首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Making a distinction between partial melting and subsolidus segregation in amphibolite facies migmatites is difficult. The only significant melting reactions at lowpressures, either vapour saturated or muscovite dehydration melting, do not produce melanocratic peritectic phases. If protoliths are Si-rich and K-poor, then peritectic sillimanite and K-feldspar will form in scarce amounts, and may be lost by retrograde rehydration. The Roded migmatites of southern Israel (northernmost Arabian Nubian Shield) formed at P = 4.5 ± 1 kbar and T ≤ 700 °C and include Si-rich, K-poor paragneissic paleosome and trondhjemitic leucosomes. The lack of K-feldspar in leucosomes was taken as evidence for the non-anatectic origin of the Roded migmatites (Gutkin and Eyal, Isr J Earth Sci 47:117, 1998). It is shown here that although the Roded migmatites experienced significant post-peak deformation and recrystallization, microstructural evidence for partial melting is retained. Based on these microstructures, coupled with pseudosection modelling, indicators of anatexis in retrograded migmatites are established. Phase diagram modelling of neosomes shows the onset of muscovite dehydration melting at 4.5 kbar and 660 °C, forming peritectic sillimanite and K-feldspar. Adjacent non-melted paleosomes lack muscovite and would thus not melt by this reaction. Vapour saturation was not attained, as it would have formed cordierite that does not exist. Furthermore, vapour saturation would not allow peritectic K-feldspar to form, however K-feldspar is ubiquitous in melanosomes. Direct petrographic evidence for anatexis is rare and includes euhedral plagioclase phenocrysts in leucosomes and quartz-filled embayments in corroded plagioclase at leucosome-melanosome interfaces. In deformed and recrystallized rocks muscovite dehydration melting is inferred by: (1) lenticular K-feldspar enclosed by biotite in melanosomes, (2) abundant myrmekite in leucosomes, (3) muscovite–quartz symplectites after sillimanite in melanosomes and associated with myrmekite in leucosomes. While peritectic K-feldspar formed in melanosomes by muscovite dehydration melting reaction, K-feldspar crystallizing from granitic melt in adjacent leucosome was myrmekitized. Excess potassium was used in rehydration of sillimanite to muscovite.  相似文献   

2.
SAWYER  E. W. 《Journal of Petrology》1991,32(4):701-738
Migmatites are developed in Archaean metabasites south of theGrenville Front. Relative to equivalent greenschist facies metabasites,those hosting the migmatites have undergone some mobilizationof CaO, Na2O, and Sr, and, in the case of sheared metabasites,the introduction of K2O, Ba, Cs, and Rb, before migmatization.Three types of anatectic migmatite are recognized, based ontheir leucosome-melanosome relationships: (1) non-segregatedmigmatites in which new leucocratic and magic phases are intimatelymixed in patches up to 15 cm across, (2) segregated migmatitesin which the leucosomes are located in boudin necks and shearbands, and are separated from their associated mafic selvedgesby 5–100 cm, and (3) vein-type migmatites where discordantleucosomes lack mafic selvedges. The non-segregated and segregatedmigmatites have a local and essentially isochemical origin,whereas the vein-type represent injected melt. Leucosomes fromthe segregated and vein-type migmatites have similar tonaliticmajor oxide compositions, but they differ greatly in their trace-elementcharacteristics. The vein-type leucosomes are enriched in K2O, Ba, Cs, Rb, LREE,Th, Hf, Zr, and P2O5 relative to their metabasite hosts, andhave greater La/YbN ratios (27 compared with 0?6–17).These veins may have formed by between 5 and 25%equilibriumbatch partial melting of Archaean metabasalt, leaving garnet+ hornblende in the residuum. In contrast, leucosomes from the segregated migmatites are depletedin REE, Sc, V, Cr, Ni, Co, Ti, Th, Hf, Zr, Nb, and P2O5 relativeto their source rocks; the associated mafic selvedges are enrichedin these elements. The leucosomes and mafic selvedges both haveLa/YbN ratios that are similar to those of the source metabasitesirrespective of whether the source is LREE depleted or LREEenriched. The abundances of many trace elements in the leucosomesappear to be controlled by the degree of contamination withresiduum material. Zr concentrations in the leucosomes are between10 and 52% of the estimated equilibrium concentrations in felsicmelts at the temperature (750–775 ?C) of migmatization.A numerical simulation of disequilibrium melting using bothLREE-depleted and LREE-enriched sources yields model melts withtrace element abundances that match those of the natural leucosomes.Mafic selvedge compositions indicate that the segregated migmatitesrepresent a range of between 12 and 36% partial melting of theirhost metamatization. Based upon calculated dissolution times for zircon in wet melts,the melt and residuum were separated in less than 23a, otherwisemelts would have become saturated in Zr. Rapid melt extractionis thought to be driven by pressure gradients developed duringnon-coaxial deformation of the anisotropic palaeosome duringmigmatization. The common occurrence, based on published work, of disequilibriumcompositions in migmatite leucosomes implies that during mid-crustalmelting the melt-segregation rates are greater than the rateof chemical equilibration between melt and the residual solid.In contrast, at the higher temperatures of granite formation,the rate of chemical equilibration exceeds that of melt-segregationand equilibrium melt compositions are reached before segregationcan occur. On the basis of their trace element characteristics,the melt which forms segregated migmatites cannot be the sameas that which forms the vein-like migmatites, or granitoid plutons.  相似文献   

