies between −140 and −150 dB in daytime and from −152 to −158 dB in nighttime, with the ranges for the 8-15 Hz noise being −140 to −155 dB in daytime and −155 to −165 dB in nighttime. Well-pronounced daily variations in noise amplitude were observed in the frequency ranges 1.5–3 Hz and 14–17 Hz. The noise amplitude varies by 7 dB over 24 hours, with the amplitude of horizontal component variation being 5 dB above that of the vertical component. The power spectral densities of ground motion velocity in the microseismic noise involve several spectral peaks, whose central frequencies did not vary by more than 0.15 Hz during the entire period of instrumental observation. The seismic background in the town of Vorkuta contains seismic events due to distant earthquakes and local industrial explosions.  相似文献   

17.
In this paper, by means of the statistical analysis method of stochastic spatial point process, statistical analysis of spatial distribution of earthquakes in the large northern region of China is made. Emphasis is on the test and analysis of the complete spatial randomness, correlation of earthquake distribution in the different magnitude interval and random labeling. It is shown by the analysis that the spatial distribution of earthquakes in the large northern region is “clustered”, the distributions of earthquakes in different magnitude interval are positively correlated and can be modeled by a two-dimensional process. The results obtained in the paper can be used for the establishment of a reasonable spatial distribution model and have some application in the reasonable estimation of seismic hazard. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 129–135, 1993.  相似文献   

18.
During a field campaign in April 2005,fresh-fallen snow samples were collected on the East Rongbuk Glacier of the Mt. Qomolangma at four altitudes (6500 m,6300 m,6100 m and 5900 m),to study the role of Mt. Qomolangma as "cold-traps" for Persistent Organic Pollutants. From these snow samples col-lected at the highest-altitude,organochlorine pesticides (OCPs):HCB,p,p′-DDT and p,p′-DDD were detected,with the concentrations in the ranges of 44―72 pg/L,401―1560 pg/L,and 20―80 pg/L,re-spectively. The concentration of o,p′-DDT was around the method detection limit. Analysis of backward trajectories showed that the detected compounds came from the north of India,suggesting that DDTs detected in the snow were possibly originated from new emissions in this area. Relationships between the concentrations of OCPs in snow samples and the sampling altitudes were discussed. The altitudes had no obvious effect on HCB concentrations in the fresh-fallen snow,while increases in the concen-trations of p,p′-DDT and p,p′-DDD with increasing altitude were found,which was reversed compared to the trends observed in North America. Three factors likely resulted in this trend: (1) the properties of the target compounds; (2) the low temperatures at high altitudes; and (3) the location of the mountain sampling sites relative to their sources.  相似文献   

19.
 Numerous measurements of CO2 degassing from the soil, carried out with the accumulation chamber method, indicate that in the period April–July 1995 the upper part of the Fossa cone released a total output of 200 t d–1 of CO2, which corresponds to approximately 1000 t d–1 of steam. These large amounts of fluids are of the same order of magnitude as those released by the high temperature fumarolic field located inside the crater. The spatial distribution of soil gas fluxes shows that the main structures releasing CO2 are the inner slopes of the crater and a NW–SE line, located NE of the crater rim, which correspond to the main direction of Vulcano Island active faults. The comparison of the φCO2 maps with the soil temperature distribution, derived from both direct measurements and airborne infrared images, indicates the occurrence of extensive condensation of fumarolic steam within the upper part of the Fossa cone, whose total amount is comparable to the rainfall budget. Part of the condensate which originates from this process contributes to the recharge of the phreatic aquifer of Porto Plain, modifying the chemical and isotopic composition of the groundwater. Received: 1 September 1995 / Accepted: 8 January 1996  相似文献   

20.
We report results from a detailed study of seismicity in central Kamchatka for the period from 1960 to 1997 using a modified traditional approach. The basic elements of this approach include (a) segmentation of the seismic region concerned (the Kronotskii and Shipunskii geoblocks, the continental slope and offshore blocks), (b) studying the variation in the rate of M = 4.5–7.0 earthquakes and in the amount of seismic energy release over time, (c) studying the seismicity variations, (d) separate estimates of earthquake recurrence for depths of 0–50 and 50–100 km. As a result, besides corroborating the fact that a quiescence occurred before the December 5, 1997, M = 7.9 Kronotskii earthquake, we also found a relationship between the start of the quiescence and the position of the seismic zone with respect to the rupture initiation. The earliest date of the quiescence (decreasing seismicity rate and seismic energy release) was due to the M = 4.5–7.0 earthquakes at depths of 0–100 km in the Kronotskii geoblock (8–9 years prior to the earthquake). The intermediate start of the quiescence was due to distant seismic zones of the Shipunskii geoblock and the circular zone using the RTL method, combining the Shipunskii and Kronotskii geoblocks (6 years). Based on the low magnitude seismicity (M≥2.6) at depths of 0–70 km in the southwestern part of the epicentral zone (50–100 km from the mainshock epicenter), the quiescence was inferred to have occurred a little over 3 years (40 months) before the mainshock time and a little over 2 years (25 months) in the immediate vicinity of the epicenter (0–50 km). These results enable a more reliable identification of other types of geophysical precursors during seismic quiescences before disastrous earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号