首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a second order secular Jupiter-Saturn planetary theory through Poincaré canonical variables, von Zeipel's method and Jacobi-Radau referential. We neglect in our expansions terms of power higher than the fourth with respect to eccentricities and sines of inclinations. We assume that the disturbing function is composed of secular and critical terms only. We shall deriveF 2si and writeF 2s in terms of Poincaré canonical variables in Part II of this problem.  相似文献   

2.
We calculate in this paper the secular and critical terms arising from the principal part of the classical planetary Hamiltonian. This is the first step to establish a third order canonical planetary theory of Uranus-Neptune through the Hori-Lie technique. We truncate our expansions at the second degree of eccentricity-inclination. Our planetary theory is expressed in terms of the canonical variables of H. Poincaré.  相似文献   

3.
The construction of a third order J-S theory is presented. The Hori theory of planetary perturbations is employed. No Critical J-S terms due to the 2:5 commensurabilities and its multiples exist, when we take into account the periodic terms of order 0, 1, 2 with respect to the eccentricity- inclination. In this case the Lie series transformation degenerates and is meaningless. The J-S equations of motion for secular perturbations are solved when we neglect in our treatment, the Poisson terms of degree > 2 in the Poincaré canonical variables H u , K u , P u Q u (u = 1, 2). The Jacobi-Radau referential is adopted, and the theory is expressed in terms of the canonical variables of H. Poincaré.Now at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, U.S.A.  相似文献   

4.
We extend the construction of the Jupiter-Saturn theory to include all the terms up to the seventh order in the masses. The Hori-Lie transformation technique is employed. The Jacobian coordinates are adopted and the theory is expressed in terms of the canonical non-singular variables of H. Poincaré.  相似文献   

5.
We construct a first order canonical general planetary theory, assuming the solar system to be composed of 8 planets excluding Pluto, referring to common fixed plane and applying the Jacobi-Radau set of origins. We eliminated by von Zeipel's method the 2:5 and 1:2 critical terms of Jupiter-Saturn and Uranus-Neptune inequalities. Our variables are those of Poincaré, and we expanded up to power three in the eccentricities and sines of the inclinations.  相似文献   

6.
We shall establish a second order - with respect to a small parameter which is of the order of planetary masses - Uranus-Neptune canonical planetary theory. The construction will be through the Hori-Lie perturbation theory. We perform the elliptic expansions by hand, taking into account powers 0, 1, 2 of the eccentricity-inclination. Only the principal part of the planetary Hamiltonian will be taken into consideration. Our theory will be expressed in terms of the canonical variables of Henri Poincaré, referring the planetary coordinates to the Jacobi-Radau system of origin. Only U- N critical terms will be assumed as the periodic terms.  相似文献   

7.
We construct a fifth-order with respect to masses Jupiter-Saturn secular theory by Hori-Lie canonical technique. The J-S Hamiltonian includes both parts of the perturbing function. The influence of the 2:5 critical terms is taken into consideration. The Jacobi-Radau system of origins is adopted and the theory is expressed in terms of the Poincaré canonical variables.  相似文献   

8.
We expand both parts, the principal and indirect, of the Hamiltonian function up to the third order in the masses for the four major planets Jupiter-Saturn-Uranus-Neptune. Accordingly we write down the secular terms ofF 1,F 2,F 3 and the critical terms ofF 1,F 2 in terms of the canonical variables of H. Poincaré neglecting powers higher than the second inH, K, P, Q.  相似文献   

9.
We construct a U-N secular canonical planetary theory of the third order with respect to planetary masses. The Hori-Lie procedure is adopted to solve the problem. Expansions have been carried out by hand, neglecting powers higher than the second with respect to the eccentricity-inclination. We take into account the principal as well as the indirect part of the planetary disturbing function. The theory is expressed in terms of the Poincaré canonical variables, referring to the Jacobi-Radau set of origins. We assume that the 1:2 U-N critical terms and its multiples are the only periodic terms.  相似文献   

