首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Hyperconcentrated floods, with sediment concentrations higher than 200 kg/m3, occur frequently in the Yellow River and its tributaries on the Loess Plateau. This paper studies the fluvial hydraulics of hyperconcentrated floods by statistical analysis and comparison with low sediment concentration floods. The fluvial process induced by hyperconcentrated floods is extremely rapid. The river morphology may be altered more at a faster rate by one hyperconcentrated flood than by low sediment concentration floods over a decade. The vertical sediment concentration distribution in hyperconcentrated floods is homogeneous. The Darcy–Weisbach coefficient of hyperconcentrated floods varies with the Reynolds number in the same way as normal open channel flows but a representative viscosity is used to replace the viscosity, η. If the concentration is not extremely high and the Reynolds number is larger than 2000, the flow is turbulent and the Darcy–Weisbach coefficient for the hyperconcentrated floods is almost the same as low sediment concentration floods. Serious channel erosion, which is referred to as ‘ripping up the bottom’ in Chinese, occurs in narrow‐deep channels during hyperconcentrated floods. However, in wide‐shallow channels, hyperconcentrated floods may result in serious sedimentation. Moreover, a hyperconcentrated flood may cause the channel to become narrower and deeper, thus, reducing the flood stage by more than 1 m if the flood event lasts longer than one day. The fluvial process during hyperconcentrated floods also changes the propagation of flood waves. Successive waves may catch up with and overlap the first wave, thus, increasing the peak discharge of the flood wave during flood propagation along the river course. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
《国际泥沙研究》2020,35(1):27-41
Two formulae for the near-bed concentration(C_a) and the sediment vertical mixing parameter(m) are established based on a large scale wave flume experiment.The advantage of the new formulae is that the turbulent kinetic energy induced by wave breaking can be taken into account;the formula for C_a is in terms of the near-bed,time-averaged turbulent kinetic energy,and the formula for m is in terms of depth-and time-averaged turbulent kinetic energy.A new expression for suspended sediment load also is established by depth integration of the vertical distribution of the suspended sediment concentration obtained on basis of the new formulae.Equation validation is done by comparing the predicted C_a and m to measurements for different types of waves(regular wave,wave group,and irregular wave),and good agreement is found.The advantages of the proposed formulae over previous formulae also are discussed.  相似文献   

4.
INON-EQUILIBRIUMMOVEMENTContinualexchangeremainsamongthebedmaterial,bedloadandsuspendedloadinariver.Thebedloadmovesonthebedsurfaceandjumpsinsteps.Itstransportrateperwidthvarieswithvaryingflowintensity;whilethesuspendedloadmoveswithalongstep,evenifthehydraulicfactorsbecomeweaker,itwillnotretUrntothebeduntilfinishingthefallingprocess.ThismeansthatahysteresisexistsbetWeenthechangeofthesuspendedsedimentmovementandflowvelocity.Foruniformandsteadyflow,thesedimentmovementkeepsinequilibriumi…  相似文献   

5.
《国际泥沙研究》2020,35(2):217-226
The study of the fall velocity variation of fine sediment in estuarine areas plays an important role in determining how various factors affect the flocculation process.Previous experimental studies have focused solely on the relation between the median fall velocity and influencing factors,while in the current study,the variation of the fall velocity in quiescent water also was examined.The experimental results showed that the vertical distribution of sediment concentration was more uneven,and larger variations occurred earlier during the settling process under higher salinity and/or sediment concentration conditions.The fall velocity initially increased then decreased over time,peaking at~20 min after settling began,and stabilizing at a value similar to that in freshwater,regardless of the initial sediment concentration and salinity combinations.Along the water depth,the fall velocity increased monotonically with a gradually decreasing gradient.The median fall velocity increased then decreased with increased salinity.The salinity at which the peak fall velocity occurred depended on the initial sediment concentration.The relation between the median fall velocity and initial sediment concentration displayed an obvious two-stage pattern(i.e.,accelerated flocculation and decelerated,hindered settling) at higher salinities;whereas the maximum median fall velocity was observed at two consecutive sediment concentration values under lower salinity conditions.Finally,an empirical equation estimating the median fall velocity of cohesive fine sediment was formulated,incorporating the effects of both salinity and sediment concentration.  相似文献   