3.
A suite of migmatites in uppermost amphibolite facies schists of the Koettlitz Group exposed in the Taylor Valley, Antarctica, provides direct evidence of the behaviour of partially molten rock during syn-anatectic deformation. The geometry of the migmatites is directly related to their position relative to the hinge of a kilometre-scale antiform. Migmatitic rocks on the fold limbs are characterized by extensional shears and fractures, filled with leucosome material, that intersect the pervasive foliation and millimetre-thick stromatic leucosomes. Vein- and dyke-like leucosomes become more common and thicker from the limb to the hinge region of the antiform. Rocks characterized by high leucosome-to-rock ratios near the antiform hinge are xenolithic in appearance. Major parasitic folds within the hinge contain leucogranite 'microplutons' up to 50 m across beneath refractory 'cap-rock' layers.
Angular boudinage structures in schists surrounded by leucosomes indicate a relatively low yield strength in the leucosome, which is compatible with a molten rather than solid leucosome. Leucogranite-bearing extensional shears and fractures indicate that repeated extensional fracturing and shearing promoted by high fluid (melt) pressure is an important mechanism of melt segregation. Dilation in the hinges of developing folds aids the migration of melt into fold hinges and the development of 10–50-m-wide 'microplutons' of xenolith-rich leucogranite.
Lack of vapour-absent melting and consequent low melt-to-rock ratios allowed the Koettlitz Group to maintain its structural coherency on a kilometre scale. Consequently, leucosome 'microplutons' did not exceed 50 m in width, and therefore observed leucosomes have not contributed to the development of adjacent plutonic-scale granitoids.  相似文献   

4.
The grain‐ and outcrop‐scale distribution of melt has been mapped in anatectic rocks from regional and contact metamorphic environments and used to infer melt movement paths. At the grain scale, anatectic melt is pervasively distributed in the grain boundaries and in small pools; consequently, most melt is located parallel to the principal fabric in the rock, typically a foliation. Short, branched arrays of linked, melt‐bearing grain boundaries connect melt‐depleted parts of the matrix to diffuse zones of melt accumulation (protoleucosomes), where magmatic flow and alignment of euhedral crystals grown from the melt developed. The distribution of melt (leucosome) and residual rocks (normally melanocratic) in outcrop provides different, but complementary, information. The residual rocks show where the melt came from, and the leucosomes preserve some of the channels through which the melt moved, or sites where it pooled. Different stages of the melt segregation process are recorded in the leucosome–melanosome arrays. Regions where melting and segregation had just begun when crystallization occurred are characterized by short arrays of thin, branching leucosomes with little melanosome. A more advanced stage of melting and segregation is marked by the development of residual rocks around extensive, branched leucosome arrays, generally oriented along the foliation or melting layer. Places where melting had stopped, or slowed down, before crystallization began are marked by a high ratio of melanosome to leucosome; because most of the melt has drained away, very few leucosomes remain to mark the melt escape path — this is common in melt‐depleted granulite terranes. Many migmatites contain abundant leucosomes oriented parallel to the foliation; mostly, these represent places where foliation planes dilated and melt drained from the matrix via the branched grain boundary and larger branched melt channel (leucosome) arrays collected. Melt collected in the foliation planes was partially, or fully, expelled later, when discordant leucosomes formed. Leucosomes (or veins) oriented at high angles to the foliation/layering formed last and commonly lack melanocratic borders; hence they were not involved in draining the matrix of the melting layer. Discordant leucosomes represent the channels through which melt flowed out of the melting layer.  相似文献   

