首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SAWYER  E. W. 《Journal of Petrology》1991,32(4):701-738
Migmatites are developed in Archaean metabasites south of theGrenville Front. Relative to equivalent greenschist facies metabasites,those hosting the migmatites have undergone some mobilizationof CaO, Na2O, and Sr, and, in the case of sheared metabasites,the introduction of K2O, Ba, Cs, and Rb, before migmatization.Three types of anatectic migmatite are recognized, based ontheir leucosome-melanosome relationships: (1) non-segregatedmigmatites in which new leucocratic and magic phases are intimatelymixed in patches up to 15 cm across, (2) segregated migmatitesin which the leucosomes are located in boudin necks and shearbands, and are separated from their associated mafic selvedgesby 5–100 cm, and (3) vein-type migmatites where discordantleucosomes lack mafic selvedges. The non-segregated and segregatedmigmatites have a local and essentially isochemical origin,whereas the vein-type represent injected melt. Leucosomes fromthe segregated and vein-type migmatites have similar tonaliticmajor oxide compositions, but they differ greatly in their trace-elementcharacteristics. The vein-type leucosomes are enriched in K2O, Ba, Cs, Rb, LREE,Th, Hf, Zr, and P2O5 relative to their metabasite hosts, andhave greater La/YbN ratios (27 compared with 0?6–17).These veins may have formed by between 5 and 25%equilibriumbatch partial melting of Archaean metabasalt, leaving garnet+ hornblende in the residuum. In contrast, leucosomes from the segregated migmatites are depletedin REE, Sc, V, Cr, Ni, Co, Ti, Th, Hf, Zr, Nb, and P2O5 relativeto their source rocks; the associated mafic selvedges are enrichedin these elements. The leucosomes and mafic selvedges both haveLa/YbN ratios that are similar to those of the source metabasitesirrespective of whether the source is LREE depleted or LREEenriched. The abundances of many trace elements in the leucosomesappear to be controlled by the degree of contamination withresiduum material. Zr concentrations in the leucosomes are between10 and 52% of the estimated equilibrium concentrations in felsicmelts at the temperature (750–775 ?C) of migmatization.A numerical simulation of disequilibrium melting using bothLREE-depleted and LREE-enriched sources yields model melts withtrace element abundances that match those of the natural leucosomes.Mafic selvedge compositions indicate that the segregated migmatitesrepresent a range of between 12 and 36% partial melting of theirhost metamatization. Based upon calculated dissolution times for zircon in wet melts,the melt and residuum were separated in less than 23a, otherwisemelts would have become saturated in Zr. Rapid melt extractionis thought to be driven by pressure gradients developed duringnon-coaxial deformation of the anisotropic palaeosome duringmigmatization. The common occurrence, based on published work, of disequilibriumcompositions in migmatite leucosomes implies that during mid-crustalmelting the melt-segregation rates are greater than the rateof chemical equilibration between melt and the residual solid.In contrast, at the higher temperatures of granite formation,the rate of chemical equilibration exceeds that of melt-segregationand equilibrium melt compositions are reached before segregationcan occur. On the basis of their trace element characteristics,the melt which forms segregated migmatites cannot be the sameas that which forms the vein-like migmatites, or granitoid plutons.  相似文献   

2.
The St. Malo migmatitic dome represents an interesting example wherein migmatites arise from the anatexis of the surrounding gneisses. Petrographical and chemical data suggest that leucosome compositions are compatible with partial melting of the quartzo-feldsphathic fraction of the parent gneiss. The contribution of the incongruent melting of biotite to the melt does not exceed 5% of the parent rock.Petrogenetic modelling based on experimental data and assuming non modal batch melting show that the K, Rb, Ca, Sr, U and Th chemical patterns of these migmatites result in fact from the interaction of several mechanisms, namely: equilibrium partial melting, mixing between melts and refractory minerals (biotite and accessories), melt removal and late hydrothermal alteration. Zr, Y and Th which are mostly hosted in accessory minerals are significantly withheld from the melts and remain stored in melanosomes (metatexites) except when leucosomes are affected by mixing (diatexites). U is frequently enriched in the leucosomes as well as in some melanosomes suggesting external supply.  相似文献   