6.
The Rouse formula and its variants have been widely used to calculate the steady-state vertical concentration distribution for suspended sediment in steady sediment-laden flows, where the diffusive flux is assumed to be Fickian. Turbulent flow, however, exhibits fractal properties, leading to non-Fickian diffusive flux for sediment particles. To characterize non-Fickian dynamics of suspended sediment, the current study proposes a Hausdorff fractal derivative based advection-dispersion equation(H...  相似文献   

7.
I INTRODUCTIONThe volume and regime of sediment load are the most important factors, which are responsible for theformation, direction and deformation rate of the river channels. Despite the long history of study anddevelopment of sediment load calculation methodology, there are still numerous problems that remain tobe solved such as river pattern and sediment movement and so on (Wang et al, 1997).In this respect, the comparative analysis of sediment load and river channel processes of la…  相似文献   

8.
Motivated by field studies of the Ems estuary which show longitudinal gradients in bottom sediment concentration as high as O(0.01 kg/m4), we develop an analytical model for estuarine residual circulation based on currents from salinity gradients, turbidity gradients, and freshwater discharge. Salinity is assumed to be vertically well mixed, while the vertical concentration profile is assumed to result from a balance between a constant settling velocity and turbulent diffusive flux. Width and depth of the model estuary are held constant. Model results show that turbidity gradients enhance tidally averaged circulation upstream of the estuarine turbidity maximum (ETM), but significantly reduce residual circulation downstream, where salinity and turbidity gradients oppose each other. We apply the condition of morphodynamic equilibrium (vanishing sediment transport) and develop an analytical solution for the position of the turbidity maximum and the distribution of suspended sediment concentration (SSC) along a longitudinal axis. A sensitivity study shows great variability in the longitudinal distribution of suspended sediment with the applied salinity gradient and six model parameters: settling velocity, vertical mixing, horizontal dispersion, total sediment supply, fresh water flow, and water depth. Increasing depth and settling velocity move the ETM upstream, while increasing freshwater discharge and vertical mixing move the ETM downstream. Moreover, the longitudinal distribution of SSC is inherently asymmetric around the ETM, and depends on spatial variations in the residual current structure and the vertical profile of SSC.  相似文献   

9.
Large rivers have been previously shown to be vertically heterogeneous in terms of suspended particulate matter (SPM) concentration, as a result of sorting of suspended solids. Therefore, the spatial distribution of suspended sediments within the river section has to be known to assess the riverine sedimentary flux. Numerous studies have focused on the vertical distribution of SPM in a river channel from a theoretical or experimental perspective, but only a few were conducted so far on very large rivers. Moreover, a technique for the prediction of depth‐integrated suspended sediment fluxes in very large rivers based on sediment transport dynamics has not yet been proposed. We sampled river water along depth following several vertical profiles, at four locations on the Amazon River and its main tributaries and at two distinct water stages. Depending on the vertical profile, a one‐ to fivefold increase in SPM concentration is observed from river channel surface to bottom, which has a significant impact on the ‘depth‐averaged’ SPM concentration. For each cross section, a so‐called Rouse profile quantitatively accounts for the trend of SPM concentration increase with depth, and a representative Rouse number can be measured for each cross section. However, the prediction of this Rouse number would require the knowledge of the settling velocity of particles, which is dependent on the state of aggregation affecting particles within the river. We demonstrate that in the Amazon River, particle aggregation significantly influences the Rouse number and renders its determination impossible from grain‐size distribution data obtained in the lab. However, in each cross section, the Rouse profile obtained from the fit of the data can serve as a basis to model, at first order, the SPM concentration at any position in the river cross section. This approach, combined with acoustic Doppler current profiler (ADCP) water velocity transects, allows us to accurately estimate the depth‐integrated instantaneous sediment flux. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A three-dimensional numerical model with a prognostic salinity field is used to investigate the effect of a partial slip bottom boundary condition on lateral flow and sediment distribution in a transect of a tidally dominated channel. The transect has a symmetrical Gaussian cross-channel bottom profile. For a deep, well-mixed, tidally dominated channel, partial slip decreases the relative importance of Coriolis deflection on the generation of cross-channel flow patterns. This has profound implications for the lateral distribution of residual salinity that drives the cross-channel residual circulation pattern. Transverse sediment transport, however, is always found to be governed by a balance between advection of residual sediment concentration by residual lateral flow on the one hand and cross-channel diffusion on the other hand. Hence, the changes in the cross-channel distribution of residual salinity modify the lateral sediment distribution. For no slip, a single turbidity maximum occurs. In contrast, partial slip gives a gradual transition to a symmetrical density distribution with a turbidity maximum near each bank. For a more shallow, partially mixed tidal channel that represents the James River, a single turbidity maximum at the left bank is found irrespective of the near-bed slip condition. In this case, semi-diurnal contributions to sediment distribution and lateral flow play an important role in cross-channel sediment transport. As vertical viscosity and diffusivity are increased, a second maximum at the right bank again exists for partial slip.  相似文献   

