首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research on the diffusion characteristics of swells contributes positively to wave energy forecasting, swell monitoring, and early warning. In this work, the South Indian Ocean westerly index(SIWI) and Indian Ocean swell diffusion effect index(IOSDEI) are defined on the basis of the 45-year(September 1957–August 2002) ERA-40 wave reanalysis data from the European Centre for Medium-Range Weather Forecasts(ECMWF) to analyze the impact of the South Indian Ocean westerlies on the propagation of swell acreage. The following results were obtained: 1) The South Indian Ocean swell mainly propagates from southwest to northeast. The swell also spreads to the Arabian Sea upon reaching low-latitude waters. The 2.0-meter contour of the swell can reach northward to Sri Lankan waters. 2) The size of the IOSDEI is determined by the SIWI strength. The IOSDEI requires approximately 2–3.5 days to fully respond to the SIWI. The correlations between SIWI and IOSDEI show obvious seasonal differences, with the highest correlations found in December–January–February(DJF) and the lowest correlations observed in June–July–August(JJA). 3) The SIWI and IOSDEI have a common period of approximately 1 week in JJA and DJF. The SIWI leads by approximately 2–3 days in this common period.  相似文献   

2.
In this study, typhoon waves generated during three typhoons(Damrey(1210), Fung-wong(1416), and Chan-hom(1509)) in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN) model, and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model. Various parameters, such as the Holland fitting parameter(B) and the maximum wind radius(R), were investigated in sensitivity experiments in the Holland model that affect the wind field construction. Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements. The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied, including wind input, whitecapping, and bottom friction. Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation) and the JONSWAP scheme(dissipation of bottom friction) resulted in good reproduction of the significant wave height of typhoon waves. A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon, while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves. The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.  相似文献   

3.
The existence of three well-defined tongue-shaped zones of swell dominance, termed as ‘swell pools’, in the Pacific, the Atlantic and the Indian Oceans, was reported by Chen et al. (2002) using satellite data. In this paper, the ECMWF Re-analyses wind wave data, including wind speed, significant wave height, averaged wave period and direction, are applied to verify the existence of these swell pools. The swell indices calculated from wave height, wave age and correlation coefficient are used to identify swell events. The wave age swell index can be more appropriately related to physical processes compared to the other two swell indices. Based on the ECMWF data the swell pools in the Pacific and the Atlantic Oceans are confirmed, but the expected swell pool in the Indian Ocean is not pronounced. The seasonal variations of global and hemispherical swell indices are investigated, and the argument that swells in the pools seemed to originate mostly from the winter hemisphere is supported by the seasonal variation of the averaged wave direction. The northward bending of the swell pools in the Pacific and the Atlantic Oceans in summer is not revealed by the ECMWF data. The swell pool in the Indian Ocean and the summer northward bending of the swell pools in the Pacific and the Atlantic Oceans need to be further verified by other datasets.  相似文献   

4.
Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145°E and 0°–35°N, the model was forced by the cross-calibrated multi-platform(CCMP) wind fi elds of September 15 to October 5, 2011. We then validated the simulation results against wave radar data observed from an oil platform and altimeter data from the Jason-2 satellite. The simulated waves were characterized by fi ve points along track using the Spectrum Integration Method(SIM) and the Spectrum Partitioning Method(SPM), by which wind sea and swell components of the 1D and 2D wave spectra are separated. There was reasonable agreement between the model results and observations, although the WW3 wave model may underestimate swell wave height. Signifi cant wave heights are large along the typhoon track and are noticeably greater on the right of the track than on the left. Swells from the east are largely unable to enter the South China Sea because of the obstruction due to the Philippine Islands. During the initial stage and later period of the typhoon, swells at the fi ve points were generated by the propagation of waves that were created by typhoons Haitang and Nalgae. Of the two methods, the 2D SPM method is more accurate than the 1D SIM which overestimates the separation frequency under low winds, but the SIM method is more convenient because it does not require wind speed and wave direction. When the typhoon left the area, the wind sea fractions decreased rapidly. Under similar wind conditions, the points located in the South China Sea are affected less than those points situated in the open sea because of the infl uence of the complex internal topography of the South China Sea. The results reveal the characteristic wind sea and swell features of the South China Sea and adjacent areas in response to typhoon Nesat, and provide a reference for swell forecasting and offshore structural designs.  相似文献   

