首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

The predictive capability of a new artificial intelligence method, random subspace (RS), for the prediction of suspended sediment load in rivers was compared with commonly used methods: random forest (RF) and two support vector machine (SVM) models using a radial basis function kernel (SVM-RBF) and a normalized polynomial kernel (SVM-NPK). Using river discharge, rainfall and river stage data from the Haraz River, Iran, the results revealed: (a) the RS model provided a superior predictive accuracy (NSE = 0.83) to SVM-RBF (NSE = 0.80), SVM-NPK (NSE = 0.78) and RF (NSE = 0.68), corresponding to very good, good, satisfactory and unsatisfactory accuracies in load prediction; (b) the RBF kernel outperformed the NPK kernel; (c) the predictive capability was most sensitive to gamma and epsilon in SVM models, maximum depth of a tree and the number of features in RF models, classifier type, number of trees and subspace size in RS models; and (d) suspended sediment loads were most closely correlated with river discharge (PCC = 0.76). Overall, the results show that RS models have great potential in data poor watersheds, such as that studied here, to produce strong predictions of suspended load based on monthly records of river discharge, rainfall depth and river stage alone.  相似文献   

2.
In this study, three artificial neural network methods, i.e. feed forward back propagation, the radial basis function neural network, and the generalized regression neural network are employed to compute the longitudinal dispersion coefficient in order to evaluate its behaviour in predicting dispersion characteristics in natural streams. These methods, which use hydraulic and geometrical data to predict dispersion coefficients, can easily be applied to natural streams and are proven to be superior in explaining their dispersion characteristics more precisely than existing equations. This method of predicting the longitudinal dispersion coefficient in river flows was tested on 65 data sets, obtained by researchers from 30 rivers in the USA. Results using the models are compared with results obtained in many other studies, and are shown to be more accurate than the other methods considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A vortex tube silt ejector is a curative hydraulic structure used to remove sediment deposits from canals and is recognized as one of the most efficient substitutes for physically removing canal sediment. The spatially varied flow in the channel and the rotational flow behavior in the tube make the silt removal process complex. It is even harder to accurately predict the silt removal efficiency by traditional models accurately. However, artificial intelligence(AI) and machine learning approaches...  相似文献   

4.
Following the development of marine litter surveillance methodologies for use on beaches, this study shows the feasibility of similar surveys at sea. The results indicate widespread distribution of marine litter in the surface waters of the North Sea, especially plastics. Not only does this draw attention to the need for the implementation of Annexe V of the MARPOL Convention, but serious consideration should be given now to the designation of the North Sea as a ‘special area’ such that the dumping of all garbage from ships, except food wastes, should be prohibited.  相似文献   

5.
This paper proposes to use least square support vector machine (LSSVM) and relevance vector machine (RVM) for prediction of the magnitude (M) of induced earthquakes based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth (H) are used as input variables of the LSSVM and RVM. The output of the LSSVM and RVM is M. Equations have been presented based on the developed LSSVM and RVM. The developed RVM also gives variance of the predicted M. A comparative study has been carried out between the developed LSSVM, RVM, artificial neural network (ANN), and linear regression models. Finally, the results demonstrate the effectiveness and efficiency of the LSSVM and RVM models.  相似文献   

6.
7.
基于人工智能的断层自动识别研究进展   总被引:1,自引:0,他引:1  
随着油气勘探开发工作的进行,构造圈闭的勘探难度不断提高,断层作为油气运移、聚集的主要通道之一,断层的识别精度很大程度上影响了油气藏的勘探开发.在断层识别的发展过程中,国内外学者们提出了许多切实可行的方案.近年来,人工智能领域的兴起,使得断层自动识别方法更加多样化.本文通过调研大量的国内外相关文献,对基于人工智能的断层自...  相似文献   

8.
ABSTRACT

Infiltration plays a fundamental role in streamflow, groundwater recharge, subsurface flow, and surface and subsurface water quality and quantity. In this study, adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and random forest (RF) models were used to determine cumulative infiltration and infiltration rate in arid areas in Iran. The input data were sand, clay, silt, density of soil and soil moisture, while the output data were cumulative infiltration and infiltration rate, the latter measured using a double-ring infiltrometer at 16 locations. The results show that SVM with radial basis kernel function better estimated cumulative infiltration (RMSE = 0.2791 cm) compared to the other models. Also, SVM with M4 radial basis kernel function better estimated the infiltration rate (RMSE = 0.0633 cm/h) than the ANFIS and RF models. Thus, SVM was found to be the most suitable model for modelling infiltration in the study area.  相似文献   