5.
CO2–CH4 fluid inclusions are present in anatectic layer-parallel leucosomes from graphite-bearing metasedimentary rocks in the Skagit migmatite complex, North Cascades, Washington. Petrological evidence and additional fluid inclusion observations indicate, however, that the Skagit Gneiss was infiltrated by a water-rich fluid during high-temperature metamorphism and migmatization. CO2-rich fluid inclusions have not been observed in Skagit metasedimentary mesosomes or melanosomes, meta-igneous migmatites, or unmigmatized rocks, and are absent from subsolidus leucosomes in metasedimentary migmatites. The observation that CO2-rich inclusions are present only in leucosomes interpreted to be anatectic based on independent mineralogical and chemical criteria suggests that their formation is related to migmatization by partial melting. Although some post-entrapment modification of fluid inclusion composition may have occurred during decompression and deformation, the generation of the CO2-rich fluid is attributed to water-saturated partial melting of graphitic metasedimentary rocks by a reaction such as biotite + plagioclase + quartz + graphite ± Al2SiO5+ water-rich fluid = garnet + melt + CO2–CH4. The presence of CO2-rich fluid inclusions in leucosomes may therefore be an indication that these leucosomes formed by anatexis. Based on the inferences that (1) an influx of fluid triggered partial melting, and (2) some episodes of fluid inclusion trapping are related to migmatization by anatexis, it is concluded that a free fluid was present at some time during high-temperature metamorphism. The infiltrating fluid was a water-rich fluid that may have been derived from nearby crystallizing plutons. Because partial melting took place at pressures of at least 5 kbar, abundant free fluid may have been present in the crust during orogenesis at depths of at least 15 km.  相似文献   

6.
《Gondwana Research》2000,3(1):105-117
Metapelitic migmatites in the Pangidi Granulite Complex, Eastern Ghats belt preserve a range of high-grade mineral assemblages that vary with bulk composition. Reaction textures preserved in the migmatites indicate that the crystallized granitic melt was formed in situ by biotite dehydration-melting reactions. Decompression occurred during an episode of partial melting and melt crystallization, and was synchronous with exhumation of migmatites along shear zones. Retrograde reaction textures and the calculated positions of the mineral reactions and discrete P-T points obtained by thermobarometry reflect ∼3 kbar (11 km) of exhumation from near peak P-T conditions of ∼9 kbar and 950°C.Decompression has been traditionally ascribed to be the cause of dehydration melting in many orogens, but the bulk of melting reactions in Pangidi were ultimately driven by elevated temperatures. Simple pressure release during exhumation did not force melting reactions, instead as the present study reveals, it is more likely that the presence of melt triggered deformation in the migmatites and facilitated exhumation.  相似文献   

