首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green's function for the boundary-value problem of Stokes's type with ellipsoidal corrections in the boundary condition for anomalous gravity is constructed in a closed form. The `spherical-ellipsoidal' Stokes function describing the effect of two ellipsoidal correcting terms occurring in the boundary condition for anomalous gravity is expressed in O(e 2 0)-approximation as a finite sum of elementary functions analytically representing the behaviour of the integration kernel at the singular point ψ=0. We show that the `spherical-ellipsoidal' Stokes function has only a logarithmic singularity in the vicinity of its singular point. The constructed Green function enables us to avoid applying an iterative approach to solve Stokes's boundary-value problem with ellipsoidal correction terms involved in the boundary condition for anomalous gravity. A new Green-function approach is more convenient from the numerical point of view since the solution of the boundary-value problem is determined in one step by computing a Stokes-type integral. The question of the convergence of an iterative scheme recommended so far to solve this boundary-value problem is thus irrelevant. Received: 5 June 1997 / Accepted: 20 February 1998  相似文献   

2.
Green's function to the external Dirichlet boundary-value problem for the Laplace equation with data distributed on an ellipsoid of revolution has been constructed in a closed form. The ellipsoidal Poisson kernel describing the effect of the ellipticity of the boundary on the solution of the investigated boundary-value problem has been expressed as a finite sum of elementary functions which describe analytically the behaviour of the ellipsoidal Poisson kernel at the singular point ψ = 0. We have shown that the degree of singularity of the ellipsoidal Poisson kernel in the vicinity of its singular point is of the same degree as that of the original spherical Poisson kernel. Received: 4 June 1996 / Accepted: 7 April 1997  相似文献   

3.
Solving the geodetic boundary-value problem (GBVP) for the precise determination of the geoid requires proper use of the fundamental equation of physical geodesy as the boundary condition given on the geoid. The Stokes formula and kernel are the result of spherical approximation of this fundamental equation, which is a violation of the proper relation between the observed quantity (gravity anomaly) and the sought function (geoid). The violation is interpreted here as the improper formulation of the boundary condition, which implies the spherical Stokes kernel to be in error compared with the proper kernel of integral transformation. To remedy this error, two correction kernels to the Stokes kernel were derived: the first in both closed and spectral forms and the second only in spectral form. Contributions from the first correction kernel to the geoid across the globe were [−0.867 m, +1.002 m] in the low-frequency domain implied by the GRIM4-S4 purely satellite-derived geopotential model. It is a few centimeters, on average, in the high-frequency domain with some exceptions of a few meters in places of high topographical relief and sizable geological features in accordance with the EGM96 combined geopotential model. The contributions from the second correction kernel to the geoid are [−0.259 m, +0.217 m] and [−0.024 m, +0.023 m] in the low- and high-frequency domains, respectively.  相似文献   

4.
提出了Poisson重力边值问题,即关于扰动位的Poisson方程的Stokes问题和Neumann问题。作为导引,先研究Poisson方程的Dirichlet问题.再分别引入一种辅助函数,将Stokes问题和Neumann问题改化为Dirichlet问题,从而立即得到它们的积分解。最终解式表现为两部分叠加:一部分仅与边界观测相关,另一部分为对地形测量的响应,为研究地形测量对外部重力场和大地水准面的精化提供新的途径。  相似文献   

5.
 This paper generalizes the Stokes formula from the spherical boundary surface to the ellipsoidal boundary surface. The resulting solution (ellipsoidal geoidal height), consisting of two parts, i.e. the spherical geoidal height N 0 evaluated from Stokes's formula and the ellipsoidal correction N 1, makes the relative geoidal height error decrease from O(e 2) to O(e 4), which can be neglected for most practical purposes. The ellipsoidal correction N 1 is expressed as a sum of an integral about the spherical geoidal height N 0 and a simple analytical function of N 0 and the first three geopotential coefficients. The kernel function in the integral has the same degree of singularity at the origin as the original Stokes function. A brief comparison among this and other solutions shows that this solution is more effective than the solutions of Molodensky et al. and Moritz and, when the evaluation of the ellipsoidal correction N 1 is done in an area where the spherical geoidal height N 0 has already been evaluated, it is also more effective than the solution of Martinec and Grafarend. Received: 27 January 1999 / Accepted: 4 October 1999  相似文献   

6.
The formulas of the ellipsoidal corrections to the gravity anomalies computed using the inverse Stokes integral are derived. The corrections are given in the integral formulas and expanded in the spherical harmonics series. If a coefficient model such as the OSU91A is given, the corrections can be easily computed. Received: 19 August 1996 / Accepted: 28 September 1998  相似文献   

