首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large dynamic range provided by the SOHO/EIT CCD (1 : 5000) is needed to observe the large EUV zoom of coronal structures from coronal homes up to flares. Histograms show that often a wide dynamic range is present in each image. Extracting hidden structures in the background level requires specific techniques such as the use of the Multiscale Vision Model (MVM, Bijaoui et al., 1998). This method, based on wavelet transformations optimizes detection of various size objects, however complex they may be. Bijaoui et al. built the Multiscale Vision Model to extract small dynamical structures from noise, mainly for studying galaxies. In this paper, we describe requirements for the use of this method with SOHO/EIT images (calibration, size of the image, dynamics of the subimage, etc.). Two different areas were studied revealing hidden structures: (1) classical coronal mass ejection (CME) formation and (2) a complex group of active regions with its evolution. The aim of this paper is to define carefully the constraints for this new method of imaging the solar corona with SOHO/EIT. Physical analysis derived from multi-wavelength observations will later complete these first results. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1017579625208 with J.P. Delaboudinière P.I.  相似文献   

2.
Studies of the onset of Earth-directed coronal mass ejections (CMEs) rely on solar disk observations where CME structures are difficult to disentangle because of the diversity and transient character of the phenomena involved. Dimmings and coronal waves are among the best evidence of the large-scale reorganization of coronal magnetic fields associated with the onset of CMEs. The physical mechanism behind EIT waves is still unclear: they are considered as MHD waves and/or as a consequence of plasma compression on the extending border of a dimming. In this paper, we address the problem of automatically detecting and analyzing EIT waves and dimmings in EUV images. This paper presents a “proof of principle” that automated detection of EIT wave and dimmings is indeed possible. At the current stage of work, the method can unambiguously detect dimmings and EIT waves when applied on a typical test-case event. Moreover, we propose a way to extract these events from the data, and determine such parameters as life time, depth, area and volume of dimmings for future catalogs. For EIT waves we unambiguously define, in near solar minimum conditions, the eruption center, the front of EIT wave and its propagation velocity. In addition, we show that the presented methods yield new insights about the geometrical shape of dimmings and the connection with the EIT wave front properties, and the apparent angular rotation of the EIT wave under study.  相似文献   

3.
We present an analysis of all the events (around 400) of coronal shocks for which the shock-associated metric type IIs were observed by many spectrographs during the period April 1997– December 2000. The main objective of this analysis is to give evidence for the type IIs related to only flare-blast waves, and thus to find out whether there are any type II-associated coronal shocks without mass ejections. By carefully analyzing the data from multi-wavelength observations (Radio, GOES X-ray, Hα, SOHO/LASCO and SOHO/EIT-EUV data), we have identified only 30 events for which there were actually no reports of CMEs. Then from the analysis of the LASCO and EIT running difference images, we found that there are some shocks (nearly 40%, 12/30) which might be associated with weak and narrow mass ejections. These weak and narrow ejections were not reported earlier. For the remaining 60% events (18/30), there are no mass ejections seen in SOHO/LASCO. But all of them are associated with flares and EIT brightenings. Pre-assuming that these type IIs are related to the flares, and from those flare locations of these 18 cases, 16 events are found to occur within the central region of the solar disk (longitude ≤45^∘). In this case, the weak CMEs originating from this region are unlikely to be detected by SOHO/LASCO due to low scattering. The remaining two events occurred beyond this longitudinal limit for which any mass ejections would have been detected if they were present. For both these events, though there are weak eruption features (EIT dimming and loop displacement) in the EIT images, no mass ejection was seen in LASCO for one event, and a CME appeared very late for the other event. While these two cases may imply that the coronal shocks can be produced without any mass ejections, we cannot deny the strong relationship between type IIs and CMEs.  相似文献   