11.
Collection of samples of suspended sediment transported by streams and rivers is difficult and expensive. Emerging technologies, such as acoustic backscatter, have promise to decrease costs and allow more thorough sampling of transported sediment in streams and rivers. Acoustic backscatter information may be used to calculate the concentration of suspended sand-sized sediment given the vertical distribution of sediment size. Therefore, procedures to accurately compute suspended sediment size distributions from easily obtained river data are badly needed. In this study, techniques to predict the size of suspended sand are examined and their application to measuring concentrations using acoustic backscatter data are explored. Three methods to predict the size of sediment in suspension using bed sediment, flow criteria, and a modified form of the Rouse equation yielded mean suspended sediment sizes that differed from means of measured data by 7 to 50 percent. When one sample near the bed was used as a reference, mean error was reduced to about 5 percent. These errors in size determination translate into errors of 7 to 156 percent in the prediction of sediment concentration using backscatter data from 1 MHz single frequency acoustics.  相似文献   

12.
The vertical concentration profiles in non-equilibrium sediment transport processes generally deviate from the equilibrium concentration distribution of suspended sediment. The non-equilibrium concentration profile formulas currently available are those of Han and Brown, respectively. However, the complexity of these formulas limits their use in practical calculations. To improve the usefulness of these formulas, the unknown parameters in Han’s formula are reduced from three to two, and the thre...  相似文献   

13.
In a compound meandering channel, patterns of flow structures and bed variations change with increasing water depth owing to complex momentum exchange between high-velocity flow in a main channel and low-velocity flows in flood plains. We have developed a new quasi-three-dimensional model without the shallow water assumption, i.e., hydrostatic pressure distribution; our method is known as the general bottom velocity computation (BVC) method. In this method, a set of depth-integrated equations, including depth-integrated momentum and vorticity equations, are prepared for evaluating bottom velocity and vertical velocity distributions. The objective of this study is to develop a bed variation calculation method for both single and compound meandering channels by using the BVC method coupled with a sediment transport model. This paper shows that the BVC method can reproduce the pattern change of bed variation in a compound meandering channel flow with increasing relative depth. The variation in sediment transport rate due to overbank flow is explained by experimental and computational results.  相似文献   

14.
氮是引起湖泊水体富营养化的关键营养元素之一。本次工作从贵州两个重要水库(红枫湖和百花湖)采集了未受扰动的沉积物样品性,分析了分层沉积物样品中的总氮,无机交换性氮和固定铵的含量及垂直剖面分布,研究表明,红枫湖和百花湖沉积物中具有较高的全氮含量,平均含量约为沉积物干重的0.36%~0.40%,其垂直分布在埋藏过程中受到成岩作用改造,沉积物交换性氮在沉积物中的赋存受到全氮含量和埋藏环境的双重控制,红枫湖和百花湖沉积物具有较强的吸持固定铵的能力,沉积物固定铵的绝对含量的平均值分别为434.05mg/kg和416.94mg/kg,分别占全氮的13.53%和12.53%。  相似文献   

15.
16.
MODELING OF THE HIGH CONCENTRATION LAYEROF COIIESIVE SEDMNT UNDER Tus ACTIONOF WAVES AND CURRENTSQinghe ZHANG', Yongsheng WU', Jiian LIAN1 and Pingxing DING3Abstract:High concenhation layer of cohesive sediment frequenhy occurs in muddy estUaries and coastalzones, and causes raPid siltation of the waterways. A one dimensional vertical coupled modeldescribing the interactions betWeen waves, currentS and suspended cohesive sediment is develoPed inthe pre…  相似文献   