7.
Evidence of melting is presented from the Western Gneiss Region (WGR) in the core of the Caledonian orogen, Western Norway and the dynamic significance of melting for the evolution of orogens is evaluated. Multiphase inclusions in garnet that comprise plagioclase, potassic feldspar and biotite are interpreted to be formed from melt trapped during garnet growth in the eclogite facies. The multiphase inclusions are associated with rocks that preserve macroscopic evidence of melting, such as segregations in mafic rocks, leucosomes and pegmatites hosted in mafic rocks and in gneisses. Based on field studies, these lithologies are found in three structural positions: (i) as zoned segregations found in high‐P (ultra)mafic bodies; (ii) as leucosomes along amphibolite facies foliation and in a variety of discordant structures in gneiss; and (iii) as undeformed pegmatites cutting the main Caledonian structures. Segregations post‐date the eclogite facies foliation and pre‐date the amphibolite facies deformation, whereas leucosomes are contemporaneous with the amphibolite facies deformation, and undeformed pegmatites are post‐kinematic and were formed at the end of the deformation history. The geochemistry of the segregations, leucosomes and pegmatites in the WGR defines two trends, which correlate with the mafic or felsic nature of the host rocks. The first trend with Ca‐poor compositions represents leucosome and pegmatite hosted in felsic gneiss, whereas the second group with K‐poor compositions corresponds to segregation hosted in (ultra)mafic rocks. These trends suggest partial melting of two separate sources: the felsic gneisses and also the included mafic eclogites. The REE patterns of the samples allow distinction between melt compositions, fractionated liquids and cumulates. Melting began at high pressure and affected most lithologies in the WGR before or during their retrogression in the amphibolite facies. During this stage, the presence of melt may have acted as a weakening mechanism that enabled decoupling of the exhuming crust around the peak pressure conditions triggering exhumation of the upward‐buoyant crust. Partial melting of both felsic and mafic sources at temperatures below 800 °C implies the presence of an H2O‐rich fluid phase at great depth to facilitate H2O‐present partial melting.  相似文献   

8.
部分熔融作用与高级变质岩变形作用是相互制约,变形作用能够提高岩石部分熔融程度,降低熔融温度。熔体存在影响和制约岩石强度和变形机制。大青山高级岩经历了下部地壳构造层次变质变形和深熔作用改造,形成了复杂构造要素组合。宏观与微观构造特点表明:高级变质岩变形机制主要为熔体增强颗粒边界扩散和颗粒流动,使岩石发生大规模的塑性流动。在宏观上形成了不对称流动组构、熔融线理、岩石和矿物条带、层内底辟褶皱和大型穹窿构造。但是,在微观上矿物颗粒变形不明显,晶内变形组构不发育,表现为三边平衡结构,与静态结晶变质岩结构相似,形成了地壳深部构造层次上变质构造岩-构造片麻岩。  相似文献   

9.
Anatexis of metapelitic rocks at the Bandelierkop Quarry (BQ) locality in the Southern Marginal Zone of the Limpopo Belt occurred via muscovite and biotite breakdown reactions which, in order of increasing temperature, can be modelled as: (1) Muscovite + quartz + plagioclase = sillimanite + melt; (2) Biotite + sillimanite + quartz + plagioclase = garnet + melt; (3) Biotite + quartz + plagioclase = orthopyroxene ± cordierite ± garnet + melt. Reactions 1 and 2 produced stromatic leucosomes, which underwent solid‐state deformation before the formation of undeformed nebulitic leucosomes by reaction 3. The zircon U–Pb ages for both leucosomes are within error identical. Thus, the melt or magma formed by the first two reactions segregated and formed mechanically solid stromatic veins whilst temperature was increasing. As might be predicted from the deformational history and sequence of melting reactions, the compositions of the stromatic leucosomes depart markedly from those of melts from metapelitic sources. Despite having similar Si contents to melts, the leucosomes are strongly K‐depleted, have Ca:Na ratios similar to the residua from which their magmas segregated and are characterized by a strong positive Eu anomaly, whilst the associated residua has no pronounced Eu anomaly. In addition, within the leucosomes and their wall rocks, peritectic garnet and orthopyroxene are very well preserved. This collective evidence suggests that melt loss from the stromatic leucosome structures whilst the rocks were still undergoing heating is the dominant process that shaped the chemistry of these leucosomes and produced solid leucosomes. Two alternative scenarios are evaluated as generalized petrogenetic models for producing Si‐rich, yet markedly K‐depleted and Ca‐enriched leucosomes from metapelitic sources. The first process involves the mechanical concentration of entrained peritectic plagioclase and garnet in the leucosomes. In this scenario, the volume of quartz in the leucosome must reflect the remaining melt fraction with resultant positive correlation between Si and K in the leucosomes. No such correlation exists in the BQ leucosomes and in similar leucosomes from elsewhere. Consequently, we suggest disequilibrium congruent melting of plagioclase in the source and consequential crystallization of peritectic plagioclase in the melt transfer and accumulation structures rather than at the sites of biotite melting. This induces co‐precipitation of quartz in the structures by increasing SiO2 content of the melt. This process is characterized by an absence of plagioclase‐induced fractionation of Eu on melting, and the formation of Eu‐enriched, quartz + plagioclase + garnet leucosomes. From these findings, we argue that melt leaves the source rapidly and that the leucosomes form incrementally as melt or magma leaving the source dumps its disequilibrium Ca load, as well as quartz and entrained ferromagnesian peritectic minerals, in sites of magma accumulation and escape. This is consistent with evidence from S‐type granites suggesting rapid magma transfer from source to high level plutons. These findings also suggest that leucosomes of this type should be regarded as constituting part of the residuum from partial melting.  相似文献   

