首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ radioelemental (K, U and Th) analysis and heat production estimates have been made at 59 sites in the Kerala Khondalite Block (KKB) of the Southern Granulite Province (SGP) of India. Together with the in situ analyses on granulites and gneisses previously reported from 28 sites, and heat production estimated from the published geochemical analyses on granites and syenites of the KKB, the new data set allows good characterization of heat production for the major granulite facies rocks and granitoids of the KKB. Garnet biotite gneisses are characterized by high levels of Th and U, with mean values of 60 and 3 ppm, respectively. Khondalites, leptynites and charnockites have slightly lower levels of Th (23, 20 and 22 ppm, respectively) and U (2.9, 2.4 and 0.9 ppm, respectively). The mean K, U, Th abundances for the granites, leucogranites and granitic gneisses ranges from 3.9 to 4.3%, 2.6 to 4.3 ppm, 22 to 50 ppm respectively, and for the syenites 4.8%, 2 ppm and 5.7 ppm. Mean radiogenic heat production values for garnet–biotite gneiss, khondalite, leptynite and charnockite are 5.5, 2.7, 2.4 and 2.2 μW m−3, respectively. For the granites, leucogranites, granitic gneisses and syenites it is 2.6, 3.4, 4.6 and 1.4 μW m−3, respectively. Heat production of granulite facies rocks, which are the most abundant rocks in KKB, correlate well with Th, but less with U, suggesting that variation is caused by Th and U bearing accessory minerals such as monazite and zircon. The high heat production of the KKB granulites are in contrast to the low heat production of the Late Archaean granulites of the Northern Block (NB) of the SGP which are highly depleted in radioelements and also the granulites of Madurai Block (MB) that have higher radioelemental abundances than in the granulites of the NB. The high heat production of the KKB granulites could be due to the nature of protoliths and/or metasomatism associated with Neoproteroic- to- Pan African alkaline magmatic activity represented by alkali granite and syenite–carbonatite emplacements and emplacement of pegmatites.  相似文献   

2.
Pan-African high-grade metamorphism in the Kerala KhondaliteBelt (South India) led to the in situ formation of garnet-bearingleucosomes (L1) in sodic quartz—alkali feldspar—biotitegneisses. Microtextures, mineralogy and the geochemical characteristicsof in situ leucosomes (L1) and gneiss domains (GnD) indicatethat the development of leucosomes was mainly controlled bythe growth of garnet at the expense of biotite. This is documentedby the selective transfer of FeO, MgO, , Sm and the heavy rareearth elements into the L1 domains. P-T constraints (T>800C,P>6kbar, aH2O0.3) suggest that the leucosomes were formedthrough complete melting of biotite in fluid-absent conditions,following the model reaction Biotite+Alkali feldspar+QuartzlGarnet+Ilmenite+Melt.The fraction of melt generated during this process was low (<10vol.%). The identical size of the leucosomes as well as theirhomogeneous and isotropic distribution at outcrop scale, whichlacks any evidence for melt segregation, suggest that the migmatiteremained a closed system. Subsequent to migmatization, the leptyniticgneisses were intruded by garnet-bearing leucogranitic melts(L2), forming veins parallel and subperpendicular to the foliation.The leucogranites are rich in potassium (K2O5.5 wt%), (Ba400p.p.m.) and Sr (300 p.p.m.), and exhibit low concentrationsof Zr (40 p.p.m.), Th (<1 p.p.m.) and (<10 p.p.m.). Thechondrite-normalized REE spectra show low abundances (LaN20,LuN3) and are moderately fractionated (LaN/LuN7). An Eu anomalyis absent or weakly negative. The higher 87Sr/86Sr ratio at550 Ma (0.7345) compared with the migmatite (0.7164) precludesa direct genetic relationship between leptynitic gneisses andleucogranites at Manali.Nevertheless, the chemical and mineralogicalcompositions of the leuocogranites strongly favour a derivationthrough fluid-absent biotite melting of isotopically distinctbut chemically comparable Manali-type gneisses. The undersaturationof Zr, Th and REE, a typical feature of leucogranitic meltsgenerated during granulite facies anatexis of psammo-peliticlithologies and attributed to disequilibrium melting with incompletedissolution of accessory phases (zircon, monazite), is weaklydeveloped in the leucogranites of Manali.It is concluded thatthis is mainly due to the sluggish migration of the melts instatic conditions, which facilitated equilibration with therestitic gneisses. *Fax: 0228-732763; e-mail: ingo.braun{at}uni-bonn.de  相似文献   

