首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This contribution deals with fast Earth–Moon transfers with ballistic capture in the patched three-body model. We compute ensembles of preliminary solutions using a model that takes into account the relative inclination of the orbital planes of the primaries. The ballistic capture orbits around the Moon are obtained relying on the hyperbolic invariant structures associated to the collinear Lagrangian points of the Earth–Moon system, and the Sun–Earth system portion of the transfers are quasi-periodic orbits obtained by a genetic algorithm. The trajectories are designed to be good initial guesses to search optimal cost-efficient short-time Earth–Moon transfers with ballistic capture in more realistic models.  相似文献   

2.
The analysis of application of two dynamical models (``Earth–Moon' and``barycentre' model) in the motion of Near Earth Asteroids was performed. Mainaim was the quantitative estimation of the influence of lunar perturbations on the motionof NEA. Additionally, basic tests of application of numerical methods weremade (RMVS3 and B–S methods). The orbits of 1083 Apollo–Aten–Amor and 7selected AAA objects were adopted as test particles in numerical integrationof the motion. The comparison between results obtained by both dynamicalmodels is discussed in detail. In specific cases, the application of the``Earth–Moon' dynamical model is very important and cannot be neglected incomputations of orbits.  相似文献   

3.
V. Gupta  Badruddin 《Solar physics》2010,264(1):165-188
We present a catalog of high-speed streams, along with their solar sources for solar cycle 23. We study their distribution during different years and different phases of solar cycle after classifying them into different groups based on their source(s), duration, and speed. We also study the average plasma/field properties of streams after dividing them into suitable groups on the basis of their source(s), duration and speed. It is expected that the catalog and statistical results presented in this work will further stimulate the space weather and solar-terrestrial studies involving high-speed streams.  相似文献   

4.
We have analyze the set of 70 intense geomagnetic storms associatedwith Dst decrease of more than 100 nT, observed duringthe period (1986–1991). We have compile these selected intensegeomagnetic storm events and find out their association with twotypes of solar wind streams and different interplanetary parameters.We concluded that the maximum numbers of intense geomagneticstorms are associated with transient disturbances in solar wind streams,which causes strong interplanetary shocks in interplanetary medium.The association of supersonic shocks and magnetic clouds with intensegeomagnetic storms have also been discussed.  相似文献   

5.
Vaduvescu  O.  Aznar Macias  A.  Wilson  T. G.  Zegmott  T.  Pérez Toledo  F. M.  Predatu  M.  Gherase  R.  Pinter  V.  Pozo Nunez  F.  Ulaczyk  K.  Soszyński  I.  Mróz  P.  Wrona  M.  Iwanek  P.  Szymanski  M.  Udalski  A.  Char  F.  Salas Olave  H.  Aravena-Rojas  G.  Vergara  A. C.  Saez  C.  Unda-Sanzana  E.  Alcalde  B.  de Burgos  A.  Nespral  D.  Galera-Rosillo  R.  Amos  N. J.  Hibbert  J.  López-Comazzi  A.  Oey  J.  Serra-Ricart  M.  Licandro  J.  Popescu  M. 《Earth, Moon, and Planets》2022,126(2):1-26
Earth, Moon, and Planets - The Perseverance rover (Mars 2020) mission, the first step in NASA’s Mars Sample Return (MSR) program, will select samples for caching based on their potential to...  相似文献   