3.
We provide data on the geochemical and isotopic consequences of nonmodal partial melting of a thick Jurassic pelite unit at mid-crustal levels that produced a migmatite complex in conjunction with the intrusion of part of the southern Sierra Nevada batholith at ca. 100 Ma. Field relations suggest that this pelitic migmatite formed and then abruptly solidified prior to substantial mobilization and escape of its melt products. Hence, this area yields insights into potential mid-crustal level contributions of crustal components into Cordilleran-type batholiths. Major and trace-element analyses in addition to field and petrographic data demonstrate that leucosomes are products of partial melting of the pelitic protolith host. Compared with the metapelites, leucosomes have higher Sr and lower Sm concentrations and lower Rb/Sr ratios. The initial 87Sr/86Sr ratios of leucosomes range from 0.7124 to 0.7247, similar to those of the metapelite protoliths (0.7125–0.7221). However, the leucosomes have a much wider range of initial εNd values, which range from −6.0 to −11.0, as compared to −8.7 to −11.3 for the metapelites. Sr and Nd isotopic compositions of the leucosomes, migmatites, and metapelites suggest disequilibrium partial melting of the metapelite protolith. Based on their Sr, Nd, and other trace-element characteristics, two groups of leucosomes have been identified. Group A leucosomes have relatively high Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (0.15<Rb/Sr<1.0), and initial εNd values. Group B leucosomes have relatively low Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (<0.15), and initial εNd values. The low Rb concentrations and Rb/Sr ratios of the group B leucosomes together suggest that partial melting was dominated by water-saturated or H2O-fluxed melting of quartz + feldspar assemblage with minor involvement of muscovite. Breakdown of quartz and plagioclase with minor contributions from muscovite resulted in low Rb/Sr ratios characterizing both group A and group B leucosomes. In contrast, group A leucosomes have greater contributions from K-feldspar, which is suggested by: (1) their relatively high K concentrations, (2) positive or slightly negative Eu anomalies, and (3) correlation of their Pb and Ba concentrations with K2O contents. It is also shown that accessory minerals have played a critical role in regulating the partitioning of key trace elements such as Sm, Nd, Nb, and V between melt products and residues during migmatization. The various degrees of parent/daughter fractionations in the Rb–Sr and Sm–Nd isotopic systems as a consequence of nonmodal crustal anatexis would render melt products with distinct isotopic signatures, which could profoundly influence the products of subsequent mixing events. This is not only important for geochemical patterns of intracrustal differentiation, but also a potentially important process in generating crustal-scale as well as individual pluton-scale isotopic heterogeneities.  相似文献   

4.
The Aleksod region is composed of metasedimentary rocks and large areas of biotite and hornblende-bearing migmatites. Anatexis associated with the main deformation stages, occurred under high pressure and temperature conditions estimated at 13±2 Kbar and 750±50° C. The bulk mineralogical composition of the Telohat migmatites shows that their protolith was granodioritic. Internal structures of zircons and U-Pb data suggest a polyphased evolution, with a 2131±12 Ma age for the protolith and a 609±17 Ma age for the Pan-African tectono-metamorphic evolution, thus precluding any Kibaran event in the Aleksod area. Leucosomes are richer in Sr and display lower Rb, Zr, Nb, Y, Th, U and REE contents than melanosomes wherein accessory phases are stored. Eu contents are also lower in the leucosomes but in lesser proportion than the other rare earth's, leading to a significant positive anomaly. Petrogenetic modelling accounting for accessory mineral phases clearly shows that the trace element contents of leucosomes and melanosomes follow a distribution law consistent neither with equilibrium nor fractional melting. Their trace element patterns are best explained by the model of disequilibrium melting, with mixing of a few residual phases. The present results and previous Sr isotopic data as well raise the question of disequilibrium melting in anatexis of crustal material CRPG Contribution no 782  相似文献   