3.
《Gondwana Research》2001,4(3):377-386
The Kerala Khondalite belt is a Proterozoic metasupracrustal granulite facies terrain in southern India comprising garnet-biotite gneiss, garnet-sillimanite gneiss and orthopyroxene granulites as major rock types. Calc-silicate rocks and marbles, occurring as minor lithologies in the Kerala Khondalite Belt, show different mineral assemblages and reaction histories of which indicate a metamorphic P-T-fluid history dominated by internal fluid buffering during the peak metamorphism, followed by external fluid influx during decompression. The carbon and oxygen isotopic compositions of calcite from three representative metacarbonate localities show contrasting evolutionary trends. The Ambasamudram marbles exhibit carbon and oxygen isotope ratios (δ13C ∼ 0‰ and δ18O ∼ 20‰) typical of middle to late Proterozoic marine carbonate sediments with minor variation ascribed to the isotopic exchange due to the devolatilization reactions. The δ13C and δ18O values of ∼ −9‰ and 11‰, respectively, for calcite from calc-silicate rocks at Nuliyam are considerably low and heterogeneous. The wollastonite formation here, possibly corresponds to an earlier event of fluid infiltration during prograde to peak metamorphism, which resulted in decarbonation and isotope resetting. Further, petrologic evidence supports a model of late carbonic fluid infiltration that has partially affected the calc-silicate rocks, with subsequent isotope resetting, more towards the contact between calc-silicate rock and charnockite. At Korani, only oxygen isotopes have been significantly lowered (δ18O ∼ 13‰) and the process involved might be a combination of metamorphic devolatilization accompanied by an aqueous fluid influx, supported by petrologic evidence. The stable isotope signatures obtained from the individual localities, thus indicate heterogeneous patterns of fluid evolution history within the same crustal segment.  相似文献   

4.
5.
Two stages of granitic magmatism occurred during the Pan-African evolution of the Kerala Khondalite Belt (KKB) in southern India. Granitic gneisses were derived from porphyritic granites, which intruded prior to the main stage of deformation and peak-metamorphism. Subsequently, leucogranites and leucotonalites formed during fluid-absent melting and intruded the gneiss sequences. Monazites from granitic gneisses, leucogranites and a leucotonalite were investigated by conventional U-Pb and electron microprobe dating in order to distinguish the different stages of magma emplacement. U-Pb monazite dating yielded a wide range of ages between 590–520 Ma which are interpreted to date high-grade metamorphism rather than magma emplacement. The results of this study indicate that the KKB experienced protracted heating (>50 Ma) at temperatures above 750–800 °C during the Pan-African orogeny. The tectonometamorphic evolution of the study area is comparable to southern Madagascar which underwent a similar sequence of events earlier than the KKB. The results of this study further substantiate previous assertions that the timing of high-grade metamorphism in East Gondwana shifted from west to east during the Late Proterozoic.  相似文献   

6.
Phase equilibria modelling coupled with U–Pb zircon and monazite ages of garnet–cordierite gneiss from Vallikodu Kottayam in the Kerala Khondalite Belt,southern India are presented here.The results suggest that the area attained peak P–T conditions of^900C at 7.5–8 kbar,followed by decompression to 3.5–5 kbar and cooling to 450–480C,preserving signatures of the partial melting event in the field of high to ultra-high temperature metamorphism.Melt reintegration models suggest that up to 35%granitic melt could have been produced during metamorphism at^950C.The U–Pb age data from zircons(~1.0–~0.7 Ga)and chemical ages from monazites(~540 Ma and^941 Ma)reflect a complex tectonometamorphic evolution of the terrain.The^941 Ma age reported from these monazites indicate a Tonian ultra-high temperature event,linked to juvenile magmatism/deformation episodes reported from the Southern Granulite Terrane and associated fragments in Rodinia,which were subsequently overprinted by the Cambrian(~540 Ma)tectonothermal episode.  相似文献   

