共查询到20条相似文献,搜索用时 15 毫秒
1.
A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data 总被引:8,自引:0,他引:8
Surface soil heat flux is a component of surface energy budget and its estimation is needed in land-atmosphere interaction studies. This paper develops a new simple method to estimate soil heat flux from soil temperature and moisture observations. It gives soil temperature profile with the thermal diffusion equation and, then, adjusts the temperature profile with differences between observed and computed soil temperatures. The soil flux is obtained through integrating the soil temperature profile. Compared with previous methods, the new method does not require accurate thermal conductivity. Case studies based on observations, synthetic data, and sensitivity analyses show that the new method is preferable and the results obtained with it are not sensitive to the availability of temperature data in the topsoil. In addition, we pointed out that the soil heat flux measured with a heat-plate can be quite erroneous in magnitude though its phase is accurate. 相似文献
2.
Michael A. Fullen 《地球表面变化过程与地形》1982,7(3):285-293
Radioactive 59Fe is considered to be one of the most satisfactory isotopes for tracing soil particle movement. Laboratory techniques of labelling and their success are investigated along with the scintillation technique of radiation detection. Following the completion of a field pilot study 59Fe-labelled soils were exposed on both vegetated and burnt heather moorland on the North York Moors to monitor relative soil movement. 相似文献
3.
Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF). Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIFs evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes. 相似文献
4.
5.
An expression for the inviscid horizontal velocity field at the surface of the Earth's core necessary to account for the poloidal main magnetic field and its secular variation seen at the Earth's surface is derived for an insulating mantle in the limit of infinite core conductivity. The starting point of derivation is Ohm's law rather than the magnetohydrodynamic induction equation. Maps of the resulting motion for epoch 1965.0 at different truncation levels are presented and discussed. 相似文献
6.
Rohit Salve 《水文研究》2011,25(18):2907-2915
As the scope of hydrologic investigations extend deeper into the subsurface profile, and increasingly include fractured rock, there is a growing need for techniques that can accurately monitor saturation changes at a high spatial and temporal resolution in this environment. We have developed a technique, the Electrical Resistance Sensor Array System (ERSAS), to track moisture dynamics in vadose zone regions that include both fractured rock and soil. The performance of ERSAS was compared with the time domain reflectometry (TDR) technique under controlled and field conditions. We found that ERSAS was effective in determining patterns of saturation changes along vertical soil/rock profiles. Because of the small size of individual sensors, it was able to resolve travel times associated with a wetting front and peak saturation better than TDR. In addition, ERSAS is significantly cheaper than the TDR system, and the sensor arrays are relatively easier to install in the subsurface profile. Published in 2011 by John Wiley & Sons, Ltd. 相似文献
7.
John H. Cushman Moongyu Park Monica Moroni Natalie Kleinfelter-Domelle Daniel O��Malley 《Stochastic Environmental Research and Risk Assessment (SERRA)》2011,25(1):1-10
When formulated properly, most geophysical transport-type process involving passive scalars or motile particles may be described
by the same space–time nonlocal field equation which consists of a classical mass balance coupled with a space–time nonlocal
convective/dispersive flux. Specific examples employed here include stretched and compressed Brownian motion, diffusion in
slit-nanopores, subdiffusive continuous-time random walks (CTRW), super diffusion in the turbulent atmosphere and dispersion
of motile and passive particles in fractal porous media. Stretched and compressed Brownian motion, which may be thought of
as Brownian motions run with nonlinear clocks, are defined as the limit processes of a special class of random walks possessing
nonstationary increments. The limit process has a mean square displacement that increases as tα+1 where α > −1 is a constant. If α = 0 the process is classical Brownian, if α < 0 we say the process is compressed Brownian while
if α > 0 it is stretched. The Fokker–Planck equations for these processes are classical ade’s with dispersion coefficient
proportional to tα. The Brownian-type walks have fixed time step, but nonstationary spatial increments that are Gaussian with power law variance.