10.
In this paper of the third order Uranus-Neptune planetary theory which is the third part of this work for the third order theory, we compute the Poisson brackets in the Lie series which is used to transform canonical variables. We apply Hori-Lie technique in this work and neglect all powers higher than the second in Poincaré variables H, K, P, Q. We restrict this work to the principal part of the disturbing function.  相似文献   

11.
We eliminate by the method of von Zeipel the short-period terms in a first order-with respect to planetary masses—general planetary Uranus-Neptune theory. We exclude in the expansion terms of eccentricities and sines of inclinations higher than the third power.Our variables are the Poincaré canonical variables. We use the Jacobi-Radau set of origins, and we refer the planes of the osculating ellipses to a common fixed plane, the longitudes to a common origin. The short-periodic terms arising from the indirect and principal parts of the disturbing functions, are eliminated separately. The Fourier series of the principal part of the disturbing function, is reduced to the sum of only the first three terms.  相似文献   

12.
A solution of the Uranus-Neptune planetary canonical equations of motion through the Von Zeipel technique is presented. A unique determinging function which depends upon mixed canonical variables, reduces the 12 critical terms of the Hamiltonian to the set of its secular terms. The Poincaré canonical variables are used. We refer to a common fixed plane, and apply the Jacobi-Radau set of origins. In our expansion we neglected terms of power higher than the fourth with respect to the eccentricities and sines of the inclinations.  相似文献   

13.
We construct a first-order secular general planetary theory, using the Jacobi-Radau set of origins, referring to common fixed plane and in terms of Poincaré canonical variables. We neglect powers higher than the fourth with respect to the eccentricities and sines of inclinations.  相似文献   

14.
We review in this part the outline of a third-order general planetary theory established through Von Zeipel's method and in terms of Poincaré's canonical variables We consider our system to consist of the Sun as the primary body, one disturbed planet, and one disturbing planet.  相似文献   

15.
In this paper we eliminate in a first order U-N theory the 1 : 2 critical terms up to the third degree with respect to eccentricity — inclination in both parts, main and indirect of the U-N planetary Hamiltonian. We operate the Von Zeipel technique. We adopt, in this theory, the Jacobi-Radau coordinates, and the Poincaré canonical variables. We neglect powers higher than the third in the eccentricity-inclination. This paper is related to the two previous articles (Kamel, 1982; 1983).  相似文献   

16.
We eliminate the 1:2 critical terms — after a previous elimination of the short period terms — in the Hamiltonian of a first order U-N theory. We take into account terms of degree 0, 1, 2, 3, 4 in the eccentricity-inclination. We apply for this elimination the Hori-Lie technique through the Poincaré canonical variables and the Jacobi coordinates. The purely principal first order secular U-N Hamiltonian admits a complete solution. We obtained the U-N equations of motion generated by the principal first order long period U-N Hamiltonian which will be solved later. This part III is closely related to the two previous papers (Kamel, 1982, 1983).  相似文献   

17.
We establish the solution of the ninth order — in masses — canonical J-S equations of motion by Hori-Lie technique — i.e., by expressing the initial Poincaré canonical variables as functions of the new variables through the Hori-Lie canonical transformation. Terms of order higher than 9 in the masses are neglected.  相似文献   

18.
An expression for –s in terms of the Poincaré variablesL, , H, K, P. Q has been evaluated. The inclinations of the two planets are referred to a common fixed plane. We neglect in the final formula powers higher than the third of the Poincaré variables.  相似文献   

19.
In this part we calculate the secular and critical terms arising from the indirect part of the classical planetary Hamiltonian for Uranus and Neptune. We neglect in our expansions powers higher than the second in the eccentricity-inclination. Our required results, are expressed in terms of Poincaré variables.  相似文献   

20.
The secular terms of the first-order planetary Hamiltonian is determined, by two methods, in terms of the variables of H. Poincaré, neglecting powers higher than the second in the eccentricity-inclination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号