首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen‐traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low‐relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission‐track thermochronology from a ~6200‐m‐thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began ~15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After ~13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission‐track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes.  相似文献   

2.
The effectiveness of detrital zircon thermochronology as a means of linking hinterland evolution and continental basin sedimentation studies is assessed by using Mesozoic continental sediments from the poorly understood Khorat Plateau Basin in eastern Thailand. New uranium lead (U‐Pb) and fission‐track (FT) zircon data from the Phu Kradung Formation identify age modes at 141 ± 17 and 210 ± 24 Ma (FT) and 2456 ± 4, 2001 ± 4, 251 ± 3, and 168 ± 2 Ma (U‐Pb), which are closely similar to data from the overlying formations. The FT data record post‐metamorphic cooling, whereas the U‐Pb data record zircon growth events in the hinterland. Comparison is made between detrital zircon U‐Pb data from ancient and modern sources across Southeast Asia. The inherent stability of the zircon U‐Pb system means that 250 Myr of post‐orogenic sedimentary recycling fails to change the regional zircon U‐Pb age signature and this precludes use of the U‐Pb approach alone for providing unique provenance information. Although the U‐Pb zircon results are consistent with (but not uniquely diagnostic of) the Qinling Orogenic Belt as the original source terrane for the Khorat Plateau Basin sediments, the zircon FT cooling data are more useful as they provide the key temporal link between basin and hinterland. The youngest zircon FT modes from the Khorat sequence range between 114 ± 6 (Phra Wihan Formation) and 141 ± 17 Ma (Phu Kradung Formation) that correspond to a Late Jurassic/Early Cretaceous reactivation event, which affected the Qinling Belt and adjacent foreland basins. The mechanism for regional Early Cretaceous erosion is identified as Cretaceous collision between the Lhasa Block and Eurasia. Thus, the Khorat Plateau Basin sediments might have originated from a reactivation event that affected a mature hinterland and not an active orogenic belt as postulated in previous models.  相似文献   

3.
Fission‐track (FT) analysis of detrital zircon from synorogenic sediment is a well‐established tool to examine the cooling and exhumation history of convergent mountain belts, but has so far not been used to determine the long‐term evolution of the central Himalaya. This study presents FT analysis of detrital zircon from 22 sandstone and modern sediment samples that were collected along three stratigraphic sections within the Miocene to Pliocene Siwalik Group, and from modern rivers, in western and central Nepal. The results provide evidence for widespread cooling in the Nepalese Himalaya at about 16.0±1.4 Ma, and continuous exhumation at a rate of about 1.4±0.2 km Myr?1 thereafter. The ~16 Ma cooling is likely related to a combination of tectonic and erosional activity, including movement on the Main Central thrust and Southern Tibetan Detachment system, as well as emplacement of the Ramgarh thrust on Lesser Himalayan sedimentary and meta‐sedimentary units. The continuous exhumation signal following the ~16 Ma cooling event is seen in connection with ongoing tectonic uplift, river incision and erosion of lower Lesser Himalayan rocks exposed below the MCT and Higher Himalayan rocks in the hanging wall of the MCT, controlled by orographic precipitation and crustal extrusion. Provenance analysis, to distinguish between Higher Himalayan and Lesser Himalayan zircon sources, is based on double dating of individual zircons with the FT and U/Pb methods. Zircons with pre‐Himalayan FT cooling ages may be derived from either nonmetamorphic parts of the Tethyan sedimentary succession or Higher Himalayan protolith that formerly covered the Dadeldhura and Ramgarh thrust sheets, but that have been removed by erosion. Both the Higher and Lesser Himalaya appear to be sources for the zircons that record either ~16 Ma cooling or the continuous exhumation afterwards.  相似文献   