9.
River sediment produced through weathering is one of the principal landscape modification processes on earth.Rivers are an integral part of the hydrologic cycle and are the major geologic agents that erode the continents and transport water and sediments to the oceans.Estimation of suspended sediment yield is always a key parameter for planning and management of any river system.It is always challenging to model sediment yield using traditional mathematical models because they are incapable of handling the complex non-linearity and non-stationarity.The suspended sediment modeling of the river depends on the number of factors such as rock type,relief,rainfall,temperature,water discharge and catchment area.In this study,we proposed a hybrid genetic algorithm-based multi-objective optimization with artificial neural network(GA-MOO-ANN)with automated parameter tuning model using these factors to estimate the suspended sediment yield in the entire Mahanadi River basin.The model was validated by comparing statistically with other models,and it appeared that the GA-MOO-ANN model has the lowest root mean squared error(0.009)and highest coefficient of correlation(0.885)values among all comparative models(traditional neural network,multiple linear regression,and sediment rating curve)for all stations.It was also observed that the proposed model is the least biased(0.001)model.Thus,the proposed GA-MOOANN is the most capable model,compared to other studied models,for estimating the suspended sediment yield in the entire Mahanadi river basin,India.The results also suggested that the proposed GA-MOO-ANN model is unable to estimate suspended sediment yield satisfactorily at gauge stations having very small catchment areas whereas performing satisfactorily on locations having moderate to the large catchment area.The models provide the best result at Tikarapara,the gauge station location in the extreme downstream,having the largest catchment area.  相似文献   

10.
Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar’s statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.  相似文献   

11.
本文针对巴基斯坦北部地区进行了地震预测研究。研究方法包含了地震学和计算智能技术领域不同学科的交叉融合。针对历史地震活动计算了8种地震学参数。通过计算它们的信息增益来评估这8种参数的预测效能,进而选择了其中6种应用于预测试验。基于这6种参数发展了多个计算智能模型用于预测试验。这些模型包括前馈神经网络、循环神经网络、随机森林、多层感知、径向基神经网络和支持向量机。本文评估了每一种模型的效能,同时利用McNemar统计检验方法来研究计算方法的统计显著性。前馈神经网络模型在巴基斯坦北部地区可表现出统计显著性为75%准确率和78%正确预报的预测结果。  相似文献   

12.
近年来人工智能和物联网等新兴技术在众多领域中取得了突破性进展,为大数据时代带来革命性的改变.与传统方法相比,人工智能和物联网技术因其在数据的获取、传输、分析和处理等方面具有显著的优势,在大气科学领域引起了广泛的关注.在全球极端天气事件、气象灾害频发的背景下,本文通过文献调研指出了运用人工智能与物联网相结合发展智慧气象的...  相似文献   

13.
There are increasing demands for EOP predictions in science, deep space navigation, etc. Based on previous research on short-term prediction of Earth Orientation Parameters (EOP) by artificial neural networks (ANN), we extend our attempt to long-term predictions of EOPs, i.e. predictions with a lead time up to 360 days. The basic theory and some special considerations for the ANN forecast of EOPs are presented, and finally our preliminary results and their accuracy estimates are shown and compared with those obtained by other authors.  相似文献   

14.
With the development of computing technology, numerical models are often employed to simulate flow and water quality processes in coastal environments. However, the emphasis has conventionally been placed on algorithmic procedures to solve specific problems. These numerical models, being insufficiently user-friendly, lack knowledge transfers in model interpretation. This results in significant constraints on model uses and large gaps between model developers and practitioners. It is a difficult task for novice application users to select an appropriate numerical model. It is desirable to incorporate the existing heuristic knowledge about model manipulation and to furnish intelligent manipulation of calibration parameters. The advancement in artificial intelligence (AI) during the past decade rendered it possible to integrate the technologies into numerical modelling systems in order to bridge the gaps. The objective of this paper is to review the current state-of-the-art of the integration of AI into water quality modelling. Algorithms and methods studied include knowledge-based system, genetic algorithm, artificial neural network, and fuzzy inference system. These techniques can contribute to the integrated model in different aspects and may not be mutually exclusive to one another. Some future directions for further development and their potentials are explored and presented.  相似文献   