5.
高精度大地测量中倾斜及应变观测的海潮改正   总被引:1,自引:1,他引:0  
基于卫星测高资料得到的CSR4 .0全球海潮模型精度已明显优于早期海潮模型 ,采用精度高的海潮模型重新计算海潮改正是当今高精度大地测量中必须解决的问题。利用CSR4 .0全球海潮模型顾及中国近海海潮图计算了海潮引起中国测站的倾斜及应变海潮改正 ,此结果对我国倾斜及应变观测数据处理有重要的实用价值。另外 ,文中还比较了不同地球模型对应的格林函数对倾斜及应变海潮改正的影响 ,认为在计算中国测站的海潮改正时 ,用中国近海海潮图取代全球海潮的中国近海部分是必要的。  相似文献   

6.
Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed(WS) and significant wave height(SWH) in the China Seas over the period 1988–2011 using the Cross-Calibrated Multi-Platform(CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III(WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988–2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s~(-1)yr~(-1) and 1.52 cm yr~(-1), respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Ni?o and a significant increase in the occurrence of gale force winds in the region.  相似文献   

7.
Evaporation duct is an ubiquitous natural phenomenon over the ocean and can be diagnosed by evaporation duct model. The model proposed by Paulus and Jeske and another model established by the American naval postgraduate school are the most widely used. They are called PJ model and NPS model, respectively. Two methods are used to investigate the global sensitivity of PJ model and NPS model in China Seas. The first method is based on meteorological and oceanographic observation data in China Seas. Considering the system random error caused by sensor measurement inaccuracies, the mean relative error and mean absolute error are used as criterion for sensitivity analysis. The second method, called Extended Fourier Amplitude Sensitivity Test(EFAST), takes into account the interaction between input parameters and is used for sensitivity analysis. The results show that NPS model is more sensitive to the random errors of sensors than PJ model. The mean relative errors of PJ model and NPS model are 11.43% and 14.81%, respectively. The results of global sensitivity parameter analysis indicate that wind speed is the key factor of PJ model, while all input parameter of NPS model have relatively large total sensitivity index. In addition, sensitivity analysis results confirm that wind speed is one of main driving factors for the formation of evaporation duct. These results are valuable for the selection of diagnosis models for evaporation duct, the evaluation of radio wave propagation in the marine atmospheric surface layer, and the prediction technique of evaporation duct based on numerical weather prediction(NWP) in China seas.  相似文献   

8.
Sui  Jixing  Li  Xinzheng 《中国海洋湖沼学报》2017,35(4):821-824
A new species of the ampharetid genus Amphicteis,A.chinensis sp.nov.,is described based on material from the East and South China Seas.The new species is distinguished from the other known species of this genus by the presence of a lobebehind the paleae.Akey to distinguish all Amphicteis species and the closely related genus Paramphicteis from the Chinese seas is provided.  相似文献   

9.
This paper proposes a scheme for detecting the swell decay of a moving typhoon. We considered a typhoon that was neither far from a point source nor had a belt-like homogenous source,as previously studied. We tracked the swell close to the source during a typhoon in the western North Pacific Ocean. We used wind speed and significant wave height data derived from the Geophysical Data Record of the Jason-1 altimeter and the best-track information of the typhoon from the China Meteorological Administration tropical cyclone database. We selected three specific cases to reveal the decay characteristics of the swell generated by a moving typhoon. Based on an altimeter-based typhoon swell identification scheme and the dispersion relationship for deep water,we relocated the swell source for each altimeter measurement. The subsequent statistical decay coefficient was comparable to previous studies,and effectively depicted the swell propagation conditions induced by the typhoon. We hope that our results provide a new understanding of the characteristics and wave energy budget of the North Pacific Ocean,and significantly contribute to wave modeling in this region.  相似文献   