5.
Abstract Migmatites in the Quetico Metasedimentary Belt contain two types of leucosome: (1) Layer-parallel leucosomes that grew during deformation and prograde metamorphism. These are enriched in SiO2, Sr, and Eu, but depleted in TiO2, Fe2O3, MgO, Cs, Rb, REE, Sc, Th, Zr, and Hf relative to the Quetico metasediments. (2) Discordant leucosomes that formed after the regional folding events when metamorphic temperatures were at their peak. These are enriched in Rb, Ba, Sr and Eu, but display a wide range of LREE, Th, Zr, and Hf contents relative to the Quetico metasediments.
Layer-parallel leucosomes formed by a subsolidus process termed tectonic segregation. This stress-induced mass transfer process began when the Quetico sediments were deformed during burial, and continued whilst the rocks were both stressed and heterogeneous. Subsolidus leucosome compositions are consistent with the mobilization of quartz and feldspar from the host rocks by pressure solution. The discordant leucosomes formed by partial melting of the Quetico metasediments, possibly during uplift of the belt. The range of composition displayed by the anatectic leucosomes arises from crystal fractionation during leucosome emplacement. Some anatectic leucosomes preserve primary melt compositions and have smooth REE patterns, but those with negative Eu anomalies represent fractionated melts, and others with positive Eu anomalies represent accumulations of feldspar plus trapped melt.  相似文献   

6.
Intrusion-related migmatites comprise a substantial part of the high-grade part of the southern Damara orogen, Namibia which is dominated by Al-rich metasedimentary rocks and various granites. Migmatites consist of melanosomes with biotite+sillimanite+garnet+cordierite+hercynite and leucosomes are garnet- and cordierite-bearing. Metamorphic grade throughout the area is in the upper amphibolite to lower granulite facies (5–6 kbar at 730–750 °C). Field evidence, petrographic observations, chemical data and mass balance calculations suggest that intrusion of granitic magmas and concomitant partial melting of metasedimentary units were the main processes for the generation of the migmatites. The intruding melts were significantly modified by magma mixing with in situ partial melts, accumulation of mainly feldspar and contamination with garnet from the wall rocks. However, it is suggested that these melts originally represented disequilibrium melts from a metasedimentary protolith. The occurrence of LILE-, HFSE- and LREE-enriched and -depleted residues within the leucosomes implies that both quartzo-feldspathic and pelitic rocks were subjected to partial melting. Isotope ratios of the leucosomes are rather constant (143Nd/144Nd (500 Ma): 0.511718–0.511754, ε Nd (500 Ma): ?3.54 to ?5.11) and Sr (87Sr/86Sr (500 Ma): 0.714119–0.714686), the metasedimentary units have rather constant Nd isotope ratios (143Nd/144Nd (500 Ma): 0.511622–0.511789, ε Nd (500 Ma): ?3.70 to ?6.93) but variable Sr isotope ratios Sr (87Sr/86Sr (500 Ma): 0.713527–0.722268). The most restitic melanosome MEL 4 has a Sr isotopic composition of 87Sr/86Sr (500 Ma): 0.729380. Oxygen isotopes do not mirror the proposed contamination process, due to the equally high δ18O contents of metasediments and crustal melts. However, the most LILE-depleted residue MEL 4 shows the lowest δ18O value (<10). Mass balance calculations suggest high degrees of partial melting (20–40%). It is concluded that partial melting was promoted by heat transfer and release of a fluid phase from the intruding granites. High degrees of partial melting can be reached as long as the available H2O, derived from the crystallization of the intruding granites, is efficiently recycled within the rock volume. Due to the limited amounts of in situ melting, it seems likely that such regional migmatite terranes are not the sources for large intrusive granite bodies. The high geothermal gradient inferred from the metamorphic conditions was probably caused by exhumation of deep crustal rocks and contemporaneous intrusion of huge masses of granitoid magmas. The Davetsaub area represents an example of migmatites formed at moderate pressures and high temperatures, and illustrates some of the reactions that may modify leucosome compositions. The area provides constraints on melting processes operating in high-grade metasedimentary rocks.  相似文献   