4.
EIT waves are observed in EUV as bright fronts. Some of these bright fronts propagate across the solar disk. EIT waves are all associated with a flare and a CME and are commonly interpreted as fast-mode magnetosonic waves. Propagating EIT waves could also be the direct signature of the gradual opening of magnetic field lines during a CME. We quantitatively addressed this alternative interpretation. Using two independent 3D MHD codes, we performed nondimensional numerical simulations of a slowly rotating magnetic bipole, which progressively result in the formation of a twisted magnetic flux tube and its fast expansion, as during a CME. We analyse the origins, the development, and the observability in EUV of the narrow electric currents sheets that appear in the simulations. Both codes give similar results, which we confront with two well-known SOHO/EIT observations of propagating EIT waves (7 April and 12 May 1997), by scaling the vertical magnetic field components of the simulated bipole to the line of sight magnetic field observed by SOHO/MDI and the sign of helicity to the orientation of the soft X-ray sigmoids observed by Yohkoh/SXT. A large-scale and narrow current shell appears around the twisted flux tube in the dynamic phase of its expansion. This current shell is formed by the return currents of the system, which separate the twisted flux tube from the surrounding fields. It intensifies as the flux tube accelerates and it is co-spatial with weak plasma compression. The current density integrated over the altitude has the shape of an ellipse, which expands and rotates when viewed from above, reproducing the generic properties of propagating EIT waves. The timing, orientation, and location of bright and faint patches observed in the two EIT waves are remarkably well reproduced. We conjecture that propagating EIT waves are the observational signature of Joule heating in electric current shells, which separate expanding flux tubes from their surrounding fields during CMEs or plasma compression inside this current shell. We also conjecture that the bright edges of halo CMEs show the plasma compression in these current shells.  相似文献   

5.
We explore the link between solar energetic particles (SEPs) observed at 1 AU and large-scale disturbances propagating in the solar corona, named after the Extreme ultraviolet Imaging Telescope (EIT) as EIT waves, which trace the lateral expansion of a coronal mass ejection (CME). A comprehensive search for SOHO/EIT waves was carried out for 179 SEP events during Solar Cycle 23 (1997?–?2006). 87 % of the SEP events were found to be accompanied by EIT waves. In order to test if the EIT waves play a role in the SEP acceleration, we compared their extrapolated arrival time at the footpoint of the Parker spiral with the particle onset in the 26 eastern SEP events that had no direct magnetic connection to the Earth. We find that the onset of proton events was generally consistent with this scenario. However, in a number of cases the first near-relativistic electrons were detected too early. Furthermore, the electrons had in general only weakly anisotropic pitch-angle distributions. This poses a problem for the idea that the SEPs were accelerated by the EIT wave or in any other spatially confined region in the low corona. The presence of weak electron anisotropies in SEP events from the eastern hemisphere suggests that transport processes in interplanetary space, including cross-field diffusion, play a role in giving the SEPs access to a broad range of helio-longitudes.  相似文献   

6.
Two successful sounding rocket flights were launched on 15 May 1997 and 2 November 1998 with an objective of providing inter-calibration with several of the instruments on board SOHO and TRACE. We will discuss here the results of the inter-calibration between the SwRI/LASP rocket imaging instruments and the Extreme-ultraviolet Imaging Telescope (EIT) on SOHO. The Multiple XUV Imager (MXUVI) sounding rocket instrument is a multi-layer mirror telescope equipped with an internal occulter and light trap to provide full-disk images of Feix/x 17.1 nm and off-limb observations of Heii 30.4 nm. The SOHO/EIT instrument is also a full-disk multi-layer imager with four channels, Fe ix/x 17.1 nm, Fexii 19.5 nm, Fexv 28.4 nm and Heii 30.4 nm. By comparison with the EIT observations taken at the same time, we provide new flat-field determinations for EIT which help quantify the sensitivity degradation of the EIT detector, as well as provide a measure of the off-limb stray-light characteristics of the two instruments. We find that the EIT stray-light function is strongly asymmetric, with greater stray light in the 17.1 and 19.5 nm quadrants than the 30.4 and 28.4 nm quadrants. Two possible causes of this asymmetry are the polishing processes of the EIT mirrors and the asymmetric support grid pattern in the foil mesh at the EIT pupil.  相似文献   

7.
“EIT waves” are a wavelike phenomenon propagating in the corona, which was initially observed in the extreme ultraviolet (EUV) wavelength by the EUV Imaging Telescope (EIT). Their nature is still elusive, with the debate on-going between fast-mode wave model and non-wave model. In order to distinguish between these models, we investigate the relation between the EIT wave velocity and the local magnetic field in the corona. It is found that the two parameters show significant negative correlation in most of the EIT wave fronts, i.e., the EIT wave propagates more slowly in the regions of stronger magnetic field. Such a result poses a big challenge to the fast-mode wave model, which would predict a strong positive correlation between the two parameters. However, it is demonstrated that such a result can be explained by the fieldline stretching model, i.e., that “EIT waves” are the propagation of apparent brightenings, which are generated by successive stretching of closed magnetic field lines pushed by the erupting flux rope during coronal mass ejections (CMEs).  相似文献   