10.
Migmatite structures in the Central Gneiss Complex, Boca de Quadra, Alaska   总被引:3,自引:0,他引:3  
Abstract Migmatite structures in the Coast Plutonic-Metamorphic Complex are well exposed in the inlet of Boca de Quadra, southeast Alaska. Two types of anatectic migmatites are present. Patch migmatites formed by in situ melting and subsequent crystallization of melt. Diktyonitic migmatites comprise a discontinuous veined network of leucocratic material, in which leucosomes enclose boudins of host rock. The margins of these boudins show the development of both melanosomes and shear band fabrics.
Strain analysis of diktyonitic melanosomes indicates that these regions have undergone volume decreases of 20-27%. This volume decrease is attributed to melt extraction into the adjacent fracture-filling leucosomes. Thus, diktyonitic migmatites formed by shear-induced segregation of partial melt, whereas in patch migmatites the lack of shear stresses inhibited melt segregation. The variable structural style of anatectic migmatites in Boca de Quadra is not related to host-rock composition, but may be due to differences in the amount of differential stress during migmatization. These in turn may be controlled by host-rock strength and/or diachroneity of migmatization and deformation.
Determination of volume changes during migmatization using strain analysis is potentially capable of discriminating intrusive and anatectic migmatites and consequently of documenting melt segregation and subsequent migration across crustal levels.  相似文献   

11.
Migmatitic orthogneisses in the Muskoka domain, southwesternGrenville Province, Ontario, formed during the Ottawan stage(c. 1080–1050 Ma) of the Grenvillian orogeny. Stromaticmigmatites are volumetrically dominant, comprising granodioriticgneisses with 2–5 cm thick granitic leucosomes, locallyrimmed by thin melanosomes, that constitute 20–30 vol.%, and locally 40–50 vol. %, of the outcrops. Patch migmatitesin dioritic gneisses form large (>10 m) pinch-and-swell structureswithin the stromatic migmatites, and consist of decimetre-scale,irregular patches of granitic leucosome, surrounded by medium-grainedhornblende–plagioclase melanosomes interpreted as restite.The patches connect to larger networks of zoned pegmatite dykes.Petrographic and geochemical evidence suggests that the patchleucosomes formed by 20–40% fluid-present, equilibriummelting of the dioritic gneiss, followed by feldspar-dominatedcrystallization. The dyke networks may have resulted from hydraulicfracturing, probably when the melts reached water saturationduring crystallization. Field and geochemical data from thestromatic migmatites suggest a similar petrogenesis to the patchmigmatites, but with significant additions of externally derivedmelts, indicating that they acted as conduits for melts derivedfrom deeper structural levels within the orogen. We hypothesizethat the Muskoka domain represents a transfer zone for meltsmigrating to higher structural levels during Grenvillian deformation. KEY WORDS: migmatite geochemistry; partial melting; melt crystallization; melt transport; Grenville orogen  相似文献   