15.
Indian summer monsoon rainfall prediction using artificial neural network   总被引:1,自引:1,他引:1  
Forecasting the monsoon temporally is a major scientific issue in the field of monsoon meteorology. The ensemble of statistics and mathematics has increased the accuracy of forecasting of Indian summer monsoon rainfall (ISMR) up to some extent. But due to the nonlinear nature of ISMR, its forecasting accuracy is still below the satisfactory level. Mathematical and statistical models require complex computing power. Therefore, many researchers have paid attention to apply artificial neural network in ISMR forecasting. In this study, we have used feed-forward back-propagation neural network algorithm for ISMR forecasting. Based on this algorithm, we have proposed the five neural network architectures designated as BP1, BP2, $\ldots, $ … , BP5 using three layers of neurons (one input layer, one hidden layer and one output layer). Detail architecture of the neural networks is provided in this article. Time series data set of ISMR is obtained from Pathasarathy et al. (Theor Appl Climatol 49:217–224 1994) (1871–1994) and IITM (http://www.tropmet.res.in/, 2012) (1995–2010) for the period 1871–2010, for the months of June, July, August and September individually, and for the monsoon season (sum of June, July, August and September). The data set is trained and tested separately for each of the neural network architecture, viz., BP1–BP5. The forecasted results obtained for the training and testing data are then compared with existing model. Results clearly exhibit superiority of our model over the considered existing model. The seasonal rainfall values over India for next 5 years have also been predicted.  相似文献   

16.
近年来人工智能(AI)技术的迅猛发展,引领了包括地震减灾在内的众多科技领域的前沿.为反映和描述当前人工智能技术的引入和促进地震减灾科技发展的全貌,本文系统整理和回顾了近10年来已发表的相关文献,解读了其在地震监测预警、地震预测、风险防治、应急处置与风险管理四个方面取得的主要技术进展,具体包括事件检测、震源参数测定、事件...  相似文献   

17.
18.
利用人工神经网络预测电离层foF2参数   总被引:1,自引:0,他引:1       下载免费PDF全文
利用人工神经网络技术实现了电离层foF2参数提前1小时预测.从foF2时间序列本身的变化特征出发,根据时间序列相关分析结果确定网络输入参数.选用当前时刻foF2值,预测时刻前一天的foF2值,预测时刻前7天foF2平均值,当前时刻前7天foF2平均值,foF2的一阶差分及表示当前时刻t的变量共六个参数作为神经网络输入,下一时刻值作为神经网络输出.对于太阳活动高年平均预测相对误差小于6%,均方根误差小于0.6 MHz,太阳活动低年平均预测相对误差小于10%,均方根误差小于0.5 MHz  相似文献   

19.
Borehole-wall imaging is currently the most reliable means of mapping discontinuities within boreholes. As these imaging techniques are expensive and thus not always included in a logging run, a method of predicting fracture frequency directly from traditional logging tool responses would be very useful and cost effective. Artificial neural networks (ANNs) show great potential in this area. ANNs are computational systems that attempt to mimic natural biological neural networks. They have the ability to recognize patterns and develop their own generalizations about a given data set. Neural networks are trained on data sets for which the solution is known and tested on data not previously seen in order to validate the network result. We show that artificial neural networks, due to their pattern recognition capabilities, are able to assess the signal strength of fracture-related heterogeneity in a borehole log and thus fracture frequency within a borehole. A combination of wireline logs (neutron porosity, bulk density, P-sonic, S-sonic, deep resistivity and shallow resistivity) were used as input parameters to the ANN. Fracture frequency calculated from borehole televiewer data was used as the single output parameter. The ANN was trained using a back-propagation algorithm with a momentum learning function. In addition to fracture frequency within a single borehole, an ANN trained on a subset of boreholes in an area could be used for prediction over the entire set of boreholes, thus allowing the lateral correlation of fracture zones.  相似文献   

20.
人工神经网络在地震中期预报中的应用   总被引:12,自引:0,他引:12  
王炜  宋先月   《地震》2000,20(1):10-16
将BP神经网络用于地震中期预报。使用一些常用的地震学指标作为神经网络的输入,而将BP神经网络的输出作为表征地震活动增强的特征参数W1,并将其用于华北地区进行空间扫描。结果表明,中强地震前1~3年未来震中周围通常出现明显的W1值中期异常区,该方法具有较好的中期预报效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号