7.
A new form of boundary condition of the Stokes problem for geoid determination is derived. It has an unusual form, because it contains the unknown disturbing potential referred to both the Earth's surface and the geoid coupled by the topographical height. This is a consequence of the fact that the boundary condition utilizes the surface gravity data that has not been continued from the Earth's surface to the geoid. To emphasize the `two-boundary' character, this boundary-value problem is called the Stokes pseudo-boundary-value problem. The numerical analysis of this problem has revealed that the solution cannot be guaranteed for all wavelengths. We demonstrate that geoidal wavelengths shorter than some critical finite value must be excluded from the solution in order to ensure its existence and stability. This critical wavelength is, for instance, about 1 arcmin for the highest regions of the Earth's surface. Furthermore, we discuss various approaches frequently used in geodesy to convert the `two-boundary' condition to a `one-boundary' condition only, relating to the Earth's surface or the geoid. We show that, whereas the solution of the Stokes pseudo-boundary-value problem need not exist for geoidal wavelengths shorter than a critical wavelength of finite length, the solutions of approximately transformed boundary-value problems exist over a larger range of geoidal wavelengths. Hence, such regularizations change the nature of the original problem; namely, they define geoidal heights even for the wavelengths for which the original Stokes pseudo-boundary-value problem need not be solvable. Received 11 September 1995; Accepted 2 September 1996  相似文献   

8.
J. Li 《Journal of Geodesy》2005,79(1-3):64-70
Integral formulas are derived which can be used to convert the second-order radial gradient of the disturbing potential, as boundary values, into the disturbing potential, gravity anomaly and the deflection of the vertical. The derivations are based on the fundamental differential equation as the boundary condition in Stokes’s boundary-value problem and the modified Poisson integral formula in which the zero and first-degree spherical harmonics are excluded. The rigorous kernel functions, corresponding to the integral operators, are developed by the methods of integration.  相似文献   

9.
Geoid determination using one-step integration   总被引:1,自引:1,他引:0  
P. Novák 《Journal of Geodesy》2003,77(3-4):193-206
A residual (high-frequency) gravimetric geoid is usually computed from geographically limited ground, sea and/or airborne gravimetric data. The mathematical model for its determination from ground gravity is based on the transformation of observed discrete values of gravity into gravity potential related to either the international ellipsoid or the geoid. The two reference surfaces are used depending on height information that accompanies ground gravity data: traditionally orthometric heights determined by geodetic levelling were used while GPS positioning nowadays allows for estimation of geodetic (ellipsoidal) heights. This transformation is usually performed in two steps: (1) observed values of gravity are downward continued to the ellipsoid or the geoid, and (2) gravity at the ellipsoid or the geoid is transformed into the corresponding potential. Each of these two steps represents the solution of one geodetic boundary-value problem of potential theory, namely the first and second or third problem. Thus two different geodetic boundary-value problems must be formulated and solved, which requires numerical evaluation of two surface integrals. In this contribution, a mathematical model in the form of a single Fredholm integral equation of the first kind is presented and numerically investigated. This model combines the solution of the first and second/third boundary-value problems and transforms ground gravity disturbances or anomalies into the harmonically downward continued disturbing potential at the ellipsoid or the geoid directly. Numerical tests show that the new approach offers an efficient and stable solution for the determination of the residual geoid from ground gravity data.  相似文献   

10.
R. Lehmann 《Journal of Geodesy》2000,74(3-4):327-334
 The definition and connection of vertical datums in geodetic height networks is a fundamental problem in geodesy. Today, the standard approach to solve it is based on the joint processing of terrestrial and satellite geodetic data. It is generalized to cases where the coverage with terrestrial data may change from region to region, typically across coastlines. The principal difficulty is that such problems, so-called altimetry–gravimetry boundary-value problems (AGPs), do not admit analytical solutions such as Stokes' integral. A numerical solution strategy for the free-datum problem is presented. Analysis of AGPs in spherical and constant radius approximation shows that two of them are mathematically well-posed problems, while the classical AGP-I may be ill posed in special situations. Received: 2 December 1998 / Accepted: 30 November 1999  相似文献   

11.
确定似大地水准面的Hotine-Helmert边值解算模型   总被引:1,自引:1,他引:0  
马健  魏子卿  任红飞 《测绘学报》2019,48(2):153-160
空间大地测量技术的发展使大地高的观测成为可能,从而为第二大地边值问题的研究带来了新的机遇,本文对基于Helmert第二压缩法的第二边值问题(简称为Hotine-Helmert边值问题)展开研究。首先介绍了地形直接、间接影响的定义与算法,然后推导了Hotine-Helmert边值问题的解算模型。Hotine-Helmert边值理论无须计算地形压缩对重力的次要间接影响,因而较Stokes-Helmert边值理论更简单。此外,文中引入了一种低阶修正的Hotine截断核函数,该核函数较传统的截断核函数能有效地改善似大地水准面的解算精度。为了验证本文构建的Hotine-Helmert边值解算模型的有效性和实用性,本文将EIGEN-6C4模型的前360阶作为参考模型,利用Hotine-Helmert边值解算模型构建了我国中部地区6°×4°范围、1.5′×1.5′分辨率的重力似大地水准面,其精度达到±4.8 cm。  相似文献   