12.
This study uses field, microstructural and geochemical data to investigate the processes contributing to the petrological diversity that arises when granitic continental crust is reworked. The Kinawa migmatite formed when Archean TTG crust in the São Francisco Craton, Brazil was reworked by partial melting at ~730 °C and 5–6 kbar in a regional‐scale shear zone. As a result, a relatively uniform leucogranodiorite protolith produced compositionally and microstructurally diverse diatexites and leucosomes. All outcrops of migmatite display either a magmatic foliation, flow banding or transposed leucosomes and indicate strong, melt‐present shearing. There are three types of diatexite. Grey diatexites are interpreted to be residuum, although melt segregation was incomplete in some samples. Biotite stable, H2O‐fluxed melting is inferred via the reaction Pl + Kfs + Qz + H2O = melt and geochemical modelling indicates 0.35–0.40 partial melting. Schlieren diatexites are extremely heterogeneous; residuum‐rich domains alternate with leucocratic quartzofeldspathic domains. Homogeneous diatexites have the highest SiO2 and K2O contents and are coarse‐grained, leucocratic rocks. Homogeneous diatexites, quartzofeldspathic domains from the schlieren diatexites and the leucosomes contain both plagioclase‐dominated and K‐feldspar‐dominated feldspar framework microstructures and hence were melt‐derived rocks. Both types of feldspar frameworks show evidence of tectonic compaction. Modelling the crystallization of an initial anatectic melt shows plagioclase appears first; K‐feldspar appears after ~40% crystallization. In the active shear zone setting, shear‐enhanced compaction provided an essentially continuous driving force for segregation. Thus, Kinawa migmatites with plagioclase frameworks are interpreted to have formed by shear‐enhanced compaction early in the crystallization of anatectic melt, whereas those with K‐feldspar frameworks formed later from the expelled fractionated melt. Trace element abundances in some biotite and plagioclase from the fractionated melt‐derived rocks indicate that these entrained minerals were derived from the wall rocks. Results from the Kinawa migmatites indicate that the key factor in generating petrological diversity during crustal reworking is that shear‐enhanced compaction drove melt segregation throughout the period that melt was present in the rocks. Segregation of melt during melting produced residuum and anatectic melt and their mixtures, whereas segregation during crystallization resulted in crystal fractionation and generated diverse plagioclase‐rich rocks and fractionated melts.  相似文献   

13.
北大别位于大别造山带的核部,分布着大量的造山带垮塌时期形成的混合岩,其于理解大别造山带的形成和演化有着重要的意义。北大别混合岩的原岩为TTG(D)岩石,因黑云母和角闪石的脱水熔融诱发深熔作用产生。顺层产出的为富斜长石浅色体,主要矿物组成为斜长石+石英+黑云母±钾长石±角闪石。伟晶岩脉或团块为富钾长石浅色体,主要矿物组成为钾长石+石英±斜长石±黑云母±角闪石。暗色体为变晶结构,主要矿物组成为角闪石+黑云母+斜长石+石英±单斜辉石;其中,暗色矿物角闪石和黑云母常常定向排列,具有明显的溶蚀结构;暗色体中浅色矿物颗粒较小,以斜长石和石英为主,指示部分熔融的残余产物。全岩地球化学特征表明,碱金属元素(Na、K等)、大离子亲石元素(Ba、K、La等)和LREE等优先进入酸性熔体,而相容元素和中-重稀土元素等残留在残余体中。浅色体与本区花岗岩相比,二者都有右倾的稀土配分模式,富集LREE,亏损HREE。但浅色体具有明显的Eu正异常,δEu值为2.48~6.55,而花岗岩则有弱的Eu负异常,并且浅色体中大颗粒斜长石相互构成框架结构,含量明显高于正常花岗岩熔体,表明浅色体更可能是熔体早期结晶的产物。  相似文献   

14.
Spectacular shallow-level migmatization of ferrogabbroic rocks occurs in a metamorphic contact aureole of a gabbroic pluton of the Tierra Mala massif (TM) on Fuerteventura (Canary Islands). In order to improve our knowledge of the low pressure melting behavior of gabbroic rocks and to constrain the conditions of migmatization of the TM gabbros, we performed partial melting experiments on a natural ferrogabbro, which is assumed as protolith of the migmatites. The experiments were performed in an internally heated pressure vessel (IHPV) at 200 MPa, 930–1150 °C at relatively oxidizing conditions. Distinct amounts of water were added to the charge.