8.
Garaimov  V.I.  Kundu  M.R. 《Solar physics》2002,207(2):355-367
We present the results of an analysis of a flare event of importance M2.8 that occurred at 00:56 UT 28 August 1999. The analysis is based upon observations made with the Nobeyama radioheliograph (NoRH) and polarimeters (NoRP), TRACE, SOHO/MDI, EIT, and Yohkoh/SXT. The images show a very complex flaring region. Pre-flare TRACE and EIT images at 00:24 UT show a small brightening in the region before the flare occurred. The active region in which the flare occurred had evolving magnetic fields, and new magnetic flux seems to have emerged. The X-ray and radio time profiles for this event show a double-peaked structure. The polarimeter data showed that the maximum radio emission (1200 s.f.u.) occurred at 9.4 GHz. At 17 GHz the NoRH images appear to show four different radio sources including the main spot and the main flare loop. Most of the microwave emission seems to originate from the main flare loop. Comparison of BATSE and microwave time profiles at 17 and 34 GHz from the main sunspot source shows that these profiles have similar structures and they coincide with the hard X-ray peaks. The maximum of the flare loop emission was delayed by 10 s relative to the second maximum of the sunspot associated flare emission. Analysis of SXT images during the post-flare phase shows a complex morphology – several intersecting loops and changes in the shape of the main flare loop.  相似文献   

9.
We have analyzed dimmings, i.e., regions of temporarily reduced brightness, and manifestations of a coronal wave in the famous event of 14 July 2000 using images produced with the EUV telescope SOHO/EIT. Our analysis was inspired by a paper by Andrews (2001, Solar Phys. 204, 181 (Paper I)), in which this event was studied using running-difference EIT images at 195 Å formed by subtraction of a previous image from each current one. Such images emphasize changes of the brightness, location, and configuration of observed structures occurring during the 12-min interval between two subsequent heliograms. However, they distort the picture of large-scale disturbances caused by a CME, particularly, dimmings. A real picture of dimmings can be obtained from fixed-base difference ‘de-rotated’ images. The latter are formed in two stages: first, the solar rotation is compensated using three-dimensional rotation of all images (‘de-rotation’) to the time of a pre-event heliogram, here 10:00 UT, and then the base heliogram is subtracted from all others. We show real dimmings to be essentially different from those described by Andrews (Paper I). The restructuring of large-scale magnetic fields in the corona in connection with the CME was accompanied by the appearance and growth of two large dimmings. One of them was located along the central meridian, southward of the eruption center, at the place of the pre-eruption arcade. Another dimming occupied the space between the flare region and a remote western active region. Several smaller dimmings were observed virtually over the whole solar disk, especially, within the northwest quadrant. We have also revealed a propagating disturbance with properties of a coronal wave in the northern polar sector, where no dimmings were observed. This fact is discussed in the context of probable association between dimmings and coronal waves. Having suppressed the ‘snowstorm’ produced in the EIT images by energetic particles, we have considered dimming manifestations in all four EIT pass bands of 171, 195, 284, and 304 Å as well as the light curves of the main dimmings including several later images at 195 Å. Our analysis shows that the major cause of the dimmings was density depletion that reached up to 30% in this event. The picture of dimmings implies that the CME in the Bastille Day event was an octopus-like bundle of some magnetic ropes, with the ‘arms’ being connected to several active regions disposed over almost the whole visible solar surface.  相似文献   