7.
Making a distinction between partial melting and subsolidus segregation in amphibolite facies migmatites is difficult. The only significant melting reactions at lowpressures, either vapour saturated or muscovite dehydration melting, do not produce melanocratic peritectic phases. If protoliths are Si-rich and K-poor, then peritectic sillimanite and K-feldspar will form in scarce amounts, and may be lost by retrograde rehydration. The Roded migmatites of southern Israel (northernmost Arabian Nubian Shield) formed at P = 4.5 ± 1 kbar and T ≤ 700 °C and include Si-rich, K-poor paragneissic paleosome and trondhjemitic leucosomes. The lack of K-feldspar in leucosomes was taken as evidence for the non-anatectic origin of the Roded migmatites (Gutkin and Eyal, Isr J Earth Sci 47:117, 1998). It is shown here that although the Roded migmatites experienced significant post-peak deformation and recrystallization, microstructural evidence for partial melting is retained. Based on these microstructures, coupled with pseudosection modelling, indicators of anatexis in retrograded migmatites are established. Phase diagram modelling of neosomes shows the onset of muscovite dehydration melting at 4.5 kbar and 660 °C, forming peritectic sillimanite and K-feldspar. Adjacent non-melted paleosomes lack muscovite and would thus not melt by this reaction. Vapour saturation was not attained, as it would have formed cordierite that does not exist. Furthermore, vapour saturation would not allow peritectic K-feldspar to form, however K-feldspar is ubiquitous in melanosomes. Direct petrographic evidence for anatexis is rare and includes euhedral plagioclase phenocrysts in leucosomes and quartz-filled embayments in corroded plagioclase at leucosome-melanosome interfaces. In deformed and recrystallized rocks muscovite dehydration melting is inferred by: (1) lenticular K-feldspar enclosed by biotite in melanosomes, (2) abundant myrmekite in leucosomes, (3) muscovite–quartz symplectites after sillimanite in melanosomes and associated with myrmekite in leucosomes. While peritectic K-feldspar formed in melanosomes by muscovite dehydration melting reaction, K-feldspar crystallizing from granitic melt in adjacent leucosome was myrmekitized. Excess potassium was used in rehydration of sillimanite to muscovite.  相似文献   

8.
Partial melting of ultrahigh‐pressure (UHP) metamorphic rocks is common during collisional orogenesis and post‐collisional reworking, indicating that determining the timing and processes involved in this partial melting can provide insights into the tectonic evolution of collisional orogens. This study presents the results of a combined whole‐rock geochemical and zirconological study of migmatites from the Sulu orogen in eastern China. These data provide evidence of multiple episodes of crustal anatexis and geochemical differentiation within the UHP metamorphic rocks. The leucosomes contain higher concentrations of Ba and K and lower concentrations of the rare earth elements (REE), Th and Y, than associated melanosomes and granitic gneisses. The leucosomes also have homogenous Sr–Nd–O isotopic compositions that are similar to proximal (i.e. within the same outcrop) melanosomes, suggesting that the anatectic melts were generated by the partial melting of source rocks that are located within individual outcrops. The migmatites contain zircons with six different types of domains that can be categorized using differences in structures, trace element compositions, and U–Pb ages. Group I domains are relict magmatic zircons that yield middle Neoproterozoic U–Pb ages and contain high REE concentrations. Group II domains represent newly grown metamorphic zircons that formed at 230 ± 1 Ma during the collisional orogenesis. Groups III, IV, V, and VI zircons are newly grown anatectic zircons that formed at 222 ± 2 Ma, 215 ± 1 Ma, 177 ± 2 Ma, and 152 ± 2 Ma, respectively. The metamorphic zircons have higher Th/U and lower (Yb/Gd)N values, flat heavy REE (HREE) patterns with no significantly negative Eu anomalies relative to the anatectic zircons, which are characterized by low Th/U ratios, steep HREE patterns, and negative Eu anomalies. The first two episodes of crustal anatexis occurred during the Late Triassic at c. 222 Ma and c. 215 Ma as a result of phengite breakdown. The other two episodes of anatexis occurred during the Jurassic period at c. 177 Ma and c. 152 Ma and were associated with extensional collapse of the collision‐thickened orogen. The majority of Triassic anatectic zircons and all of the Jurassic zircons are located within the leucosomes, whereas the melanosomes are dominated by Triassic metamorphic zircons, suggesting that the leucosomes within the migmatites record more episodes of crustal anatexis. Both metamorphic and anatectic zircons have elevated εHf(t) values compared with relict magmatic zircon cores, suggesting that these zircons contain non‐zircon Hf derived from material with more radiogenic Hf isotope compositions. Therefore, the Sulu and Dabie orogens experienced different episodes of reworking during the exhumation and post‐collisional stages.  相似文献   