From 930 to 1000 °C, the observed experimental phases are plagioclase (An60–70), clinopyroxene, amphibole (titanian magnesiohastingsites), two Fe–Ti oxides, and a basaltic, K-poor melt. Above 1000 °C, amphibole is no longer stable. The first melts are very rich in normative plagioclase (>70 wt.%). This indicates that at the beginning of partial melting plagioclase is the major phase which is consumed to produce melt. In the experiments, plagioclase is stable up to high temperatures (1060 °C) showing increasing An content with temperature. This is not compatible with the natural migmatites, in which An-rich plagioclase is absent in the melanosomes, while amphibole is stable. Our results show that the partial melting of the natural rocks cannot be regarded as an “in-situ” process that occurred in a closed system. Considerable amounts of alkalis probably transported by water-rich fluids, derived from the mafic pluton underplating the TM gabbro, were necessary to drive the melting reaction out of the stability range of plagioclase. A partial melting experiment with a migmatite gabbro showing typical “in-situ” textures as starting material supports this assumption.

Crystallization experiments performed at 1000 °C on a glass of the fused ferrogabbro with different water contents added to the charge show that generally high water activities could be achieved (crystallization of amphibole), independently of the bulk water content, even in a system with very low initial bulk water content (0.3 wt.%). Increasing water contents produce plagioclase richer in An, reduces the modal proportion of plagioclase in the crystallizing assemblage and extends the melt fraction. High melt fractions of >30 wt.% could only be observed in systems with high bulk water contents (>2 wt.%). This indicates that the migmatites were generated under water-rich conditions (probably water-saturated), since those migmatites, which are characterized as “in-situ” formations, show generally high amounts of leucosomes (>30 wt.%).  相似文献   


15.
The St. Malo migmatitic dome represents an interesting example wherein migmatites arise from the anatexis of the surrounding gneisses. Petrographical and chemical data suggest that leucosome compositions are compatible with partial melting of the quartzo-feldsphathic fraction of the parent gneiss. The contribution of the incongruent melting of biotite to the melt does not exceed 5% of the parent rock.Petrogenetic modelling based on experimental data and assuming non modal batch melting show that the K, Rb, Ca, Sr, U and Th chemical patterns of these migmatites result in fact from the interaction of several mechanisms, namely: equilibrium partial melting, mixing between melts and refractory minerals (biotite and accessories), melt removal and late hydrothermal alteration. Zr, Y and Th which are mostly hosted in accessory minerals are significantly withheld from the melts and remain stored in melanosomes (metatexites) except when leucosomes are affected by mixing (diatexites). U is frequently enriched in the leucosomes as well as in some melanosomes suggesting external supply.  相似文献   

16.
Microstructural criteria for the determination of the sense of shear in rocks homogeneously deformed in the partially melted state are similar to those which apply to solid-state deformation. Sense of shear determination is either direct, deduced from the sense of rotation of markers, or indirect, involving the obliquity between the shear and foliation planes, or between the successive foliations imprinted at different stages of progressive deformation.This study is a by-product of the detailed structural and microstructural investigation of a high-grade metamorphic rock pile (Variscan Vosges Massif, France) which underwent subhorizontal shearing during partial melting and further solidification. Depending on the rock chemistry, on the position in the pile and the relative timing of progressive deformation, layered migmatites and homogeneous granites were variously deformed in the partially melted and solid states. The sense of shear obtained from these rock types, using the criteria presented here, consistently gives a top to SW direction.  相似文献   

17.
Recognition of partial melting in metamorphic rocks is a difficult task, as leucosomes can have a variety of origins. By comparing the observed values of the solid-solid dihedral angles with the known equilibrium values, and close examination of the shapes and compositions of feldspar grains, it is possible to unequivocally identify melt textures. Textural relations in a series of meta-arkose samples from the contact aureole of the Ballachulish Igneous Complex in the Scottish Highlands demonstrate that, when former melt pockets are not highly deformed, their presence can be recognized petrographically, by detailed examination of textures on the grain scale. Identification of melt textures and their distribution in the Ballachulish aureole has led to appreciation of the fundamental role of magmatically derived H2O in producing the partial melting. It has also allowed calculation of the H2O flux involved, and recognition that fractures were the major fluid pathways during metamorphism.  相似文献   