7.
8.
The South Kerala Sedimentary Basin (SKSB) constitutes one of the most significant landward extensions of the southwest offshore sedimentary basins of India, and is situated between 8o45' and 10o15' N latitudes. With a maximum width of about 20 km and incorporating a 700 m thick sedimentary succession ranging in age from Early Miocene to Holocene, this belt lies almost entirely under water or alluvium-covered coastal plains. In this study, we use two continuously cored bore holes at Eruva (7.25m deep) and Muthukulam (3m deep) separated by a distance of about 7km to investigate the depositional environment as well as paleo ecology of the depocentre and climatic aspects during the Late Pleistocene and Holocene. Results from C14 dating of shell fragments from Eruva (depth zone: 2.10–6.64m) yielded ages in the range of 36.2 to 42.5 kyBP corresponding to the late Pleistocene. Wood fragments in the Muthukulam core sample (depth zone: 1.27–3.00m) gave C14 ages in the range of 3.7 to 7.2 kyBP indicating a Holocene history. The lower half of the Eruva bore hole indicates a marginal marine environment with an abundant supply of terrestrial carbonaceous debris probably corresponding to a period of abnormally high rainfall recorded in many parts of the globe covered by the Asian summer monsoon. The sediments in the upper part of this bore hole indicate a continuation of this environment but with much less input of terrestrial organic carbon. The lower part of the bore hole from this locality, corresponding to the Holocene transgression, is similar to the lower part of Eruva bore hole in the case of TOC. Deposition took place in water bodies with considerable marine influence but receiving high amounts of terrestrial plant debris-mostly in the form of finely divided particles mixed with mud. This transgressive sequence was also deposited during a time when the Asian summer monsoon was abnormally high in intensity as indicated by many examples in India, Africa, Madagascar and elsewhere. It is significant that during the deposition of this part, the sea level was probably the same as present or higher suggesting possible lowering of the stream velocities and resultant deposition of only muddy sediments laden with terrestrial organic material along the coast. The upper part of the section shows a progressively reduced rainfall pattern culminating in a period of very low precipitation with the development of a paleosol, which is traceable all over the SKSB where Late Holocene sediments are available. This period also witnessed aeolian activity modifying the sand ridges in the ridge-runnel systems formed by the Holocene regression.  相似文献   

9.
Scapolite–wollastonite–grossular bearing calc-silicate rocks from the Vellanad area in the Kerala Khondalite Belt (KKB) of Southern India preserve a number of reaction textures which help to deduce their PT–fluid history. Textures include calcite+plagioclase±quartz symplectites after scapolite, grossular+quartz coronas between wollastonite and plagioclase, grossular coronas between wollastonite and plagioclase+calcite that replace former scapolite, and grossular blebs replacing anorthite+calcite+quartz pseudomorphs of scapolite. Garnet coronas are also observed between clinopyroxene and wollastonite or scapolite or plagioclase. The reactions, apart from those involving clinopyroxene, can be modelled in the simple CaO–Al2O3–SiO2–CO2 system and interpreted using partial reaction grids constructed for the activities of end-members in the analysed phases. The reaction topologies produced are good approximations for the peak as well as retrograde mineral assemblages and reaction textures. For the compositions of the phases present in this study, the medium pressure calc-silicate assemblages are defined by the stable pseudo-invariant points [Qtz], [Mei] and [Grs]. The textural features interpreted using these activity-corrected grids indicate a phase of isobaric cooling from about 835°C to 750°C at 6 kbar in the Vellanad area. This is inconsistent with earlier studies on other lithologies from the KKB, most of which imply a post-peak PT path involving near-isothermal decompression. However, as the temperatures obtained for the KKB from the calc-silicates are higher than those previously deduced from metapelites and garnet–orthopyroxene assemblages, the phase of near-isobaric cooling reported here is inferred to have proceeded prior to the onset of the decompression documented from studies of other rock types.  相似文献   

10.
This note reports new occurrences of syenite bodies around Marunthurkota area from the Kerala khondalite belt (KKB). Petrological and geochemical studies suggest that the syenites have a pronounced A-type affinity, metaluminous characteristics with high concentrations of alkalies, Rb, Sr, Zr, and high K2O/Na2O ratio. Miaskitic nature (agpaitic index<1) of syenite suggest involvement of CO2 related phase in their genesis. The petrological characteristics signify crystallization of the rock at shallow levels within the crust. Geochemistry favours mantle origin of the magma and enrichment of Ba and Sr are indicative of involvement of carbonatite melt in the source region. The study envisages the presence of a juvenile CO2 enriched upper mantle below the southern Indian continental crust during the Pan-African time.  相似文献   