9.
It is generally believed that Cenozoic potassic and ultrapotassic volcanic rocks of the Tibetan Plateau were generated by partial melting of an enriched mantle region or lower crustal materials. The Miocene Bugasi volcanic rocks (BVR) in the western part of the Lhasa block are composed mainly of trachyandesites and trachytes, both of which belong to the shoshonite series. The trachytes show somewhat transitional compositions between the mantle-derived trachyandesites of the BVR and the crust-derived potassic rocks of Konglongxiang, most evident in their Sr, Ba, and Ni concentrations, Nb/Ta, Rb/Sr, Th/Nb, Zr/Nb, and Ba/Rb trace element ratios, and Sr and Nd isotopic compositions. These features, coupled with the relatively high Cr and Ni concentrations and Mg#, suggest that the trachytes are the product of mixing between mantle-derived and lower crust-derived melts.  相似文献   

10.
Leucosomes and melanosomes in selected specimens of migmatitic, sillimanite-zone, pelitic schists are modal and chemical complements formed by segregation within originally homogeneous paleosomes. Systematic bulk chemical and modal variations in melanosomes can be used to infer the reactions by which leucosomes were generated.Trace element variations and relationships in melanosomes and leucosomes indicate that the migmatites behaved as closed systems during leucosome formation. Mass-balance evaluation of trace element relationships in the context of inferred leucosome-forming reactions suggest that trace elements essentially followed the melanosome phases initially containing them, as these phases reacted in leucosome generation. The trace element composition of a leucosome is given by the sum of those of the melanosome phases reacted, minus the trace element contents of any new solid melanosome phases produced by the reactions.Trace element relations are consistent with metamorphic equilibrium during leucosome generation, but suggest that once leucosome was segregated, equilibrium was not maintained between leucosome and melanosome.  相似文献   

11.
Reported in this paper are the chemical compositions and trace element (REE,Ba,Rb,Sr,Nb,Zr,Ni,Cr,V,Ga,Y,Sc,Zn,Cu,etc)abundances of Tertiary continental alkali basalts from the Liube-yizheng area,Jiangsu Province,China.The olivine basalt,alkali olivine basalt and basanite are all derived from evolved melts which were once af-fected by different degrees of fractional crystallization of olivine and clinopyroxene(1:2)under high pres-sures.The initial melts were derived from the garnet lherzolite-type mantle source through low-degree par-tial melting.The mantle source has been affected by recent mantle-enrichment events(e.g.mantle metasomatism),resulting in incompatible trace element enrichment and long-term depletion of radiogenic isotopic compositions of Sr and Nd.  相似文献   

12.
Trace element modelling of pelite-derived granites   总被引:25,自引:0,他引:25  
The presence or absence of a vapour phase during incongruent-melt reactions of muscovite and biotite together with the composition of the protolith determines the trace-element characteristics of the resulting melt, provided that equilibrium melting occurs for those phases that host the tracc elements of interest. For granitic melts, Rb, Sr and Ba provide critical constraints on the conditions that prevailed during melting, whereas REE are primarily controlled by accessory phase behaviour. Mass-balance constraints for eutectic granites that are formed by the incongruent melting of muscovite in pelites indicate that melting in the presence of a vapour phase will result in a large melt fraction, and deplete the restite in feldspar. Hence the melt will be characterized by low Rb/Sr and high Sr/Ba ratios. In contrast, vapour-absent melting will result in a smaller melt fraction, and an increase in the restitic feldspar. Consequently high Rb/Sr and low Sr/Ba ratios are predicted. Vapour-absent melting will also enhance the negative Eu anomaly in the melt. Granites that result from the incongruent melting of biotite in the source will be characterized by higher Rb concentrations than those that result from the incongruent melting of muscovite. The Himalayan leucogranites provide an example of unfractionated, crustally derived eutectic melts that are enriched in Rb but depleted in Sr and Ba relative to their metasedimentary protoliths. These compositions may be generated by the incongruent melting of muscovite as a low melt fraction (F0.1) from a pelitic source under vapour-absent conditions.  相似文献   