6.
Mavromichalaki  H.  Vassilaki  A.  Tsagouri  I. 《Solar physics》1999,189(1):199-216
An analysis of 373 well-defined high-speed solar-wind streams observed at 1 AU during the years 1985–1996 is outlined. The distribution of the occurrence of these streams as a function of Bartels rotation days using the dominant polarity of the interplanetary magnetic field (IMF) associated with the referred fast streams shows that a four-sector pattern for the positive IMF polarity and a two-sector pattern for the negative IMF polarity are the dominant features in the investigated period. The high-speed streams seem to occur at preferred Bartels days: positive polarity streams are most frequent near Bartels days 5 and 18, while negative polarity streams are most frequent in days 14 and 23. Moreover, the corotating streams with positive IMF polarity prefer to occur in days 5 and 18 of the Bartels rotation period, whereas flare-generated streams with negative IMF polarity occur in days 14 and 23. The observed distribution of Bartels days is probably related to the distribution of the solar sources of high-speed solar wind streams as the solar wind carries with it the photospheric magnetic polarity of the solar source region. In addition, the distribution of the streams reveals a similar behaviour during the ascending and the declining phase of the last solar cycle (22nd) in contrast to the previous one where it has an opposite appearance. Determined differences in the characteristics of the sector structured IMF associated with the fast streams of the last cycle with the previous one (21st) and some similarities with the alternate solar cycle (20th) seem to be attributed to the 22-year magnetic cycle and to the polarity reversals of the polar magnetic field of the Sun. As the magnetic sectors are due to multiple crossings of the solar equatorial plane by a large-scale, warped heliospheric current sheet, it is suggested that the two-sector pattern arises from a tilted solar magnetic dipole component and the more commonly observed four-sector pattern from a quadrupole component of the solar interplanetary magnetic field.  相似文献   

7.
Starting from 80 families of low-energy fast periodic transfer orbits in the Earth–Moon planar circular Restricted Three Body Problem (RTBP), we obtain by analytical continuation 11 periodic orbits and 25 periodic arcs with similar properties in the Sun–Earth–Moon Quasi-Bicircular Problem (QBCP). A novel and very simple procedure is introduced giving the solar phases at which to attempt continuation. Detailed numerical results for each periodic orbit and arc found are given, including their stability parameters and minimal distances to the Earth and Moon. The periods of these orbits are between 2.5 and 5 synodic months, their energies are among the lowest possible to achieve an Earth–Moon transfer, and they show a diversity of circumlunar trajectories, making them good candidates for missions requiring repeated passages around the Earth and the Moon with close approaches to the last.  相似文献   

8.
In the equatorial plasmasphere, plasma waves are frequently observed. To improve our understanding of the mechanism generating plasma waves from instabilities, a comparison of observations, linear growth-rate calculations, and simulation results is presented. To start the numerical experiments from realistic initial plasma conditions, we use the initial parameters inferred from observational data obtained around the plasma-wave generation region by the Akebono satellite. The linear growth rates of waves of different modes are calculated under resonance conditions, and compared with simulation results and observations. By employing numerical experiments by a particle code, we first show that upper hybrid-, Z-, and whistler-mode waves are excited through instabilities driven by a ring-type velocity distribution. The simulation results suggest a possibility that energetic electrons with energies of some tens of keV confined around the geomagnetic equator are responsible for the observed enhancements of Z- and whistler-mode waves. While the comparison between linear growth-rate calculations and observations shows the different tendency of wave amplitude of Z-mode and whistler-mode waves, the wave amplitude of these wave modes in the simulation results is consistent with the observation.  相似文献   

9.
Shibu K. Mathew 《Solar physics》2008,251(1-2):515-522
We investigate p-mode absorption in a sunspot using SOHO/MDI high-resolution Doppler images. The Doppler power computed from a 3.5-hour data set is used for studying the absorption in a sunspot. The result shows an enhancement in absorption near the umbral?–?penumbral boundary of the sunspot. We attempt to relate the observed absorption with the magnetic-field structure of the sunspot. The transverse component of the potential field is computed by using the observed SOHO/MDI line-of-sight magnetograms. A comparison of the power map and the computed potential field shows enhanced absorption near the umbral?–?penumbral boundary where the computed transverse field strength is higher.  相似文献   

10.
Solar rotation rate has been measured using the sunspot positions recorded by W.C. Bond during the period 1847 – 1849 at the Harvard College Observatory. From the drawings carried out by Bond we have selected the sunspots and groups of sunspots with more reliable positions presented in three or more drawings on successive days. We have calculated from the positions of the selected sunspots (41 in total) a synodic rotation rate of ω=[(12.92±0.08)−(1.5±1.0)sin 2 φ] degrees/day, where φ is the heliographic latitude. This rate, although slightly lower, is similar to the actual solar rotation rate, confirming no important changes in the solar rotation during the last 160 years.  相似文献   