4.
Fission‐track, U–Pb and Pb–Pb analyses of detrital heavy mineral populations in depositional basins and modern river sediments are widely used to infer the exhumational history of mountain belts. However, relatively few studies address the underlying assumption that detrital mineral populations provide an accurate representation of their entire source region. Implicit in this assumption is the idea that all units have equal potential to contribute heavy minerals in proportion to their exposure area in the source region. In reality, the detrital mineral population may be biased by variable concentrations of minerals in bedrock and differential erosion rates within the source region. This study evaluates the relative importance of these two variables by using mixing of U–Pb zircon ages to trace zircon populations from source units, through the fluvial system, and into the foreland. The first part of the study focuses on the Marsyandi drainage in central Nepal, using tributaries that drain single formations to define the U–Pb age distributions of individual units and using trunk river samples to evaluate the relative contributions from each lithology. Observed mixing proportions are compared with proportions predicted by a simple model incorporating lithologic exposure area and zircon concentration. The relative erosion rates that account for the discrepancy between the observed and predicted mixing proportions are then modelled and compared with independent erosional proxies. The study also compares U–Pb age distributions from four adjacent drainages spanning ~250 km along the Himalayan front using the Kolmogorov–Smirnov statistic and statistical estimates of the proportion of zircon derived from each upstream lithology. Results show that, along this broad swath of rugged mountains, the U–Pb age distributions are remarkably similar, thereby allowing data from more localized sources to be extrapolated along strike.  相似文献   

5.
The syntectonic continental conglomerates of the South‐Central Pyrenees record the late stages of thin‐skinned transport of the South‐Pyrenean Central Units and the onset of exhumation of the Pyrenean Axial Zone (AZ) in the core of the orogen. New magnetostratigraphic data of these syntectonic continental conglomerates have established their age as Late Lutetian to Late Oligocene. The data reveal that these materials were deposited during intense periods of tectonic activity of the Pyrenean chain and not during the cessation of the deformation as considered previously. The magnetostratigraphic ages have been combined with new detrital apatite fission track (AFT) thermochronology from AZ‐derived granite cobbles within the syntectonic conglomerates. Distribution of the granitic cobbles with different AFT ages and track lengths combined with their depositional ages reveal information on the timing and rate of episodes of exhumation in the orogen. Some AFT ages are considerably older than the AFT ages of the outcropping AZ granitic massifs, indicating erosion from higher crustal levels within the massifs than presently exposed or from completely eroded plutons. Inverse thermal modelling reveals two well‐defined periods of rapid cooling in the hinterland at ca. 50–40 and ca. 30–25 Ma, with another poorly defined cooling episode at ca. 70–60 Ma. The lowest stratigraphic samples experienced postburial annealing caused by the deposition of younger syntectonic sediments during progressive burial of the south Pyrenean thrust and fold belt. Moreover, samples from the deeper stratigraphic levels also reveal postorogenic cooling during the Late Miocene as a response to the excavation of the Ebro River towards the Mediterranean Sea. Our data strongly support previous ideas about the burial of the South Pyrenean fold and thrust belt by Late Palaeogene syntectonic conglomerates and their subsequent re‐excavation and are consistent with other thermochronological data and thermal modelling from the interior part of the orogen.  相似文献   

6.
The Sichuan Basin and the Songpan‐Ganze terrane, separated by the Longmen Shan fold‐and‐thrust belt (the eastern margin of the Tibetan Plateau), are two main Triassic depositional centres, south of the Qinling‐Dabie orogen. During the Middle–Late Triassic closure of the Paleo‐Tethys Ocean, the Sichuan Basin region, located at the western margin of the Yangtze Block, transitioned from a passive continental margin into a foreland basin. In the meantime, the Songpan‐Granze terrane evolved from a marine turbidite basin into a fold‐and‐thrust belt. To understand if and how the regional sediment routing system adjusted to these tectonic changes, we monitored sediment provenance primarily by using detrital zircon U‐Pb analyses of representative stratigraphic samples from the south‐western edge of the Sichuan Basin. Integration of the results with paleocurrent, sandstone petrology and published detrital zircon data from other parts of the basin identified a marked change in provenance. Early–Middle Triassic samples were dominated by Neoproterozoic (~700–900 Ma) zircons sourced mainly from the northern Kangdian basement, whereas Late Triassic sandstones that contain a more diverse range of zircon ages sourced from the Qinling, Longmen Shan and Songpan‐Ganze terrane. This change reflects a major drainage adjustment in response to the Late Triassic closure of the Paleo‐Tethys Ocean and significant shortening in the Longmen Shan thrust belt and the eastern Songpan‐Ganze terrane. Furthermore, by Late Triassic time, the uplifted northern Kangdian basement had subsided. Considering the eastward paleocurrent and depocenter geometry of the Upper Triassic deposits, subsidence of the northern Kangdian basement probably resulted from eastward shortening and loading of the Songpan‐Ganze terrane over the western margin of the Yangtze Block in response to the Late Triassic collision among Yangtze Block, Yidun arc and Qiangtang terrane along the Ganze‐Litang and Jinshajiang sutures.  相似文献   