13.
Secondary ion mass spectrometer (SIMS) oxygen isotope analyses were performed on 24 clasts, representing 9 clast types, in the Dar al Gani (DaG) 319 polymict ureilite with precisions better than 1‰. Olivine-rich clasts with typical ureilitic textures and mineral compositions have oxygen isotopic compositions that are identical to those of the monomict ureilites and plot along the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line. Other igneous clasts, including plagioclase-bearing clasts, also plot along the CCAM line, indicating that they were derived from the ureilite parent body (UPB). Thus, we suggest that some of the plagioclase-bearing clasts in the polymict ureilites represent the “missing basaltic component” produced by partial melting on the UPB.Trace element concentrations (Mg, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr and Ba) in ureilitic plagioclase and glass from 13 clasts were obtained by using the SIMS high mass resolution method. The trace element contents of the plagioclase generally show monotonic variations with anorthite content (mol%) that are consistent with partial melting and fractional crystallization. Incompatible trace element concentrations (K, Ti, and Ba) are low and variable for plagioclase with An > 40, indicating that the parental magmas for some clasts were derived from a depleted source. We performed partial melt modeling for CI and CM precursor compositions and compared the results to the observed trace element (K, Ba, and Sr) abundances in the plagioclase. Our results indicate that (1) the UPB evolved from a alkali-rich carbonaceous chondritic precursor, (2) parent melts of porphyritic clasts could have formed by 5-20% equilibrium partial melting and subsequent fractional crystallization, and (3) parent melts of the incompatible trace element-depleted clasts could be derived from fractional melting, where low degree (<10%) partial melts were repeatedly extracted from their solid sources.Thus, both the oxygen isotopic and trace element compositions of the plagioclase bearing clasts in DaG-319 suggest that the UPB underwent localized low degree-partial melting events. The partial melts could have been repeatedly extracted from the precursor, resulting in the formation of the olivine-pigeonite monomict ureilites as the final residue.  相似文献   

14.
The trace element compositions of melts and minerals from high-pressure experiments on hydrous pyroxenites containing K-richterite are presented. The experiments used mixtures of a third each of the natural minerals clinopyroxene, phlogopite and K-richterite, some with the addition of 5% of an accessory phase ilmenite, rutile or apatite. Although the major element compositions of melts resemble natural lamproites, the trace element contents of most trace elements from the three-mineral mixture are much lower than in lamproites. Apatite is required in the source to provide high abundances of the rare earth elements, and either rutile and/or ilmenite is required to provide the high field strength elements Ti, Nb, Ta, Zr and Hf. Phlogopite controls the high levels of Rb, Cs and Ba.Since abundances of trace elements in the various starting mixtures vary strongly because of the use of natural minerals, we calculated mineral/melt partition coefficients (DMin/melt) using mineral modes and melting reactions and present trace element patterns for different degrees of partial melting of hydrous pyroxenites. Rb, Cs and Ba are compatible in phlogopite and the partition coefficient ratio phlogopite/K-richterite is high for Ba (1 3 6) and Rb (12). All melts have low contents of most of the first row transition elements, particularly Ni and Cu ((0.1–0.01) × primitive mantle). Nickel has high DMin/melt for all the major minerals (12 for K-richterite, 9.2 for phlogopite and 5.6 for Cpx) and so behaves at least as compatibly as in melting of peridotites. Fluorine/chlorine ratios in melts are high and DMin/melt for fluorine decreases in the order apatite (2.2) > phlogopite (1.5) > K-richterite (0.87). The requirement for apatite and at least one Ti-oxide in the source of natural lamproites holds for mica pyroxenites that lack K-richterite. The results are used to model isotopic ageing in hydrous pyroxenite source rocks: phlogopite controls Sr isotopes, so that lamproites with relatively low 87Sr/86Sr must come from phlogopite-poor source rocks, probably dominated by Cpx and K-richterite. At high pressures (>4 GPa), peritectic Cpx holds back Na, explaining the high K2O/Na2O of lamproites.  相似文献   