With the CTRW, both the time increment and the spatial increment are random. The subdiffusive Fokker–Planck equation is fractional
in time for the CTRW’s considered in this article. The second moments for a Levy spatial trajectory are infinite while the
Fokker–Planck equation is an advective–dispersive equation, ade, with constant diffusion coefficient and fractional spatial
derivatives. If the Lagrangian velocity is assumed Levy rather than the position, then a similar Fokker–Planck equation is
obtained, but the diffusion coefficient is a power law in time. All these Fokker–Planck equations are special cases of the
general non-local balance law. 相似文献
8.
9.
Improvement of the Noah land surface model for warm season processes: evaluation of water and energy flux simulation 总被引:1,自引:0,他引:1
The Noah model is a land surface model of the National Centers for Environmental Prediction. It has been widely used in regional coupled weather and climate models (i.e. Weather Research and Forecasting Model, Eta Mesoscale Model) and global coupled weather and climate models (i.e. National Centers for Environmental Prediction Global Forecast System, Climate Forecast System). Therefore, its continued improvement and development are keys to enhancing our weather and climate forecast ability and water and energy flux simulation accuracy. North American Land Data Assimilation System phase 1 (NLDAS‐1) experiments indicated that the Noah model exhibited substantial bias in latent heat flux, total runoff and land skin temperature during the warm season, and such bias can significantly affect coupled weather and climate models. This paper presents a study to improve the Noah model by adding model parameterization processes such as including seasonal factor on leaf area index and root distribution and selecting optimal model parameters. We compared simulated latent heat flux, mean annual runoff and land skin temperature from the Noah control and test versions with measured latent heat flux, land surface skin temperature, mean annual runoff and satellite‐retrieved land surface skin temperature. The results show that the test version significantly reduces biases in latent heat, total runoff and land skin temperature simulation. The test version has been used for the NLDAS phase 2 (NLDAS‐2) to produce 30‐year water flux, energy flux and state variable products to support the US drought monitor of National Integrated Drought Information System. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
11.
《中国科学:地球科学(英文版)》2015,(7)
Surface soil heat flux(G0) is an indispensable component of the surface energy balance and plays an important role in the estimation of surface evapotranspiration(ET). This study calculated G0 in the Heihe River Basin based on the thermal diffusion equation, using the observed soil temperature and moisture profiles, with the aim to analyze the spatial-temporal variations of G0 over the heterogeneous area(with alpine grassland, farmland, and forest). The soil ice content was estimated by the difference in liquid soil water content before and after the melting of the frozen soil and its impact on the calculation of G0 was further analyzed. The results show that:(1) the diurnal variation of G0 is obvious under different underlying surfaces in the Heihe River Basin, and the time when the daily maximum value of G0 occurs is a few minutes to several hours earlier than that of the net radiation flux, which is related to the soil texture, soil moisture, soil thermal properties, and the vegetation coverage;(2) the net radiation flux varies with season and reaches the maximum in summer and the minimum in winter, whereas G0 reaches the maximum in spring rather than in summer, because more vegetation in summer hinders energy transfer into the soil;(3) the proportions of G0 to the net radiation flux are different with seasons and surface types, and the mean values in January are 25.6% at the Arou site, 22.9% at the Yingke site and 4.3% at the Guantan site, whereas the values in July are 2.3%, 1.6% and 0.3%, respectively; and(4) G0 increases when the soil ice content is included in thermal diffusion equation, which improves the surface energy balance closure by 4.3%. 相似文献
12.
An inexpensive, mobile field rainfall simulator and runoff plot frame were developed for use on hillside vineyards. The simulator framework and components were lightweight, readily available and easily manageable such that they can be handled by one person during transport, set–up and operation. The vineyard rainfall simulator was simpler than many of the machines in recent use for similar studies, yet offered equal or improved performance for small‐plot studies. The system developed consistent sized 2·58 mm raindrops at intensities ranging from 20 to 90 mm/h. The average distribution uniformity coefficient at an intensity of 60 mm/h was 91·7%, with a deviation of only 2·2%. This coefficient was similar to the range reported for a more complex rotating disk simulator, and was notably greater than that obtained for other similar devices. The system water capacity of 40 l allowed for 1‐h storm durations at 60 mm/h, usually sufficient time for commencement of erosion and runoff. The runoff plot frame was designed to be quickly installed, and to discourage sediment deposition in the routing of runoff to collect containers. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
13.