7.
Sediments deposited in the Late Cenozoic basins of the Central European Rift System, including the Upper Rhine Graben (URG) and the Lower Rhine Embayment (LRE), document the drastic extension of the Rhine's catchment towards the Central Alps in the Late Pliocene by distinct heavy mineral assemblages. This outstanding change in principal sediment sources should be accompanied by a change towards distinctly younger (i.e. Tertiary) detrital mineral cooling ages. Therefore, it provides a particularly well‐suited framework to explore the thermochronological provenance record in relation to heavy mineral assemblages. In this multi‐proxy approach we (i) exploit and elaborate detrital zircon (U–Th)/He thermochronology (ZHe) for sediment provenance surveys, (ii) document shortcomings if only a single geochronological method is employed, and (iii) obtain tighter constraints on the sources of Paleo‐Rhine sediments. Our results are based on Pliocene and Pleistocene sediment samples from the northern URG (drill core Ludwigshafen P36) and the LRE (lignite mine Hambach). In a Late Pliocene URG sample, Variscan and Permo‐Triassic cooling ages dominate the age spectra of the ZHe and Zircon fission track (ZFT) thermochronometers. The youngest ages are Late Cretaceous and these zircons show rare earth element signatures that suggest derivation from hydrothermally affected basement rocks of the URG margins. In contrast, a Lower Pleistocene URG sample contains significant Tertiary age components that unequivocally indicate Alpine sources. This cardinal difference coincides well with a significant change in the heavy mineral assemblage. The extension of the catchment of the Rhine towards the Central Alps is considered to occur no earlier than the latest Pliocene (i.e. after ~3.0 Ma). Despite strongly contrasting heavy mineral compositions, the Pliocene and Pleistocene samples from the LRE show largely similar ZHe and ZFT age distributions dominated by Permo‐Triassic and Variscan ages. Admixture of zircon‐dominated, but overall heavy mineral‐poor sediment derived from local drainages of the Rhenish Massif likely explains this apparent contradiction in sediment provenance proxies. Tertiary cooling ages occur in both Pliocene and Pleistocene LRE samples. Zircon Th/U ratios and U/Pb ages reveal that the young age component in Late Pliocene sediments from the LRE is not derived from the Alps but from Oligocene trachytic members of the Central European volcanic centres of the Vogelsberg, Westerwald, and/or Siebengebirge. The integration of ZHe and ZFT techniques with zircon geochemistry and U/Pb geochronology adds the respective advantages of each method and allows for a very detailed picture of detrital zircon provenance.  相似文献   

8.
《Basin Research》2018,30(4):708-729
The north–south trending, Late Cretaceous to modern Magallanes–Austral foreland basin of southernmost Patagonia lacks a unified, radiometric, age‐controlled stratigraphic framework. By simplifying the sedimentary fill of the basin to deep‐marine, shallow‐marine and terrestrial deposits, and combining 13 new U‐Pb detrital zircon maximum depositional ages (DZ MDAs) with published DZ MDAs and U‐Pb ash ages, we provide the first attempt at a unified, longitudinal stratigraphic framework constrained by radiometric age controls. We divide the foreland basin history into two phases, including (1) an initial Late Cretaceous shoaling upward phase and (2) a Cenozoic phase that overlies a Palaeogene unconformity. New DZ samples from the shallow‐marine La Anita Formation, the terrestrial Cerro Fortaleza Formation and several previously unrecognized Cenozoic units provide necessary radiometric age controls for the end of the Late Cretaceous foreland phase and the magnitude of the Palaeogene unconformity in the Austral sector of the basin. These samples show that the La Anita and Cerro Fortaleza Formations have Campanian DZ MDAs, and that overlying Cenozoic strata have Eocene to Miocene DZ MDAs. By filling this data gap, we are able to provide a first attempt at constructing a basinwide, age‐controlled stratigraphic framework for the Magallanes–Austral foreland basin. Results show southward progradation of shallow marine and terrestrial environments from the Santonian through the Maastrichtian, as well as a northward increase in the magnitude of the Palaeogene unconformity. Furthermore, our new age data significantly impact the chronology of fossil flora and dinosaur faunas in Patagonia.  相似文献   