15.
The Tin Mountain pegmatite is a small, zoned granitic body that is extremely enriched in Rb and Li, but has moderate concentrations of Sr and Ba. These trace elements are modelled using granitic distribution coefficients in order to test the potentials of partial melting of metasedimentary rocks and fractionation of a less-evolved granitic melt to have produced the parental liquid to the Tin Mountain pegmatite. Batch melting of any reasonable metasedimentary source rock would likely have yielded melts that were either insufficiently enriched in Rb and Li to be the parental liquid, or that had Sr and Ba concentrations that were much higher than those estimated for the parental liquid. The modelling of simple fractional crystallization and equilibrium crystallization of a granitic melt within the compositional range of the spatially associated Harney Peak Granite gives calculated melt compositions with either lower Sr and Ba concentrations or inadequate Rb and Li enrichments, to be the parent liquid of the pegmatite. At least two variants from simple crystal-liquid fractionation models can, however, successfully account for the derivation of the parent liquid: 1) generation of a Rb-, Li-, Ba- and Sr-rich granitic melt (outside of the compositional range of the sampled portions of the Harney Peak Granite complex) by low degrees of partial melting of metasedimentary rocks found in the Black Hills, followed by moderate extents of fractional or equilibrium crystallization, 2) derivation from Harney Peak granite via a complex, multi-stage crystal-liquid fractionation process, such as progressive equilibrium crystallization.  相似文献   

16.
During the Mauna Ulu flank eruption on Kilauea, Hawaii, the concentrations in the lavas of the minor elements K, P, Na and Ti, and the incompatible trace elements (analyzed by isotope dilution) K, Rb, Cs, Ba, Sr, and the REE (except Yb) decreased monotonically and linearly with the time (or date) of the eruption. At the same time, the concentrations of the major elements and of Yb, and the ratios of K/Rb, K/Cs, Ba/Rb, 87Sr/86Sr and 143Nd/144Nd remained constant. Most of the scatter in the raw concentration data is removed by a simple correction for olivine (plus chromite) fractionation previously established by Wright et al. (1975). These results are explained by simple equilibrium partial melting of a uniform source. The degree of melting increased by about 20% of the initial value during the course of the eruption. The trace element data are inverted by the method originated by Minster and Allègre (1978) and simplified by Hofmann and Feigenson (1983). The source has the following element (or isotope) ratios: K/Rb=501±7, Ba/Rb=14.0±0.5, Rb/Cs=95±7, Rb/Sr=0.0193 (+0.0045, –0.0090), (Ce/Ba)CN= 1.1±0.1, (Sr/Ba)CN=1.19 (+0.30, –0.19), 87Sr/86Sr=0.703521±0.000016, and 143Nd/144Nd=0.512966±0.000008. The REE pattern of the source has a nearly flat or slightly negative slope (=relative LREE enrichment) between Ce and Dy and a strongly positive slope between Dy and Yb. However, this relative HREE enrichment is poorly constrained by the analytical data, is highly model dependent and may not be a true source feature. The Yb concentration in the source is particularly poorly constrained because it is essentially constant in the melts. On the other hand, this special feature demonstrates that Yb must be buffered by a mineral phase with a high partition coefficient for Yb, namely garnet. The calculated clinopyroxene/garnet ratio in the source is roughly equal to one. In contrast, the source of Kohala volcano had previously been found to contain little or no garnet.  相似文献   