14.
Epikarst exerts a strong control on run‐off generation in karst regions, but it is still unclear in karst regions. Our study aimed to demonstrate the effect of epikarst on near‐surface hydrological processes in a subtropical cockpit karst region of southwest China, using plot‐scale rainfall simulation experiments with different rainfall intensities (low and high) and antecedent moisture conditions (dry and wet). A trench excavated to the epikarst lower boundary allowed identification of flow pathways in the entire soil–epikarst architecture system, thus facilitating the water balance calculations using a conceptual model with the assumption of a two‐stage hydrological evolution. More than 70% of the total rainfall water moved vertically through the shallow soil layer and then was redistributed by the epikarst as subsurface flow occurring on the soil–epikarst interface, depression filling on epikarst surface, water held by epikarst and deep percolation. Epikarst water regulation capacity, defined as the sum of depression filling on epikarst surface, water held by epikarst, epikarst seepage flow and deep percolation, was 58 mm (wet antecedent condition) and 223 mm (dry antecedent condition). Total run‐off from the soil–epikarst system was dominated by saturated subsurface flow showing a threshold process controlled by epikarst storage capacity (storing as much as 181 mm of rainfall water under dry antecedent condition). Our study proved that despite the epikarst being relatively poorly developed and covered by a soil mantle, it still exerted a strong influence on near‐surface hydrological processes and thus should be adequately considered in future modelling of water recharge and depletion dynamics in this integrated soil–epikarst system. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
“十五”期间,我国分别在四川西昌、甘肃天祝和重庆三峡地区架设地磁台阵3个,约27个台点。密集型地磁台阵野外架设条件要求相对较高,在我国尚无完整可靠方案供参考。笔者依靠四川西昌台阵建设实际情况,进行野外模拟实验安装,对安装中的材料、方法和注意事项进行了分析,初步形成了一套较为实用的架设方法。 相似文献
16.
17.
Fast-decaying IP in frozen unconsolidated rocks and potentialities for its use in permafrost-related TEM studies 总被引:1,自引:0,他引:1
We investigate the early time induced polarization (IP) phenomenon in frozen unconsolidated rocks and its association with transient electromagnetic (TEM) signals measured in northern regions. The distinguishing feature of these signals is the distortion of the monotony or sign reversals in the time range from a few tens to a few hundreds of microseconds. In simulating TEM data, the IP effects in frozen ground were attributed to the dielectric relaxation phenomenon rather than to the frequency‐dependent conductivity. This enabled us to use laboratory experimental data available in the literature on dielectric spectroscopy of frozen rocks. In our studies we focused on simulating the transient response of a coincident‐loop configuration in three simple models: (i) a homogeneous frozen earth (half‐space); (ii) a two‐layered earth with the upper layer frozen; (iii) a two‐layered earth with the upper layer unfrozen. The conductivities of both frozen and unfrozen ground were assumed to exhibit no frequency dispersion, whereas the dielectric permittivity of frozen ground was assumed to be described by the Debye model. To simplify the presentation and the comparison analysis of the synthetic data, the TEM response of a frozen polarizable earth was normalized to that of a non‐polarizable earth having the same structure and resistivities as the polarizable earth. The effect of the dielectric relaxation on a TEM signal is marked by a clearly defined minimum. Its time coordinate tmin is approximately three times larger than the dielectric relaxation time constant τ. This suggests the use of tmin for direct estimation of τ, which, in turn, is closely associated with the temperature of frozen unconsolidated rock. The ordinate of the minimum is directly proportional to the static dielectric permittivity of frozen earth. Increasing the resistivity of a frozen earth and/or decreasing the loop size results in a progressively stronger effect of the dielectric relaxation on the TEM signal. In the case of unfrozen earth, seasonal freezing is not likely to have an appreciable effect on the TEM signal. However, for the frozen earth, seasonal thawing of a near‐surface layer may result in a noticeable attenuation of the TEM signal features associated with dielectric relaxation in a frozen half‐space. Forward calculations show that the dielectric relaxation of frozen unconsolidated rocks may significantly affect the transient response of a horizontal loop laid on the ground. This conclusion is in agreement with a practical example of inversion of the TEM data measured over the permafrost. 相似文献
18.