9.
《Basin Research》2018,30(4):636-649
The geometry and evolution of rivers originating from the Tibetan plateau are influenced by topography and climate change during the India‐Asia collision. The Yangtze River is the longest among these rivers and formed due to capturing many rivers on the eastern Tibetan Plateau by the middle Yangtze. The timing of these capture events is still controversial. Here, we use detrital muscovite 40Ar/39Ar and zircon U–Pb ages to constrain the provenance of late Cenozoic sediments in the Jianghan Basin in the middle reaches of the Yangtze River. The combined data suggest that late Pliocene sediments were mainly derived from a local source in the Jianghan Basin including the Dabie Shan. The middle Pleistocene sediments were derived from the Min River west of the Three Gorges. This implies that at least one river, perhaps the palaeo‐Han River, originating from the Dabie Shan region, flowed through the centre of the Jianghan Basin during the late Pliocene. The appearance of sediment from the Min River in the Jianghan Basin somewhere between late Pliocene and middle Pleistocene suggests that the Three Gorges section of the Yangtze River was formed somewhere between late Pliocene and middle Pleistocene (N2– Q2).  相似文献   

10.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

11.
Thermochronological analysis of detrital sediments derived from the erosion of mountain belts and contained in the sedimentary basins surrounding them allows reconstructing the long-term exhumation history of the sediment source areas. The effective closure temperature of the thermochronological system analysed determines the spatial and temporal resolution of the analysis through the duration of the lag time between closure of the system during exhumation and its deposition in the sedimentary basin. Here, we report apatite fission-track (AFT) data from 31 detrital samples collected from Miocene to Pliocene stratigraphic sections of the Siwalik Group in western and central Nepal, as well as three samples from modern river sediments from the same area, that complement detrital zircon fission-track (ZFT) and U–Pb data from the same samples presented in a companion paper. Samples from the upper part of the stratigraphic sections are unreset and retain a signal of source-area exhumation; they show spatial variations in source-area exhumation rates that are not picked up by the higher-temperature systems. More deeply buried samples have been partially reset within the Siwalik basin and provide constraints on the thermal and kinematic history of the fold-and-thrust belt itself. The results suggest that peak source-area exhumation rates have been constant at ∼1.8 km Myr−1 over the last ∼7 Ma in central Nepal, whereas they ranged between 1 and ∼1.5 km Myr−1 in western Nepal over the same time interval; these spatial variations may be explained by either a tectonic or climatic control on exhumation rates, or possibly a combination of the two. Increasing lag times within the uppermost part of the sections suggest an increasing component of apatites that have been recycled within the Siwalik belt and are corroborated by AFT ages of modern river sediment downstream as well as the record of the distal Bengal Fan. The most deeply buried and most strongly annealed samples record onset of exhumation of the frontal Siwaliks along the Himalayan frontal thrust at ∼2 Ma and continuous shortening at rates comparable with the present-day shortening rates from at least 0.3 Ma onward.  相似文献   

12.
The distribution of detrital mineral cooling ages in river sediment provides a proxy record for the erosional history of mountain ranges. We have developed a numerical model that predicts detrital mineral age distributions for individual catchments in which particle paths move vertically toward the surface. Despite a restrictive set of assumptions, the model permits theoretical exploration of the effects of thermal structure, erosion rate, and topography on cooling ages. Hypsometry of the source‐area catchment is shown to exert a fundamental control on the frequency distribution of bedrock and detrital ages. We illustrate this approach by generating synthetic 40Ar/39Ar muscovite age distributions for two catchments with contrasting erosion rates in central Nepal and then by comparing actual measured cooling‐age distributions with the synthetic ones. Monte Carlo sampling is used to assess the mismatch between observed and synthetic age distributions and to explore the dependence of that mismatch on the complexity of the synthetic age signal and on the number of grains analysed. Observed detrital cooling ages are well matched by predicted ages for a more slowly eroding Himalayan catchment. A poorer match for a rapidly eroding catchment may result from some combination of large analytical uncertainties in the detrital ages and inhomogeneous erosion rates within the basin. Such mismatches emphasize the need for more accurate thermal and kinematic models and for sampling strategies that are adapted to catchment‐specific geologic and geomorphic conditions.  相似文献   