10.
Eit Observations of the Extreme Ultraviolet Sun   总被引:3,自引:0,他引:3  
The Extreme Ultraviolet Imaging Telescope (EIT) on board the SOHO spacecraft has been operational since 2 January 1996. EIT observes the Sun over a 45 x 45 arc min field of view in four emission line groups: Feix, x, Fexii, Fexv, and Heii. A post-launch determination of the instrument flatfield, the instrument scattering function, and the instrument aging were necessary for the reduction and analysis of the data. The observed structures and their evolution in each of the four EUV bandpasses are characteristic of the peak emission temperature of the line(s) chosen for that bandpass. Reports on the initial results of a variety of analysis projects demonstrate the range of investigations now underway: EIT provides new observations of the corona in the temperature range of 1 to 2 MK. Temperature studies of the large-scale coronal features extend previous coronagraph work with low-noise temperature maps. Temperatures of radial, extended, plume-like structures in both the polar coronal hole and in a low latitude decaying active region were found to be cooler than the surrounding material. Active region loops were investigated in detail and found to be isothermal for the low loops but hottest at the loop tops for the large loops. Variability of solar EUV structures, as observed in the EIT time sequences, is pervasive and leads to a re-evaluation of the meaning of the term ‘quiet Sun’. Intensity fluctuations in a high cadence sequence of coronal and chromospheric images correspond to a Kolmogorov turbulence spectrum. This can be interpreted in terms of a mixed stochastic or periodic driving of the transition region and the base of the corona. No signature of the photospheric and chromospheric waves is found in spatially averaged power spectra, indicating that these waves do not propagate to the upper atmosphere or are channeled through narrow local magnetic structures covering a small fraction of the solar surface. Polar coronal hole observing campaigns have identified an outflow process with the discovery of transient Fexii jets. Coronal mass ejection observing campaigns have identified the beginning of a CME in an Fexii sequence with a near simultaneous filament eruption (seen in absorption), formation of a coronal void and the initiation of a bright outward-moving shell as well as the coronal manifestation of a ‘Moreton wave’. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004902913117  相似文献   

11.
The Large Angle Spectrometric Coronagraph (LASCO) and Extreme-ultraviolet Imaging Telescope (EIT) onboard Solar and Heliospheric Observatory (SOHO) provide us with unprecedented multi-wavelength observations helping us to understand different dynamic phenomena on the Sun and in the corona. In this paper we discuss the association between post-eruptive arcades (PEAs) detected by EIT and white-light coronal mass ejections (CMEs) detected by LASCO/C2 telescope.  相似文献   

12.
One of the major discoveries of the Extreme ultraviolet Imaging Telescope (EIT) on SOHO was the intensity enhancements propagating over a large fraction of the solar surface. The physical origin(s) of the so-called EIT waves is still strongly debated with either wave (primarily fast-mode MHD waves) or nonwave (pseudo-wave) interpretations. The difficulty in understanding the nature of EUV waves lies in the limitations of the EIT observations that have been used almost exclusively for their study. They suffer from low cadence and single temperature and viewpoint coverage. These limitations are largely overcome by the SECCHI/EUVI observations onboard the STEREO mission. The EUVI telescopes provide high-cadence, simultaneous multitemperature coverage and two well-separated viewpoints. We present here the first detailed analysis of an EUV wave observed by the EUVI disk imagers on 7 December 2007 when the STEREO spacecraft separation was ≈?45°. Both a small flare and a coronal mass ejection (CME) were associated with the wave. We also offer the first comprehensive comparison of the various wave interpretations against the observations. Our major findings are as follows: (1) High-cadence (2.5-minute) 171 Å? images showed a strong association between expanding loops and the wave onset and significant differences in the wave appearance between the two STEREO viewpoints during its early stages; these differences largely disappeared later; (2) the wave appears at the active region periphery when an abrupt disappearance of the expanding loops occurs within an interval of 2.5 minutes; (3) almost simultaneous images at different temperatures showed that the wave was most visible in the 1?–?2 MK range and almost invisible in chromospheric/transition region temperatures; (4) triangulations of the wave indicate it was rather low lying (≈?90 Mm above the surface); (5) forward-fitting of the corresponding CME as seen by the COR1 coronagraphs showed that the projection of the best-fit model on the solar surface was inconsistent with the location and size of the co-temporal EUV wave; and (6) simulations of a fast-mode wave were found in good agreement with the overall shape and location of the observed wave. Our findings give significant support for a fast-mode interpretation of EUV waves and indicate that they are probably triggered by the rapid expansion of the loops associated with the CME.  相似文献   