11.
Zircon crystals from a locally charnockitized Paleoproterozoic high-K metagranite from the Kerala Khondalite Belt (KKB) of southern India have been investigated by high-spatial resolution secondary ion mass spectrometry analysis of U–Th–Pb and rare earth elements (REE), together with scanning ion imaging and scanning ion tomography (depth-profiled ion imaging). The spot analyses constrain the magmatic crystallization age of the metagranite to ca. 1,850 Ma, with ultrahigh-temperature (UHT) metamorphism occurring at ca. 570 Ma and superimposed charnockite formation at ca. 520–510 Ma, while the ion imaging reveals a patchy distribution of radiogenic Pb throughout the zircon cores. Middle- to heavy-REE depletion in ca. 570 Ma zircon rims suggests that these grew in equilibrium with garnet and therefore date the UHT metamorphism in the KKB. The maximum apparent 207Pb/206Pb age obtained from the unsupported radiogenic Pb concentrations is also consistent with formation of the Pb patches during this event. The superimposed charnockitization event appears to have caused additional Pb-loss in the cores and recrystallization of the rims. The results of depth-profiling of the scanning ion tomography image stack show that the Pb-rich domains range in size from <5 nm to several 10 nm (diameter if assumed to be spherical). The occurrence of such patchy Pb has previously been documented only from UHT metamorphic zircon, where it likely results from annealing of radiation-damaged zircon. The formation of a discrete, heterogeneously distributed and subsequently immobile Pb phase effectively arrests the normal Pb-loss process seen at lower grades of metamorphism.  相似文献   

12.
The physiographic setting of Kerala State, India, is unique. A narrow strip of the state contains a chain of lagoons and estuaries with a very high population density. The strip is subjected to severe coastal erosion during the monsoon season. A number of other problems are also associated with the coastal zone of Kerala, such as irregular dredging of black sands from the beaches, coastal flooding, hazards due to developmental activities, etc. A Coastal Zone Management Programme was developed and administered by the Centre for Earth Science Studies, Trivandrum, to provide efficient coastal management and solve some of these problems. Various programmes included under the Coastal Zone Management are the following: (1) Sedimentological, bathymetric, and geochemical studies of lagoons and estuaries; (2) monitoring of planimetric changes of beaches by profiling beaches during different seasons all along the coast; (3) studies of the nature, distribution, and provenance of black sand deposits from beaches; (4) studies of the peculiar occurrence of patchy, calm, turbid areas of water in the offshore containing high suspended sediment concentrate known as mud banks; (5) wave studies involving continuous monitoring of wave data all along the coast in order to understand wave climate and erosion; (6) sediment movement studies using fluorescent tracer to aid in the development of ports and harbors; (7) studies on various aspects of offshore. The outlines of the various programmes discussed in this article will help other states and countries to develop a coastal zone management programme according to the needs of the state or country and the nature of the problem occurring in the coastal zone.  相似文献   

13.
喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩   总被引:2,自引:10,他引:2  
曾令森  高利娥 《岩石学报》2017,33(5):1420-1444
自从印度-欧亚大陆碰撞以来,伴随着构造演化和温度-压力-成分(P-T-X)的变化,喜马拉雅造山带中下地壳变质岩发生不同类型的部分熔融反应,形成性质各异的过铝质花岗岩。这些花岗岩在形成时代、矿物组成、全岩元素和放射性同位素地球化学特征上都表现出巨大的差异性。始新世构造岩浆作用形成高Sr/Y二云母花岗岩和演化程度较高的淡色花岗岩和淡色花岗玢岩,它们具有相似的Sr-Nd同位素组成,是碰撞早期增厚下地壳部分熔融的产物。渐新世淡色花岗岩主要为演化程度较高的淡色花岗岩,可能指示了喜马拉雅造山带的快速剥露作用起始于渐新世。早中新世以来的淡色花岗岩是喜马拉雅造山带淡色花岗岩的主体,是变泥质岩部分熔融的产物,包含两类部分熔融作用——水致白云母部分熔融作用(A类)和白云母脱水熔融作用(B类)。这两类部分熔融作用形成的花岗质熔体在元素和同位素地球化学特征上都表现出明显的差异性,主要受控于两类部分熔融作用过程中主要造岩矿物和副矿物的溶解行为。这些不同期次的地壳深熔作用都伴随着高分异淡色花岗岩,伴随着关键金属元素(Nb、Ta、Sn、Be等)的富集,是未来矿产勘探的重要靶区。新的观测结果表明:在碰撞造山带中,花岗岩岩石学和地球化学性质的变化是深部地壳物质对构造过程响应的结果,是深入理解碰撞造山带深部地壳物理和化学行为的重要岩石探针。  相似文献   