13.
The Cretaceous of southern France is characterised by a long erosional hiatus, outlined with bauxite deposits, which represent the only remaining sedimentary record of a key period for geodynamic reconstructions. Detrital zircons from allochthonous karst bauxites of Languedoc (Southern France) have been dated using LA‐ICP‐MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry), in order to specify the age of deposition and to constrain the provenance of the weathered material. We analysed 671 single detrital zircons grains from three karst bauxitic basins, stretching from close to the Variscan Montagne Noire to the present‐day Mediterranean Sea. Analytical results provide Variscan (300–350 Ma) and Late Proterozoic (550–700 Ma) ages as primary groups. In addition, Middle‐, Late Proterozoic and Early Archean (oldest grain at 3.55 Ga) represent significant groups. Mid‐Cretaceous zircons (118–113 Ma) provide a pooled age of 115.5 ± 3.8 Ma, which constitutes the maximum age for bauxite deposition. Results also suggest a dual source for the Languedoc bauxite: one generalised sedimentary source of regional extent and a localised source in the Variscan basement structural high, that has been progressively unroofed during Albian. Integration of these new findings with previously published thermochronological data support the presence of an Early Cretaceous marly cover on the Variscan basement, which has been weathered and then, removed during the Albian. The Languedoc bauxite provide a spatial and temporal link between the uplift of southern French Massif Central to the north, and the Pyrenean rift and its eastward extension to the south. These new results allow to constrain the timing and distribution of uplift/subsidence during the mid‐Cretaceous events in relation with the motion of the Iberian plate relative to Eurasia.  相似文献   

14.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

15.
Linking censuses through time: problems and solutions   总被引:1,自引:0,他引:1  
This paper reviews the difficulties encountered when attempting to study social change by comparing data from successive censuses, and describes a system designed to provide integrated online access to data from the 1971, 1981 and 1991 Censuses in Great Britain at http://census.ac.uk/cdu/lct/.  相似文献   

16.
Peter Copeland 《Basin Research》2020,32(6):1532-1546
Placing geologic events in a temporal framework is essential to telling the story of Earth history. However, clastic sedimentary rocks can be difficult to date in an absolute reference because they are made up of grains that are older than the rock in which they are now found, and some clastic rocks do not contain fossils that allow precise reference to the Geologic Timescale. For such rocks, the isotopic dating of detrital minerals can be used to estimate the time of deposition; the clastic rock must be younger than the youngest grain analysed. However, many researchers eschew this simple and straightforward approach in favour of schemes that estimate the maximum allowable depositional age as the weighted mean of the age of several grains, chosen by a variety of selection criteria. This is a mistake; in the absence of a geochemical resemblance apart from the similarity of their age, detrital grains should not be assumed to have originated in the same system and therefore any averaging or other manipulation of such data is statistically invalid and produces results without geologic significance. In the absence of interbedded volcanic rocks or index fossils, dating of detrital minerals can be an important aid in understanding the time of deposition of clastic rocks, but the best estimate will come from taking note of the youngest single grain and not by inappropriately averaging data.  相似文献   

