首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IIWr~IOWThesedimentarycharacteristicsofdebrisflowcanreflectthecompoSition,fluidtypeandsedimentaryprocess.ThescholarswhostudymoderndebrisfloWinChinagenerallyclassifydebrisflowbythemethodofviscositywithfloWpattern.SeveraltypicalschemesareshowninTable1,inwhichthemethodofunitweight(fluiddensityinunitvolumet/m3)isusedandfluidunitweightisthoughttobethedirectproPOSitiontotheviscosityofdebrisflow(Wu,1990).Ithasbeenprovedbyhydrcrmechacsthatnon-cohesivedebrisf1OwfollowsBagnoldgranular'flowmedel(B…  相似文献   

2.
《山地科学学报》2020,17(1):156-172
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.  相似文献   

3.
Zhatai gully is a typical debris flow channel in Butuo county of Sichuan province, southwestern China. The geomorphologic features are analyzed and the physical-dynamic characteristics are discussed on the basis of field investigation and laboratory tests. Geomorphologic analysis indicates that Zhatai-gully drainage in relation to debris flow can be divided into source area, transport area, and deposition area. The source area has a steep slope and has very limited vegetation cover, which favors runoff, allowing loose solid materials to be mobilized easily and rapidly. In the transport area, there are many small landslides, lateral lobes, and loose materials distributed on both banks. These landslides are active and constantly providing abundant source of soils for the debris flows. In the deposition area, three old debris-flow deposits of different ages can be observed. The dynamic calculation shows that within the recurrence intervals of 50 and 100 years, debris flow discharges are 155.77m3/s and 1y8.19m3/s and deposition volumes are 16.39 x 104 m3 and 18.14 x 104 m3, respectively. The depositional fan of an old debris flow in the outlet of the gully can be subdivided into six layers. There are three debris flow deposits on left and two on the right side of the gully. Grain-size tests of sediments from the soil, gulley bed deposits, and the fresh and old debris flow deposits showed that high amounts of clay and fine gravel were derived from the soil in the source area whereas much of the gravel fraction were sourced from the gully bed deposits. Comprehensive analysis indicates that Zhatai gully is viscous debris-flow gully with moderate to high frequency and moderate to large magnitude debris flows. The risk of a debris flow disaster in Zhatai-gully is moderate and poses a potential threat to the planned hydroelectric dam. Appropriate engineering measures are suggested in the construction and protection of the planned hydroelectric station.  相似文献   

4.
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.  相似文献   

5.
The characteristics of a new type of drainage channel with staggered indented sills for controlling debris flows were studied. The intermediate fluid in the non-viscous debris flow exhibited a helical movement, whereas the fluid near the sidewall had a stop-start movement pattern; the viscous debris flow exhibited a stable structure between the indented sills. The experimental results indicate that the mean velocity of the debris flow increased with increasing channel gradients, and the debris flow velocity was slightly affected by the angle of the sills. The average velocity of the non-viscous debris flow increased in the range of(0.5–1.5) interval between the indented sills, whereas the average velocity of the viscous debris flow increased initially and then decreased in the range of(0.75–1.25) interval between the indented sills. The depth of the non-viscous debris flow tended to gradually increase as the channel gradients increased, whereas the depth of the viscous debris flow gradually decreased as the channel gradients increased. When the discharge of the debris flow was constant, the angle and the interval between the indented sills had a slight effect on the depth of the viscous debris flow, whereas the depth of the non-viscous debris flow exhibited a different trend, as the sill angles and intervals were varied.  相似文献   