17.
Open‐system behaviour through fluid influx and melt loss can produce a variety of migmatite morphologies and mineral assemblages from the same protolith composition. This is shown by different types of granulite facies migmatite from the contact aureole of the Ceret gabbro–diorite stock in the Roc de Frausa Massif (eastern Pyrenees). Patch, stromatic and schollen migmatites are identified in the inner contact aureole, whereas schollen migmatites and residual melanosomes are found as xenoliths inside the gabbro–diorite. Patch and schollen migmatites record D1 and D2 structures in folded melanosome and mostly preserve the high‐T D2 in granular or weakly foliated leucosome. Stromatic migmatites and residual melanosomes only preserve D2. The assemblage quartz–garnet–biotite–sillimanite–cordierite±K‐feldspar–plagioclase is present in patch and schollen migmatites, whereas stromatic migmatites and residual melanosomes contain a sub‐assemblage with no sillimanite and/or K‐feldspar. A decrease in X Fe (molar Fe/(Fe + Mg)) in garnet, biotite and cordierite is observed from patch migmatites through schollen and stromatic migmatites to residual melanosomes. Whole‐rock compositions of patch, schollen and stromatic migmatites are similar to those of non‐migmatitic rocks from the surrounding area. These metasedimentary rocks are interpreted as the protoliths of the migmatites. A decrease in the silica content of migmatites from 63 to 40 wt% SiO2 is accompanied by an increase in Al2O3 and MgO+FeO and by a depletion in alkalis. Thermodynamic modelling in the NCKFMASHTO system for the different types of migmatite provides peak metamorphic conditions ~7–8 kbar and 840 °C. A nearly isothermal decompression history down to 5.5 kbar was followed by isobaric cooling from 840 °C through 690 °C to lower temperatures. The preservation of granulite facies assemblages and the variation in mineral assemblages and chemical composition can be modelled by ongoing H2O‐fluxed melting accompanied by melt loss. The fluids were probably released by the crystallizing gabbro–diorite, infiltrating the metasedimentary rocks and fluxing melting. Release of fluids and melt loss were probably favoured by coeval deformation (D2). The amount of melt remaining in the system varied considerably among the different types of migmatite. The whole‐rock compositions of the samples, the modelled compositions of melts at the solidus at 5.5 kbar and the residues show a good correlation.  相似文献   

18.
Microscopic melt inclusions found in magmatic minerals are undoubtedly one of the most important sources of information on the chemical composition of melts. This paper reports on the successful application of near-infrared (NIR) femtosecond laser ablation (LA) - inductively coupled plasma-mass spectrometry to in situ determination of incompatible trace elements (Li, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Ta, Th, U) and ore metals (As, Mo, Pb) in individual melt inclusions hosted in quartz from the Mount Pinatubo dacites, Philippines. The determined elements cover a concentration range of five orders of magnitude. Femtosecond LA-ICP-MS analyses of twenty-eight individual melt inclusions demonstrate the efficiency of the microanalytical technique and suggests a spectacular homogeneity of the entrapped melt, at least with respect to the following incompatible trace elements: Rb, Sr, Nb, Cs, Ba, La, Ce, Pr, Nd, Pb, Th. The analytical precision (1s) for Na, Ca, Rb, Sr, Y, Nb, Ba and LREE ranged from 3 to 20%. Comparison of trace element concentrations in Mt. Pinatubo melt inclusions determined by femtosecond LA-ICP-MS with those of melt inclusions previously analysed by secondary ion mass spectrometry analysis (SIMS) and those of matrix glasses previously determined by nanosecond LA-ICP-MS showed an agreement typically within 30–40%. The homogeneity of trace element concentrations of the Mt. Pinatubo melt inclusions and the matrix glasses is consistent with the melt inclusion origin as homogeneous rhyolitic melt that was trapped in quartz phenocrysts at the final crystallisation stages of the host adakite (dacite) magma.  相似文献   

19.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

20.
Abstract. A method for the quantitative analysis of the spatial relations of minerals is described. Dispersed distributions are formed by annealing and destroyed in post-tectonic migmatization. Aggregate distributions characterize solid-state differentiation, whereas leucosomes formed in systems of high fluid:rock ratio (in the examples studied, anatectic melts) show random distributions.
Quantitative textural analysis can be used to indicate whether migmatization was post-tectonic or earlier, though caution is necessary if post-migmatite cooling is slow or if there is some minor deformation. More importantly, it can be used to discriminate melt-present from melt-absent leucosomes; this is exemplified by a suite of metamorphic and anatectic migmatites from the Scottish Caledonides.
The textural evolution of anatexites with increasing melt percentage is traced. Initial feldspar porphyroblastesis occurs by Ostwald ripening via grain boundary melts; subsequently ophthalmites develop with fabrics and chemistry inherited from the palaeosome. At greater than 30% melt these inherited fabrics are wholly destroyed. Deformation prompts segregation into melanosome and leucosome; resultant leucosomes contain no inherited crystals. The scale of anatectic systems is fixed at the point at which segregation begins; ophthalmites provide evidence for melt and crystal transfer beyond original palaeosome boundaries. In contrast, metamorphic migmatites are necessarily small-scale systems because of diffusive constraints, and melanosomes are invariably produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号