10.
60年来,利用我国各种地质地球物理数据,结合野外考察,运用块体构造学说编制了中国海陆1∶500万地质地球物理系列图。其从理论基础、方法技术上,实现中国海陆地质地球物理数据的融合;系统地反映出我国海陆基础地质调查与研究现状及大地构造格架;同时展示古生代以来中国海陆各块体的发育、运移、拼接和联合大陆的形成过程,以及印支运动后中国大陆由"东高西低"转为目前"西高东低"的演化规律。另外,通过系列图件的编制与建库,为我国矿产资源勘探及资源环境效应研究提供了基础图件数据。  相似文献   

11.
Callaghan and White(2009) put forward the automated whitecap extraction(AWE) technique to determine the whitecap coverage(W). An improved AWE was used to analyze images collected in the South China Sea during 2012 and 2013 and in western Pacific during 2015 to determine W. The influences of meteorological and oceanographic factors on whitecap coverage were investigated in this study. It is found that W increases with wind speed. Scale factor and exponent of parameterization for W(U10) vary greatly in different models. Overall, there is a larger scatter of W at low wind speed than at high wind speed. W decreases with the increasing of wave age. Compared with wind speed, the scatter of W is smaller with wave age, which means the impact of wave age on the whitecap coverage is more robust under various environmental conditions. There is no significant dependence on SST and whitecap coverage seems to weakly decrease with SST. W decreases with the atmospheric stability. Relationship between W and wind speed change when swells are dominant. Swell can suppress wave breaking and decrease W. The effect is independent of the deflection angle between wind wave and swell.  相似文献   

12.
Some approximate formulas, based on the internal- wave directional spectral model established by Schott and Willebrand (1973), of vertically standing wavemode eigenfunctions and a dispersion relation of internal waves in shallow seas are presented. An optimization method to estimate internal wave directional spectra is described and the confidence interval expression of the estimates is established. The GM spectral model of oceanic internal waves cannot be used in shallow seas (01 bers, 1983). Internal waves in shallow seas have two origins: oceanic (those generated in and propagating from the deep sea and ocean) and local (Phillips, 1977). As both reveal obvious propagation orientations, it is important to investigate the directional properties of the internal wave field. Though cross correlation function or cross-spectrum analyses can reveal the directional properties in some degree (Fang et al., 1984, and Fang, 1987), internal- wave directional spectrum analysis can further estimate the main propagation directions of wave components with different modenumbers and frequencies. So the latter is a more effective analysis tool. Because internal- wave directional spectrum analysis requires high quality data and long computer time, there are very few study reports so far on this subject. Among them. Schott and Willebrands' (1973) work is noteworthy. On the supposition, of linearization, they derived an internal- wave directional spectrum model. Internal-wave directional-spectra in shallow seas are investigated in the present study with their work as reference. Project supported by the National Natural Science Foundation of China.  相似文献   

13.
Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current fluctuation are investigated using moored acoustic Doppler current profiler data in a three-dimensional numerical model.It is found that a southward current followed by a northward current occurred in the northern Yellow Sea during the fluctuation,concurrent with a significant outflow followed by inflow through the Bohai Strait.The process is consistent from surface to bottom and is coupled with remarkable residual sea level fluctuation.This quasi three-day fluctuation with amplitude 0.2-0.3 m/s leads to 1 m/1.2 m drawdown in the northern Yellow and Bohai Seas,respectively,strongly influencing water exchange between those seas.Because this a prominent feature in the seas,it is necessary to evaluate its effect on fluctuation during winter in future studies,in particular,the northward current during the recovery phase of sea level in the Bohai and Yellow Seas regarding seasonal variation.  相似文献   

14.
Over the past few decades, an increasing number of marine activities have been conducted in the East China Sea, including the construction of various marine structures and the passage of large ships. Marine safety issues are paramount and are becoming more important with respect to the likely increase in size of ocean waves in relation to global climate change and associated typhoons. In addition, swells also can be very dangerous because they induce the resonance of floating structures, including ships. This study focuses on an investigation of swells in the East China Sea and uses hindcast data for waves over the past 5 years in a numerical model, WAVEWATCH III (WW3), together with historical climate data. The numerical calculation domain covers the entire North West Pacific. Next, swells are separated and analyzed using simulated wave fields, and both the characteristics and generation mechanisms of swells are investigated.  相似文献   