11.
The properties of the differential rotation of the Sun are investigated by using H filaments as tracers. Annual average angular velocities of 716 quiescent filaments are determined from H photoheliograms of the Abastumani Astrophysical Observatory film collection for the years 1957–1993. The existence of north-south (N–S) asymmetry in H filaments rotation is confirmed statistically. The connection of asymmetry with the solar activity cycles is established. It is found that the northern hemisphere rotates faster during the even cycles (20 and 22) while the rotation of southern hemisphere dominates in odd ones (cycles 19 and 21). The mechanism of the solar activity should be responsible for the N–S asymmetry of the solar differential rotation. A theoretical explanation for the N–S asymmetry in the Suns rotation is offered. It is suggested that the asymmetry in the rotation of the two hemispheres of the Sun is balanced by the dynamo mechanism, which acts in parallel to the mechanism offered here. It is concluded that the N–S asymmetry of the solar rotation should cause a difference in activity level between the northern and southern hemispheres.  相似文献   

12.
Karlický  Marian 《Solar physics》1998,179(2):421-430
For radio emission at the frequency corresponding to the second harmonic of the local plasma frequency, the optical thickness in the solar atmosphere is calculated. Three types of models are assumed: the model with radio emission from the narrow transition region, and models with radio emission from a cool and dense plasma filament embedded in hotter plasma at the transition region and in the corona. The optical thickness is computed by integration of the collisional (free–free) absorption along a radio-ray path radial in the solar atmosphere. In all models considered the optical thickness can be sufficiently low for appropriate parameters. For example, in the narrow (<100 km) transition region where the density scale height is much less than that of the pressure one, the optical thickness can be lower than 1. Furthermore, the optical thickness can be decreased if the radio emission is generated in the cool and dense plasma filament surrounded by hotter and thinner plasma. But the models differ in density scale heights and thus in distances between plasma emission levels. This difference is essential for the interpretation of high-frequency type III radio bursts.  相似文献   

13.
The Solar Cycle 23?–?24 minimum has been considered unusually deep and complex. In this article we study the ionospheric behavior during this minimum, and we have found that, although observable, the ionosphere response is minor and marginally exceeds the range of normal geophysical variability of the system. Two main ionospheric parameters have been studied: vertical TEC (vTEC, total electron content) and NmF2 (peak concentration of the F region). While vTEC showed a consistent modest decrease of the mean value, NmF2 behavior was less clear, with instances where the mean value for the minimum 23?–?24 was even higher that for the minimum 22?–?23. More extensive work is required to gain a better understanding of the ionospheric behavior under conditions similar to those presented in the last minimum.  相似文献   

14.
The Earth–Moon L1 libration point is proposed as a human gateway for space transportation system of the future. This paper studies indirect transfer using the perturbed stable manifold and lunar flyby to the Earth–Moon L1 libration point. Although traditional studies indicate that indirect transfer to the Earth–Moon L1 libration point does not save much fuel, this study shows that energy efficient indirect transfer using the perturbed stable manifold and lunar flyby could be constructed in an elegant way. The design process is given to construct indirect transfer to the Earth–Moon L1 libration point. Simulation results show that indirect transfer to the Earth–Moon L1 libration point saves about 420 m/s maneuver velocity compared to direct transfer, although the flight time is about 20 days longer.  相似文献   

15.
Celestial Mechanics and Dynamical Astronomy - The Cassini spacecraft discovered many close-in small satellites in Saturnian system, and several of them exhibit exotic orbital states due to...  相似文献   