13.
The SPIRIT complex onboard the CORONAS-F satellite has routinely imaged the Sun in the 171, 175, 195, 284, and 304 Å spectral bands since August 2001. The complex incorporates two telescopes. The Ritchey-Chretien telescope operates in the 171, 195, 284, and 304 Å bands and has an objective similar to that of the SOHO/EIT instrument. The Herschel telescope obtains solar images synchronously in the 175 and 304 Å bands with two multilayer-coated parabolic mirrors. The SPIRIT program includes synoptic observations, studies of the dynamics of various structures on the solar disk and in the corona up to 5 solar radii, and coordinated observations with other spaceborne and ground-based telescopes. In particular, in the period 2002–2003, synoptic observations with the SPIRIT Ritchey-Chretien telescope were coordinated with regular 6-hour SOHO/EIT observations. Since June 2003, when EIT data were temporarily absent (SOHO keyholes), the SPIRIT telescope has performed synoptic observations at a wavelength of 175 A. These data were used by the Solar Influence Data Analysis Center (SIDC) at the Royal Observatory of Belgium for an early space weather forecast. We analyze the photometric and spectral parameters of the SPIRIT and EIT instruments and compare the integrated (over the solar disk) EUV fluxes using solar images obtained with these instruments during the CORONAS-F flight from August 2001 through December 2003.  相似文献   

14.
从理论上研究了Sr原子系统中电磁感应透明(EIT)效应及其伴随的Kerr非线性效应。计算表明,将一级冷却得到的Sr冷原子粘团作为光场与原子相互作用的EIT介质,用较弱的耦合光可以得到一个非常窄的EIT窗口和较强的Kerr非线性效应。该研究结果为实现689nm激光器的线宽压窄及应用EIT效应进行。Sr玻色子冷原子光钟研究提供了理论参考。  相似文献   

15.
It is generally accepted that transient coronal holes (TCHs, dimmings) correspond to the magnetic footpoints of CMEs that remain rooted in the Sun as the CME expands out into the interplanetary space. However, the observation that the average intensity of the 12 May 1997 dimmings recover to their pre-eruption intensity in SOHO/EIT data within 48 hours, whilst suprathermal unidirectional electron heat fluxes are observed at 1 AU in the related ICME more than 70 hours after the eruption, leads us to question why and how the dimmings disappear whilst the magnetic connectivity is maintained. We also examine two other CME-related dimming events: 13 May 2005 and 6 July 2006. We study the morphology of the dimmings and how they recover. We find that, far from exhibiting a uniform intensity, dimmings observed in SOHO/EIT data have a deep central core and a more shallow extended dimming area. The dimmings recover not only by shrinking of their outer boundaries but also by internal brightenings. We quantitatively demonstrate that the model developed by Fisk and Schwadron (Astrophys. J. 560, 425, 2001) of interchange reconnections between “open” magnetic field and small coronal loops is a strong candidate for the mechanism facilitating the recovery of the dimmings. This process disperses the concentration of  “open” magnetic field (forming the dimming) out into the surrounding quiet Sun, thus recovering the intensity of the dimmings whilst still maintaining the magnetic connectivity to the Sun. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

16.
Dere  K.P.  Moses  J.D.  Delaboudinière  J.-P.  Brunaud  J.  Carabetian  C.  Hochedez  J.-F.  Song  X.Y.  Catura  R.C.  Clette  F.  Defise  J.-M. 《Solar physics》2000,195(1):13-44
This paper presents the preflight photometric calibration of the Extreme-ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). The EIT consists of a Ritchey–Chrétien telescope with multilayer coatings applied to four quadrants of the primary and secondary mirrors, several filters and a backside-thinned CCD detector. The quadrants of the EIT optics were used to observe the Sun in 4 wavelength bands that peak near 171, 195, 284, and 304 Å. Before the launch of SOHO, the EIT mirror reflectivities, the filter transmissivities and the CCD quantum efficiency were measured and these values are described here. The instrumental throughput in terms of an effective area is presented for each of the various mirror quadrant and filter wheel combinations. The response to a coronal plasma as a function of temperature is also determined and the expected count rates are compared to the count rates observed in a coronal hole, the quiet Sun and an active region.  相似文献   