15.
Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea (SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and over-pressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.  相似文献   

16.
Skeletonema tropicum is regarded as a species with an affinity to warm waters and it has never been reported in seas where temperatures drop below 11°C in winter. Previous studies in China reported that S. tropicum was restricted to subtropical and warm temperate seas (East and South China Seas), but the species was recently found during August cruises of 2009 and 2010 in Jiaozhou Bay, Yellow Sea, located several hundred kilometers to the north. Here, winter water temperatures often drop below 5°C. Identification of S. tropicum was confirmed under light and scanning electronic microscopes and maximum cell abundance in Jiaozhou Bay was estimated as 1.73×10 4 cell/L. This record of S. tropicum in Jiaozhou Bay represents a significant northward expansion in the geographic range of the species. Ship ballast water was identified as a possible carrier of S. tropicum from southern places along Chinese coastline, and in addition, thermal pollution from local power stations and seawater desalination plants may provide suitable conditions for species over-wintering.  相似文献   

17.
The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits(mixed zone). Its of fshore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacific tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, significant wave height, and salinity(SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass(NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct influence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the influence of tropical cyclones on the NYSCWM.  相似文献   

18.
A distinct type of nonlinear internal-wave packet, with the largest internal solitary wave in the middle of the packet, was regularly observed in the South China Sea during the Asian Seas International Acoustics Experiment in 2001. Data analysis shows that the occurrence of the distinct internal wave packet is closely related with the occurrence of lower-high internal tides; the internal tides are mixed in the experimental area and, thus, there is diurnal inequality between the heights of two neighboring internal tides. Modeling of internal tides and internal solitary waves in a shoaling situation suggests that this type of wave packet can be generated in the South China Sea by the large shoaling of internal solitary waves and internal tides. Both the internal solitary waves and the internal tides come from the direction of Luzon Strait. The initial large internal solitary waves contribute to the occurrence of the largest internal solitary wave in the middle of the packet and the waves behind the largest internal solitary wave, while the shoaling internal tides bring about the nonlinear internal waves in front of the largest internal solitary wave via interaction with the local shelf topography.  相似文献   

19.
Circulation in China Seas has been investigated by Chinese oceanographers in some detail for many years. However, owing to data being sparse and scarce, studies were basically concerned in interseasonal (mainly summer and winter) fluctuations and almost none was in the interannual variability of the circulation in China Seas. It is pointed out that the routine (monthly or bimonthly) hydrographical section data on the continental shelf of China Seas accumulated since 1975, can be used to examine the interannual variability of the shelf circulation. An example is given to show there is interannual variability of shelf circulation in the East China Sea. And what is more, a hypothesis is proposed to describe where the interannual variability comes from and to explain why it is strongly correlated with El Niño events. It is strongly suggested that the interannual variability of the shelf circulation in China Seas be studied, as a strategy, with the routine hydrographical survey, which should be seriously continued, combined with cooperative study in the Philippine Sea and the western tropical Pacific Ocean.  相似文献   

20.
The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in global climate change.In this study steric sea level,associated with temperature and salinity,in the GIN seas is examined based on analysis of the monthly temperature and salinity fields from Polar science center Hydrographic Climatology (PHC3.0).A method proposed by Tabata et al.is used to calculate steric sea level,in which,steric sea level change due to thermal expansion and haline contraction is termed as the thermosteric component (TC) and the halosteric component (SC),recpectively.Total steric sea level (TSSL) change is the sum of TC and SC.The study shows that SC is making more contributions than TC to the seasonal change of TSSL in the Greenland Sea,whereas TC contributes more in the Norwegian and the Iceland Seas.Annual variation of TSSL is larger than 50 mm over most regions of the GIN Seas,and can be larger than 200 mm at some locations such as 308 mm at 76.5 N,12.5 E and 246 mm at 77.5 N,17.5 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号