18.
J. Escuder Viruete 《Lithos》1999,46(4):208-772
The high-grade Lower Unit of the Tormes Gneissic Dome (TGD; NW sector of the Iberian Massif) contains tonalitic orthogneissic bodies that were migmatized during a heterogeneous ductile shearing, related to a major episode of syn-orogenic extensional deformation (D2). Both peak and retrograde PT conditions were deduced from the analysis of reaction textures related to superimposed S2 fabrics developed during exhumation, analysis of mineral zoning and thermobarometric calculations in CaKFMASH and KFMASH systems. Syn-thermal peak partial melting of the tonalitic orthogneisses, via a biotite-dehydration melting reaction yielding hornblende, K-feldspar and melt, produced stromatic migmatites with leucosomes parallel to the S2 foliation of the mesosome as well as discordant patchy pegmatitic migmatites. The deduced post-thermal peak PT path comprises an initial phase of decompression combined with cooling from 5.5–6 kbar at 750°C to ca. 4–4.5 kbar at 675°C, consistent with the sequence of initial retrograde mineral assemblages present in high-T mylonitic S2 fabrics. The later part of the syn-D2 PT path indicates a significant cooling and is recorded by lower amphibolite to greenschist assemblages related to the later mylonitic S2 fabrics. The proposed melt reaction generating hornblende-bearing leucosomes may be important for crustal differentiation processes at mid-crustal levels during syn-orogenic extension, as well as for the production of certain types of high-level granites. The necessary conditions are large volumes of source material of intermediate composition and the production of a sufficient melt fraction.  相似文献   

19.
苟正彬  刘函  段瑶瑶  李俊  张士贞 《地球科学》2020,45(8):2894-2904
高喜马拉雅结晶岩系由中-高级变质岩和淡色花岗岩组成,是研究喜马拉雅造山带形成与演化的天然实验室.高喜马拉雅结晶岩系混合岩和淡色花岗岩中锆石和独居石的定年结果往往是分散的,对这些定年结果的解释还存在争议,严重制约了对高喜马拉雅结晶岩系变质、部分熔融作用的起始时间和持续过程的理解.对造山带中段亚东地区高喜马拉雅结晶岩系上部构造层位的乃堆拉混合岩进行了锆石U-Pb年代学研究.研究结果显示,乃堆拉混合岩暗色体给出了29.1~24.7 Ma的进变质和部分熔融的时间,混合岩浅色体获得了25.0~13.7 Ma的退变质和熔体结晶的时间,表明亚东地区高喜马拉雅结晶岩系的部分熔融作用大约开始于30 Ma并持续到13 Ma,暗示它是一个长期、持续的过程.亚东地区高喜马拉雅结晶岩系发生部分熔融的时间明显早于藏南拆离系和主中央断裂开始活动的时间,部分熔融可能在高喜马拉雅结晶岩系俯冲过程中就已经发生了.相关成果为建立造山带构造演化模型提供了新信息.   相似文献   

20.
武夷山中段加里东期混合岩的特征及成因讨论   总被引:11,自引:0,他引:11  
黄标  刘刚 《岩石学报》1994,10(4):427-439
武夷山中段出露的加里东期混合岩中广泛发育交代结构,可划分出钠-钙交代、钾交代和磋交代等三个阶段.岩石中微斜长石为最大微斜长石.浅色体与基体内外长石的An值明显不同,且无环带构造.黑云母成分与围岩中的黑云母接近.岩石化学成分的变化与交代作用的类型有关.微量元素具有与围岩相似的特征,仅重稀土含量高于围岩.质量平衡计算表明,它们形成于开放体系中,矿物颗粒呈聚集分布.这些特征表明它们是由原来的变质岩经减质流体交代形成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号