17.
Berghmans  D.  Clette  F. 《Solar physics》1999,186(1-2):207-229
On 13 May 1998, the Extreme-Ultraviolet Imaging Telescope (EIT, on board SOHO) has produced a unique image sequence operating in 'shutterless mode' (SOHO JOP 80). In JOP 80, EIT is the lead instrument, followed by several space-born instruments (SXT, TRACE, MDI, CDS, SUMER), as well as two observatories on the ground (in La Palma and Sac Peak). The target of the campaign was a relatively small but rapidly evolving active region (AR 8218). For the EIT contribution, a 15 s cadence was achieved in the Fexii bandpass at 195 Å by leaving EIT's shutter open for 1 h and operating the CCD in frame-transfer mode. In this paper, we start the analysis of the huge data set, by making an inventory of the transients observed in the EIT image sequence. Besides scatter plots of duration, size and radiative output of the detected EUV brightenings, we discuss in full detail the morphology and evolution of several typical events. These transients range from a B3.5 flare producing a large plasma flow along pre-existing loops, to EUV versions of active region transient brightenings as previously observed by SXT on board Yohkoh. In addition, a new class of weaker footpoint brightenings is discussed that produce wave-like disturbances propagating along quasi-open field lines. This new class of propagating disturbances extends the wide variety of transient phenomena that we discovered in the EIT data, and makes the potential for inter-instrumental studies of the JOP 80 data all the more exciting. We stress the necessity of such forthcoming studies to reach an instrument-independent classification of small-scale solar transients.  相似文献   

18.
Solar telescopes will never be able to resolve the smallest events at their intrinsic physical scales. Pixel signals recorded by SOHO/(CDS, EIT, SUMER), STEREO/SECCHI/ EUVI, TRACE, SDO/AIA, and even by the future Solar Orbiter EUI/HRI contain an inherent “spatial noise” since they represent an average of the solar signal present at subpixel scales. In this paper, we aim at investigating this spatial noise, and hopefully at extracting information from subpixel scales. Two paths are explored. We first combine a regularity analysis of a sequence of EIT images with an estimation of the relationship between mean and standard deviation, and we formulate a scenario for the evolution of the local signal-to-noise ratio (SNR) as the pixel size becomes smaller. Second, we use an elementary forward modeling to examine the relationship between nanoflare characteristics (such as area, duration, and intensity) and the global mean and standard deviation. We use theoretical distributions of nanoflare parameters as input to the forward model. A fine-grid image is generated as a random superposition of those pseudo-nanoflares. Coarser resolution images (simulating images acquired by a telescope) are obtained by rebinning and are used to compute the mean and standard deviation to be analyzed. Our results show that the local SNR decays more slowly in regions exhibiting irregularities than in smooth regions.  相似文献   

19.
Absolutely calibrated solar images are necessary for a variety of solar physics problems, such as the identification of solar variability sources and the derivation of differential emission measure (DEM) maps. SOHO EIT is absolutely calibrated by using TIMED SEE spectra to provide a method of determining physical values of irradiance for EIT images. EIT images from 1 April 2002 to 15 March 2005 in the 28.4- and 30.4-nm channels are compared to SEE daily spectra from the same time period. The resulting fitted EIT irradiances are well correlated to SEE irradiance measurements and are within the uncertainties of both instruments. The new cross-calibration results are compared to the currently used calibration based on the UARS SUSIM Mg ii index.  相似文献   

20.
The multi-wavelength analysis is performed on a flare on September 9, 2002 with data of Owens Valley Solar Arrays (OVSA), Big Bear Solar Observatory (BBSO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Extreme UV Imager Telescope (EIT), and The Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO). The radio sources at 4.8 and 6.2 GHz located in the intersection of two flaring loops at 195 of SOHO/EIT respectively with two dipole magnetic fields of SOHO/MDI, in which one EIT loop was coincident with an X-ray loop of RHESSI at 12–25 keV, and two Hαbright kernels a1 and a2 of BBSO, respectively at the two footpoints of this loop; the second EIT loop connected another two Hαkernels b1 and b2 and radio sources at 7.8 and 8.2 GHz of OVSA. The maximum phase of microwave bursts was evidently later than that of hard X-ray bursts and Hαkernels a1 and a2, but consistent with that of Hαkernels b1 and b2. Moreover, the flare may be triggered by the interaction of the two flaring loops, which is suggested by the cross-correlation of radio, optical, and X-ray light curves of a common quasi-periodic oscillation in the rising phase, as well as two peaks at about 7 and 9 GHz of the microwave spectra at the peak times of the oscillation, while the bi-directional time delays at two reversal frequencies respectively at 7.8 and 9.4 GHz (similar to the peak frequencies of the microwave spectra) may indicate two reconnection sites at different coronal levels. The microwave and hard X-ray footpoint sources located in different EUV and optical loops may be explained by different magnetic field strength and the pitch angle distribution of nonthermal electrons in these two loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号