6.
Accurate prediction on geological hazards can prevent disaster events in advance and greatly reduce property losses and life casualties.Glacial debris flows are the most serious hazards in southeastern Tibet in China due to their complexity in formation mechanism and the difficulty in prediction.Data collected from 102 glacier debris flow events from 31 gullies since 1970 and regional meteorological data from 1970 to 2019 in ParlungZangbo River Basin in southeastern Tibet were used for Artificial Neural Network(ANN)-based prediction of glacial debris flows.The formation mechanism of glacial debris flows in the ParlungZangbo Basin was systematically analyzed,and the calculations involving the meteorological data and disaster events were conducted by using the statistical methods and two layers fully connected neural networks.The occurrence probabilities and scales of glacial debris flows(small,medium,and large)were predicted,and promising results have been achieved.Through the proposed model calculations,a prediction accuracy of 78.33%was achieved for the scale of glacial debris flows in the study area.The prediction accuracy for both large-and medium-scale debris flows are higher than that for small-scale debris flows.The debris flow scale and the probability of occurrence increase with increasing rainfall and temperature.In addition,the K-fold cross-validation method was used to verify the reliability of the model.The average accuracy of the model calculated under this method is about 93.3%,which validates the proposed model.Practices have proved that the combination of ANN and disaster events can provide sound prediction on geological hazards under complex conditions.  相似文献   

7.
分析陆相断陷湖盆异重流沉积的识别特征、异重流水下扇沉积体系的横向、垂向沉积序列、以及不同物源碎屑成因的异重流的沉积差异性,从而探讨陆相断陷湖盆中异重流沉积的控制因素。以歧口凹陷沙一下异重流沉积为研究对象,对研究区钻井岩心、测录井、地震属性以及粒度分析资料进行综合分析。结果表明,研究区异重流具有3种典型沉积识别特征:(1)两类沉积序列,分别为下部逆粒序、上部正粒序的纺锤状二元结构沉积序列以及厚度较大且粒度特征变化不明显的均一结构沉积序列;(2)粒度分析特征以递变悬浮载荷为主,累计概率曲线类型以复杂多段式、上拱曲线式、低斜率两段式为特征;(3)岩相特征为侵蚀充填沉积、广泛发育且类型多样的层理构造,其次为陆源褐红色泥质层、褐红色泥砾以及大量的植物茎干碎片和炭质碎屑。研究区异重流沉积接受多支物源供给表现出水道化特征,葛沽物源为最主要物源,总体具有长距离搬运、多个朵体发育、大范围沿路沉积等特征。建立了研究区扇三角洲和辫状河三角洲物源重力流沉积模式。断陷湖盆背景下异重流沉积的控制因素为古物源、古地貌、古气候3个方面,异重流沉积是断陷湖盆中广泛发育的沉积类型,其中异重流水道砂岩具有良好的储集物性,是...  相似文献   

8.
Debris flow fan affects the river profile and landscape evolution.The propagation of multiple debris flows along a river can cause inundation and breaching risk,which can be exemplified by the Min River after the Wenchuan earthquake,Sichuan province,China.In this work,large flume tests were conducted to examine the interactions between debris flows and water current with the fan geometry,momentum,runout distance,deposited width,the relative water level upstream and dominated stress.The results reveal that stony flow commonly travels at a high speed and forms a long rectangle shape fan,while the muddy flow generally travels at a low speed and forms a fan-shaped depositional area.The stony flow can block a river even when the momentum is close to the water current;the muddy flow can block a river when the momentum is lower than that of water current.In case of complete river damming,the relative water level upstream indicates that the inundation risk from the muddy flow damming river would be higher than the inundation risk of stony flow.The diversion ratio of muddy flow decreases as damming ratio.Comparison of dimensionless numbers reveals that stony flow is dominated by grain collision stress combined with turbulent mixing stress,while the muddy flow is dominated by viscous shear stress over friction stress.The fan geometry,damming ratio,diversion ratio,and the dominated stress all together indicate that stony flow strongly interacts with water current while the muddy flow does not.The results can be helpful for understanding the physical interactions between water current and various debris flows,and debris flow dynamics at the channel confluence area.  相似文献   