17.
The suspended sediment flux field in the Yellow and East China Seas(YECS) displays its seasonal variability.A new method is introduced in this paper to obtain the flux field via retrieval of ocean color remote sensing data,statistical analysis of historical suspended sediment concentration data,and numerical simulation of three-dimensional(3D) flow velocity.The components of the sediment flux field include(i) surface suspended sediment concentration inverted from ocean color remote sensing data;(ii) vertical distribution of suspended sediment concentration obtained by statistical analysis of historical observation data;and(iii) 3D flow field modeled by a numerical simulation.With the improved method,the 3D suspended sediment flux field in the YECS has been illustrated.By comparison with the suspended sediment flux field solely based on the numerical simulation of a suspended sediment transport model,the suspended sediment flux field obtained by the improved method is found to be more reliable.The 3D suspended sediment flux field from ocean colour remote sensing and in situ observation are more closer to the reality.Furthermore,by quantitatively analyzing the newly obtained suspended sediment flux field,the quantity of sediment erosion and deposition within the different regions can be evaluated.The sediment exchange between the Yellow Sea and the East China Sea can be evident.The mechanism of suspended sediment transport in the YECS can be better understood.In particular,it is suggested that the long-term transport of suspended sediment is controlled mainly by the circulation pattern,especially the current in winter.  相似文献   

18.
In tidal environments, the response of suspended sediment concentration (SSC) to the current velocity is not instantaneous, the SSC lagging behind the velocity (phase lag), and the amplitude of SSC variation decreasing with height above the bed (amplitude attenuation). In order to quantitatively describe this phenomenon, a one-dimensional vertical advection–diffusion equation of SSC is derived analytically for uniform unsteady tidal flow by defining a concentration boundary condition using a constant vertical eddy diffusivity and sediment settling velocity. The solution, in simple and straightforward terms, shows that the vertical phase lag increases linearly with the height above the bed, while the amplitude of the SSC variation decreases exponentially with the height. The relationship between the SSC and the normalized current velocity can be represented by an ellipse or a line, depending on the phase lag. The lag of sediment movement or “diffusion/settling lag” is the mechanism generating the phase lag effect. Field observations used for validation show that the theoretically predicted and the observed curves of the vertical SSC phase lag and amplitude attenuation show reasonable agreement. The procedure proposed in this paper substantially simplifies the modeling of suspended matter transport in tidal flows.  相似文献   

19.
Grain-size distributions of suspended load over a sand-gravel bed at two different flow velocities were studied in a laboratory flume.The experiments had been performed to study the influence of flow velocity and suspension height on grain-size distribution in suspension over a sand-gravel bed.The experimental findings show that with an increase of flow velocity,the grain-size distribution of suspended load changed from a skewed form to a bimodal one at higher suspension heights.This study focuses on the determination of the parameter β_n which is the ratio of the sediment diffusion coefficient to the momentum diffusion coefficient of n th grain-size.A new relationship has been proposed involving β_n,the normalizing settling velocity of sediment particles and suspension height,which is applicable for widest range of normalizing settling velocity available in literature so far.A similar parameter β for calculating total suspension concentration is also developed.The classical Rouse equation is modified with β_n and β and used to compute grain-size distribution and total concentration in suspension,respectively.The computed values have shown good agreement with the measured values of experimental data.  相似文献   

20.
IINTRODUCTIONEstUariesareprominentcoastalfeatUres.Estuariesareofgreateconomicssignificancetomankind.Attheseareas,manyharborsandwaterchannelshavetobebuiltforeconomicpurposes.ThedesignandconstrUctionofcoastalstrUctUresinestUariesrequireknowledgeofhydrodynamicsaswellassedimenttransportinsuchregions.ThenatUreofestuariesiscontrolledbyvariouscoastalhydrodynamicprocesses.Undertheactionofhydrodynamics,sedimentdepositionsorerosionswilloccurinestuariesornearcoastalstrUCtures.Tomaintainnavigati…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号