17.
Determining both short‐ and long‐term sedimentation rates is becoming increasingly important in geomorphic (exhumation and sediment flux), structural (subsidence/flexure) and natural resource (predictive modelling) studies. Determining sedimentation rates for ancient sedimentary sequences is often hampered by poor understanding of stratigraphic architecture, long‐term variability in large‐scale sediment dispersal patterns and inconsistent availability of absolute age data. Uranium–Lead (U‐Pb) detrital zircon (DZ) geochronology is not only a popular method to determine the provenance of siliciclastic sedimentary rocks but also helps delimit the age of sedimentary sequences, especially in basins associated with protracted volcanism. This study assesses the reliability of U‐Pb DZ ages as proxies for depositional ages of Upper Cretaceous strata in the Magallanes‐Austral retroarc foreland basin of Patagonia. Progressive younging of maximum depositional ages (MDAs) calculated from young zircon populations in the Upper Cretaceous Dorotea Formation suggests that the MDAs are potential proxies for absolute age, and constrain the age of the Dorotea Formation to be ca. 82–69 Ma. Even if the MDAs do not truly represent ages of contemporaneous volcanic eruptions in the arc, they may still indicate progressive‐but‐lagged delivery of increasingly younger volcanogenic zircon to the basin. In this case, MDAs may still be a means to determine long‐term (≥1–2 Myr) average sedimentation rates. Burial history models built using the MDAs reveal high aggradation rates during an initial, deep‐marine phase of the basin. As the basin shoaled to shelfal depths, aggradation rates decreased significantly and were outpaced by progradation of the deposystem. This transition is likely linked to eastward propagation of the Magallanes fold‐thrust belt during Campanian‐Maastrichtian time, and demonstrates the influence of predecessor basin history on foreland basin dynamics.  相似文献   

18.
Evolution of mountain landscapes is controlled by dynamic interactions between erosional processes that vary in efficiency over altitudinal domains. Evaluation of spatial and temporal variations of individual erosion processes can augment our understanding of factors controlling relief and geomorphic development of alpine settings. This study tests the application of detrital apatite (U‐Th)/He thermochronology (AHe) to evaluate variable erosion in small, geologically complex catchments. Detrital grains from glacial and fluvial sediment in a single basin were dated and compared with a bedrock derived age‐elevation relationship to estimate spatial variation in erosion over different climate conditions in the Teton Range, Wyoming. Controls and pitfalls related to apatite quality and yield were fully evaluated to assess this technique. Probability density functions comparing detrital age distributions identify variations in erosional patterns between glacial and fluvial systems and provide insight into how glacial, fluvial, and hillslope processes interact. Similar age distributions representing erosion patterns during glacial and interglacial times suggest the basin may be approaching steady‐state. This also implies that glaciers are limited and no longer act as buzzsaws or produce relief. However, subtle differences in erosional efficiency do exist. The high frequency of apatite cooling ages from high altitudes represents either rapid denudation of peaks and ridges by mass wasting or an artifact of sample quality. A gap in detrital ages near the mean age, or mid‐altitude, indicates the fluvial system is presently transport limited by overwhelming talus deposits. This study confirms that sediment sources can be traced in small basins with detrital AHe dating. It also demonstrates that careful consideration of mineral yield and quality is required, and uniform erosion assumptions needed to extract basin thermal history from detrital ages are not always valid.  相似文献   

19.
20.
Sediment provenance studies have proven to be an effective method to extract the sediment provenance and tectonic process information recorded by detrital minerals. In this contribution, we conducted detrital monazite and zircon U‐Pb geochronology and detrital Cr‐spinel major element chemistry analyses on samples from the Qaidam Basin to reconstruct the spatial and temporal evolution of the Altyn Tagh Range and the Qimen Tagh Range in the northern Tibetan Plateau. Based on the significant variation in [Th/U]N, [Gd/Lu]N and [Eu/Eu*]N and the U‐Pb ages of the monazite and zircon, the South Altyn Tagh subduction‐collision belt and the North Qimen Tagh Range were, respectively, the main provenances of the Ganchaigou section and the Dongchaishan‐Weitai section in the Qaidam Basin in the Cenozoic. Paleozoic peak metamorphism, retrograde granulite‐facies metamorphism and amphibolite‐facies metamorphism in the South Altyn Tagh subduction‐collision belt were well recorded by the detrital monazite. In comparison, the detrital zircon is a better indicator of igneous events than detrital monazite. Synthesizing the detrital monazite, zircon and Cr‐spinel data, we concluded that the South Altyn Tagh Ocean and Qimen Tagh Ocean existed in the early Paleozoic and that the Altyn Tagh terrane and Qimen Tagh terrane experienced different Paleozoic tectonothermal histories. The collision between the Qaidam terrane and the Azhong terrane occurred at ca. 500 Ma. The Middle Ordovician was the key period of transformation from the collision‐induced compressional environment to an extensional environment in the area of the South Altyn Tagh Range. In the early Paleozoic, the Qimen Tagh area was characterized by the subduction of oceanic crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号