9.
Taiwan has disadvantageous conditions for sediment-related disasters such as debris flows. The construction of engineering structures is an effective strategy for reducing debris flow disasters. However, it is impossible to construct engineering structures in all debris flow areas in a short period. Therefore, the government aims to gradually develop non-structural preventive strategies, including evacuation planning, debris flow disaster emergency action system, disaster resistant community program, recruitment of debris flow professional volunteers, debris flow warning systems, and land management strategies, to mitigate disasters and secure the safety of residents. This review describes the processes and effects of recent debris flow non-structural preventive strategies in Taiwan. The average number of casualties prior to the year 2000 was far higher than the corresponding number after 2000 because debris flow evacuation drills have been promoted since 2000 and the debris flow disaster emergency action system has been progressively improved since 2002. Furthermore, the changes in risks caused by debris flow disasters before and after the implementation of non-structural preventive strategies were used to explain the effectiveness of these strategies at the community level. The results showed that software-based non-structural preventive strategies can effectively reduce the casualties caused by debris flows at both the national and community levels.  相似文献   

10.
RECENTDEVELOPMENTSINDEBRISFLOWRESEARCHINITALYMarchiLorenzo;TeccaPiaR.(InstituteforPreventionofHydrologicalandGeologicalHazard...  相似文献   

11.
A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas. Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%. The velocity and depth of the viscous debris flow were measured, processed, and subsequently used to characterize the viscous debris flow in the drainage channel. Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here. However, the flow patterns in the two types of channels were similar at other points. These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure. In addition, in the smooth channel, the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure. Furthermore, the viscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%. Finally, the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased; the maximum energy dissipation ratio observed was 62.9% (where B = 0.6 m and L/w = 6.0).  相似文献   

12.
The Longchi area with the city of Dujiangyan, in the Sichuan province of China, is composed of Permian stone and diorites and Triassic sandstones and mudstones intercalated with slates. An abundance of loose co-seismic materials were present on the slopes after the May 12, 2008 Wenchuan earthquake, which in later years served as source material for rainfall-induced debris flows or shallow landslides. A total of 48 debris flows, all triggered by heavy rainfall on 13th August 20l0, are described in this paper. Field investigation, supported by remote sensing image interpretation, was conducted to interpret the co-seismic landslides in the debris flow gullies. Specific characteristics of the study area such as slope, aspect, elevation, channel gradient, lithology, and gully density were selected for the evaluation of debris flow susceptibility. A score was given to all the debris flow gullies based on the probability of debris flow occurrence for the selected factors. In order to get the contribution of the different factors, principal component analyses were applied. A comprehensive score was obtained for the 48 debris flow gullies which enabled us to make a susceptibility map for debris flows with three classes. Twenty-two gullies have a high susceptibility, twenty gullies show a moderate susceptibility and six gullies have a low susceptibility for debris flows.  相似文献   

13.
概略地叙述了西宁地区的泥石流形成条件和形成机理,并将西宁地区泥石流划分为稀性泥石流类及泥石质泥石流种类。在此基础上提出防治泥石流灾害的意见。  相似文献   

14.
The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.  相似文献   

15.
泥石流危险范围预测模型及在昆明东川城区的应用   总被引:1,自引:0,他引:1  
结合泥石流危险范围模型实验数据,运用多元回归分析方法探讨了泥石流危险范围预测,并进行了误差分析。以昆明市东川城区后山3条泥石流沟为例,运用该模型对其危险范围进行了预测分析,为东川城区泥石流防灾提供了科学依据。  相似文献   