16.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

17.
E. Mitsakou  X. Moussas 《Solar physics》2014,289(8):3137-3157
We have created a new catalog of 325 interplanetary coronal mass ejections (ICMEs) using their in-situ plasma signatures from 1996 to 2008; this time period includes Solar Cycle 23. The data set came from the OMNI near-Earth database. The one-minute resolution data that we used include magnetic-field strength, solar-wind speed, proton density, proton temperature, and plasma β. We compared this new catalog with other published catalogs. For every event, we indicated the presence of an ICME-driven shock. We identified the boundaries of ICMEs and their sheaths, and examined the statistical properties of characteristic parameters. We derived the duration and radial width of ICMEs and sheaths in the region near Earth. The statistical analysis of all events shows that, on average, sheaths travel faster than ICMEs, which indicates the expansion of CMEs in the interplanetary medium. They have higher mean magnetic-field strength values than ICMEs, and they are denser. They have higher mean proton temperature and plasma β than ICMEs, but they are smaller than ICMEs and last for a shorter time. The events were divided into different categories according to whether they included a shock and according to the phase of Solar Cycle 23 in which they are observed, i.e. ascending, maximum, or descending phase. We compared the different categories. We present a catalog of events available to the scientific community that studies ICMEs, and show the distribution and statistical properties of various parameters during these phenomena that govern the solar wind, the interplanetary medium, and space weather.  相似文献   

18.
Starting from the four-body problem a generalization of both the restricted three-body problem and the Hill three-body problem is derived. The model is time periodic and contains two parameters: the mass ratio ν of the restricted three-body problem and the period parameter m of the Hill Variation orbit. In the proper coordinate frames the restricted three-body problem is recovered as m → 0 and the classical Hill three-body problem is recovered as ν → 0. This model also predicts motions described by earlier researchers using specific models of the Earth–Moon–Sun system. An application of the current model to the motion of a spacecraft in the Sun perturbed Earth–Moon system is made using Hill's Variation orbit for the motion of the Earth–Moon system. The model is general enough to apply to the motion of an infinitesimal mass under the influence of any two primaries which orbit a larger mass. Using the model, numerical investigations of the structure of motions around the geometric position of the triangular Lagrange points are performed. Values of the parameter ν range in the neighborhood of the Earth–Moon value as the parameter m increases from 0 to 0.195 at which point the Hill Variation orbit becomes unstable. Two families of planar periodic orbits are studied in detail as the parameters m and ν vary. These families contain stable and unstable members in the plane and all have the out-of-plane stability. The stable and unstable manifolds of the unstable periodic orbits are computed and found to be trapped in a geometric area of phase space over long periods of time for ranges of the parameter values including the Earth–Moon–Sun system. This model is derived from the general four-body problem by rigorous application of the Hill and restricted approximations. The validity of the Hill approximation is discussed in light of the actual geometry of the Earth–Moon–Sun system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
In addition to an unprecedented number of Kreutz sungrazing comets, the LASCO coronagraphs have discovered some 238 unrelated “sunskirting” comets over the 12 years from 1996 to 2008. This new class is organized in several groups, and at least two comets have further been found periodic. This article presents the photometry and the heliocentric light curves of these 238 sunskirting comets. The bulk of them exhibit a continuous increase of the brightness as the comet approaches the Sun, reach a peak before perihelion and then progressively fade with a large variety of brightness gradients. However some of them have peak brightness either at or post-perihelion, whereas a quite large number are approximately flat. Likewise for the sungrazers, we find a color effect prominent between 8 and 40R (solar radii) which we interpret as resulting from the emission lines of the Na I doublet (D lines). We finally characterize the different groups of sunskirters on the basis of their cumulative distribution function of the peak brightness and of their fragmentation history.  相似文献   

20.
In this paper, we have considered that the Moon motion around the Earth is a source of a perturbation for the infinitesimal body motion in the Sun–Earth system. The perturbation effect is analyzed by using the Sun–Earth–Moon bi–circular model (BCM). We have determined the effect of this perturbation on the Lagrangian points and zero velocity curves. We have obtained the motion of infinitesimal body in the neighborhood of the equivalent equilibria of the triangular equilibrium points. Moreover, to know the nature of the trajectory, we have estimated the first order Lyapunov characteristic exponents of the trajectory emanating from the vicinity of the triangular equilibrium point in the proposed system. It is noticed that due to the generated perturbation by the Moon motion, the results are affected significantly, and the Jacobian constant is fluctuated periodically as the Moon is moving around the Earth. Finally, we emphasize that this model could be applicable to send either satellite or telescope for deep space exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号