Freeze-thaw processes in soils,including changes in frost and thaw fronts(FTFs),are important physical processes.The movement of FTFs affects soil hydrothermal characteristics,as well as energy and water exchanges between the land surface and the atmosphere and hydrothermal processes in the land surface.This paper reduces the issue of soil freezing and thawing to a multiple moving-boundary problem and develops a soil water and heat transfer model which considers the effects of FTF on soil hydrothermal processes.A local adaptive variable-grid method is used to discretize the model.Sensitivity tests based on the hierarchical structure of the Community Land Model(CLM)show that multiple FTFs can be continuously tracked,which overcomes the difficulties of isotherms that cannot simultaneously simulate multiple FTFs in the same soil layer.The local adaptive variable-grid method is stable and offers computational efficiency several times greater than the high-resolution case.The simulated FTF depths,soil temperatures,and soil moisture values fit well with the observed data,which further demonstrates the potential application of this simulation to the land-surface process model. 相似文献
19.
A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models 总被引:7,自引:0,他引:7
Soil heterogeneity plays an important role in determining surface runoff generation mechanisms. At the spatial scales represented by land surface models used in regional climate model and/or global general circulation models (GCMs) for numerical weather prediction and climate studies, both infiltration excess (Horton) and saturation excess (Dunne) runoff may be present within a studied area or a model grid cell. Proper modeling of surface runoff is essential to a reasonable representation of feedbacks in the land–atmosphere system. In this paper, a new surface runoff parameterization that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell is presented. The new parameterization takes into account of effects of soil heterogeneity on Horton and Dunne runoff. A series of numerical experiments are conducted to study the effects of soil heterogeneity on Horton and Dunne runoff and on soil moisture storage under different soil and precipitation conditions. The new parameterization is implemented into the current version of the hydrologically based variable infiltration capacity (VIC) land surface model and tested over three watersheds in Pennsylvania. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere–land coupling system. Significant underestimation of the surface runoff and overestimation of subsurface runoff and soil moisture could be resulted if the Horton runoff mechanism were not taken into account. Also, the results show that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation. An assumption of time-invariant spatial distribution of potential infiltration rate may result in large errors in surface runoff and soil moisture. In addition, the total surface runoff from the new parameterization is less sensitive to the choice of the soil moisture shape parameter of the distribution. 相似文献
20.
为揭示岩溶湿地表层水体二氧化碳分压(pCO2)的时空分布规律及其扩散通量,以我国最大的岩溶湿地贵州威宁草海为研究对象,分别于2019年7月(丰水期)和12月(枯水期)通过网格布点法,系统采集草海表层湿地水体,测定水样理化指标和离子组成,利用PHREEQCI软件计算水体pCO2,并基于Cole提出的气体扩散模型估算水-气界面二氧化碳(CO2)的扩散通量.结果表明:草海湿地表层水体丰水期pCO2的变化范围为0.44~645.65μatm,平均值为(55.94±124.73)μatm;枯水期变化范围为35.48~707.95μatm,平均值为(310.46±173.54)μatm;丰水期水体整体pCO2低于枯水期,空间上两期水体均呈现东部区域及河流入湖口处pCO2较高,而中西部区域pCO2欠饱和的特征.水-气界面CO2的扩散通量在丰水期变化范围为-43.27~27.16 mmol/(m2·d),平均值(-34.49±12.93)mmol/(m2·d),枯水期变化范围为-33.36~28.15 mmol/(m2·d),平均值(-8.02±15.85)mmol/(m2·d),与其他岩溶湖库相比,水生植物丰富的草海在两个极端水文期CO2扩散通量相对较低,总体表现为大气CO2的汇. 相似文献