16.
Debris flows are one of the common natural hazards in mountainous areas. They often cause devastating damage to the lives and property of local people. The sabo dam construction along a debris flow valley is considered to be a useful method for hazard mitigation. Previous work has concentrated on the different types of sabo dams such as close-type sabo dam, open-type sabo dam. However, little attention has been paid to the spillway structure of sabo dam. In the paper, a new type of spillway structure with lateral contraction was proposed. Debris flow patterns under four different spillway structures were investigated. The projection theory was employed to predict trajectory of debris flow out from the spillway and to estimate the incident angle and terminal velocity before it plunged into the scour hole behind the sabo dam. The results indicated that the estimated data were in good agreement with the experimental ones. The discrepancy between the estimated and experimental values of main parameters remained below 21.82% (relative error). Additionally, the effects of debris flow scales under different spillway structures were considered to study the scour law. Although the debris flow pattern and scour law behind the sabo dam under different operating conditions was analyzed in this paper, further study on the scour mechanism and the maximum scour depth estimation based on scour theory is still required in the future.  相似文献   

17.
1 Introduction Debris flows in Southeast Tibet can carry a great deal of sediment into streams in a special way. They block mainstreams and form dams.This type of dam,not only dominates the interaction between water and sediment and changes in the riverbed, but also exerts a great influence on the ability of transportation of the river. When a debris-flow dam forms, the water level behind the dam will increase, and villages, fields and roads will beflooded.When the dam breakes,the resulting …  相似文献   

18.
The Wenchuan earthquake caused numerous landslides and collapses that provide abundant unconsolidated material for future mobilization as debris flows.Debris flows will be very active and cause considerable damage for some time in the affected area.Because of environmental changes related to the earthquake,many potentially dangerous debris flow gullies have yet to be identified.This paper selects the upper Min River from Yinxiu to Wenchuan as the study area,interprets the unconsolidated deposits,and discusses their relationship to distance from the fault.Then,applying that information and the values of other factors relating to debris flow occurrence,the locations of potential debris flows are analyzed by multi-factor comprehensive identification and rapid identification.The multi-factor comprehensive identification employs fuzzy matter-element extension theory.The volume of unconsolidated material in the study area is about 3.28 × 108 m3.According to the analysis by multi-factor comprehensive identification,47 gullies have a high probability for potential debris flow,8 gullies have a moderate probability,and 1 gully has a low probability.  相似文献   

19.
A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible runout distance and impacted area.This paper describes a study on the runout characteristics of the debris flows that occurred in the Wenchuan earthquake zone over the past four years.A total of 120 debris flows are analyzed.Separate multivariate regression models are established for the runout distances of hill-slope debris flows and channelized debris flows.The control variables include type of debris flow,debris flow volume,and elevation difference.Comparison of the debris flows occurring before and after the earthquake shows that the runout distance increased after the earthquake due to sufficient material supply and increased mobility of the source materials.In addition,the runout distances of annual debris flow events in 2008,2010 and 2011 are analyzed and compared.There is a tendency that the runout distance decreases over time due to the decreasing source material volume and possible changes of debris flow type.Comparison between the debris flows in the earthquake zone and the debris flows in Swiss Alps,Canada,Austria,and Japan shows that the former have a smaller mobility.  相似文献   

20.
降雨过程中降雨强度的变化会影响土体渗透率及饱和过程, 从而改变土体的力学性质, 影响泥石流起动模式及破坏规模。为探究不同降雨模式对震后泥石流起动机制的影响, 自制了小比例模型槽, 结合可控雨型的降雨模拟系统, 进行了人工降雨诱发泥石流的室内模型试验; 基于不同降雨模式下泥石流的起动过程分析, 对坡体内部含水率和孔隙水压力的变化规律进行了研究。研究结果表明: 递增型降雨模式下泥石流发生突然, 呈整体滑坡转化为泥石流起动模式, 坡体破坏规模最大; 递减型降雨模式下表现为后退式溃散失稳起动模式; 均匀型降雨模式下则表现为溯源侵蚀起动模式; 中峰型降雨模式下以局部滑坡转化为泥石流起动模式; Ⅴ型降雨模式下则由坡面侵蚀加剧转化为泥石流启动模式, 破坏规模最小。研究结果可以为九寨沟地区泥石流的预报预警提供参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号