14.
Early Proterozoic tholeiitic lavas and sills were emplaced duringthe initial phase of extension of the intra-cratonic CuddapahBasin, southern India. 40Ar–39Ar laser-fusion determinationson phlogopite mica, from the Tadpatri Fm mafic–ultramaficsill complex, constrain the age of the initial phase of extensionand volcanism in the basin at 1·9 Ga. Despite their EarlyProterozoic age, the igneous rocks are unmetamorphosed, undeformedand remarkably fresh. They exhibit a wide range in MgO contents(4–28 wt %) and have undergone varying degrees of accumulationor crystal fractionation. Variable La/Nb ratios (1·2–3·7)and  相似文献   

15.
We report here the occurrence of pink sapphires in association with a variety of gemstones from the Trivandrum Granulite Block south of the Achankovil Shear Zone in southern India. The mineralization is associated with pegmatites or veins emplaced within granulite facies aluminous supracrustals. The sapphires show near-pure A1,0, composition (98.43-99.48 wt.%) with traces of Cr, O, (0.02-0.12 wt.%) and FeO (0.01-0.12 wt.%). The available radiometric age of 513-2 Ma for gem quality zircon associated with pink sapphire in the Melankode locality confirms that the mineralization is of late Pan-African age. Pink sapphires have been widely reported from a number of localities in southern Madagascar including Betroka, Illakaka, Antranondambo and Ambossary. Sapphires of various hues also occur in the Ratnapura gem district in the southwestern part of Sri Lanka. The pink sapphire occurrences in southern Madagascar and southern Kerala provide strong evidence for India-Madagascar juxtaposition in the Gondwana assembly with the Ranotsara Shear Zone in southern Madagascar extending into the Achankovil Shear Zone in southern India.  相似文献   

16.
Although sporadic mining of placer gold from river beds is not uncommon in India, there is no documented literature on the occurrence of gold in the beach placer sand deposits of the country. While characterizing the heavy minerals of the Chavakkad-Ponnani (CP) beach placer sands along the North Kerala coast, the association of gold with the pyriboles in these sands has been observed. A native gold grain of about 25 μm was seen to occur as an inclusion within an amphibole of hornblendic composition. The pyriboles of the CP deposit are angular to sub-angular indicating a nearby provenance that may be in the upstream reaches of the Ponnani River in the districts of Malappuram and Palakkad or further north in the auriferous tracts of the Wynad-Nilambur or Attapadi regions. It is argued that the occurrence of native gold in CP deposit is not a freak occurrence and that it warrants thorough investigation of all the pyribole-ilmenite-rich placers to examine the possible presence of gold and its abundance in the beach placers of northern Kerala coast.  相似文献   

17.
The proper usage of modal composition and geochemical classification of granitoids is discussed for assigning a proper nomenclature for the Angadimogar pluton, Kerala, southwestern India. This discussion is mainly aimed at addressing questions concerning the nomenclature of Angadimogar pluton (syenitevs. granite). Modal composition and whole-rock XRD data clearly show that the pluton exposed near Angadimogar is a quartz-syenite and its geochemistry is typical of a ferroan, metaluminous, alkali (A-type) granitoid  相似文献   

18.
Ramasamy  S. M.  Gunasekaran  S.  Rajagopal  N.  Saravanavel  J.  Kumanan  C. J. 《Natural Hazards》2019,99(1):307-319
Natural Hazards - Floods in India, which were once mostly confined to southern part of the Himalayan region, have now started spreading over to many regions of India, including the urban...  相似文献   

19.
The distribution pattern of radioactive minerals in Trivandrum district of Kerala has been investigated. The surface radioactivity was measured employing a jeep-mounted four-channel gamma-ray spectrometer coupled to a high volume Na I (T1) crystal detector. The distribution of radioactivity has been correlated with the corresponding litho-units and major structures of the study area. The total countrate from sedimentaries including beach sands and pegmatite rich zones (~ 3,500 CPS) are significantly higher than that of the laterites and gneisses which are substantiated by laboratory studies.  相似文献   

20.
Lateritic soils near Calicut, Kerala, contain halloysite of intermediate hydration, kaolinite, goethite, gibbsite and quartz. The presence of halloysite is responsible for relatively high plasticity and cation-exchange capacity. Fe-hydroxide colloids along with halloysite contribute to significant phosphate uptake by this soil. Composition of local groundwater is consistent with weathering of sodic plagioclase to gibbsite, kaolinite and metastable halloysite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号