12.
A review of recent progress and current activities towards an improved formulation and solution of geodetic boundary value problems is given. Improvements stimulated and required by the dramatic changes of the real world of geodetic measurements are focused upon. Altimetry–gravimetry problems taking into account various scenarios of non-homogeneous data coverage are discussed in detail. Other problems are related to free geodetic datum parameters, most of all the vertical datum, overdetermination or additional constraints imposed by satellite geodetic observations or models. Some brief remarks are made on pseudo-boundary value problems for geoid determination and on purely gravitational boundary-value problems. Received: 17 March 1999 / Accepted: 19 April 1999  相似文献   

13.
When regional gravity data are used to compute a gravimetric geoid in conjunction with a geopotential model, it is sometimes implied that the terrestrial gravity data correct any erroneous wavelengths present in the geopotential model. This assertion is investigated. The propagation of errors from the low-frequency terrestrial gravity field into the geoid is derived for the spherical Stokes integral, the spheroidal Stokes integral and the Molodensky-modified spheroidal Stokes integral. It is shown that error-free terrestrial gravity data, if used in a spherical cap of limited extent, cannot completely correct the geopotential model. Using a standard norm, it is shown that the spheroidal and Molodensky-modified integration kernels offer a preferable approach. This is because they can filter out a large amount of the low-frequency errors expected to exist in terrestrial gravity anomalies and thus rely more on the low-frequency geopotential model, which currently offers the best source of this information. Received: 11 August 1997 / Accepted: 18 August 1998  相似文献   

14.
A new local existence and uniqueness theorem is obtained for the scalar geodetic boundary-value problem in spherical coordinates. The regularities H α and H 1+α are assumed for the boundary data g (gravity) and v (gravitational potential) respectively. Received: 27 July 1998 / Accepted: 19 April 1999  相似文献   

15.
借助以地心参考椭球面为边界面的第二大地边值问题的理论,基于Helmert空间的Neumann边值条件,给定Helmert扰动位的椭球解表达式,并详细推导第二类勒让德函数及其导数的递推关系、Helmert扰动位函数的椭球积分解以及类椭球Hotine积分核函数的实用计算公式,便于后续椭球域第二大地边值问题的实际研究。  相似文献   

16.
Least-squares by observation equations is applied to the solution of geodetic boundary value problems (g.b.v.p.). The procedure is explained solving the vectorial Stokes problem in spherical and constant radius approximation. The results are Stokes and Vening-Meinesz integrals and, in addition, the respective a posteriori variance-covariances. Employing the same procedure the overdeterminedg.b.v.p. has been solved for observable functions potential, scalar gravity, astronomical latitude and longitude, gravity gradients Гxz, Гyz, and Гzz and three-dimensional geocentric positions. The solutions of a large variety of uniquely and overdeterminedg.b.v.p.'s can be obtained from it by specializing weights. Interesting is that the anomalous potential can be determined—up to a constant—from astronomical latitude and longitude in combination with either {Гxzyz} or horizontal coordinate corrections Δx and Δy, or both. Dual to the formulation in terms of observation equations the overdeterminedg.b.v.p.'s can as well be solved by condition equations. Constant radius approximation can be overcome in an iterative approach. For the Stokes problem this results in the solution of the “simple” Molodenskii problem. Finally defining an error covariance model with a Krarup-type kernel first results were obtained for a posteriori variance-covariance and reliability analysis.  相似文献   

17.
梁磊  于锦海  万晓云 《测绘学报》2019,48(2):185-190
本文推导的椭球谐系数和球谐系数相互之间转换关系的核心思想是在ε~2量级下利用Legendre函数的正交性,从球谐系数求解的积分表示出发,将积分中的椭球坐标变量与球坐标变量相互转换,从而得出椭球谐系数与球谐系数之间的转换关系。本文导出的转换关系有以下优点:①对于第二类Legendre函数的计算采用Laurent级数表示,使计算第二类Legendre函数更为简单;②保留了ε~2量级下,导出的转换关系相比文献[2]的形式更简单,满足物理大地测量边值问题线性化的要求;③顾及了余纬和归化余纬的区别。  相似文献   

18.
应用文献 [1 ]推导出的球谐系数与椭球谐系数的转换关系 ,给出了椭球界面下Neumann边值问题的积分解  相似文献   

19.
    
When the values of gravity anomalies are given at the geoid, Ag can be calculated at altitude by application of Poisson’s integral theorem. The process requires integration of Δg multiplied by the Poisson kernel function over the entire globe. It is common practice to add to the kernel function terms that will ensure removal of any zeroth and first order components of Δg that may be present. The effects of trancating the integration at the boundary of a spherical cap of earth central half angle ψo have been analyzed using an adaptation of Molodenskii’s procedure. The extension process without removal terms retains the correct effects of inaccuracies in the constant term of the gravity reference model used in the definition of Δg. Furthermore, the effects of ignoring remote zones or unmapped areas in the integration process are very much smaller for the extension without removal terms than for the commonly used formula with removal terms. For these reasons the Poisson vertical extension process without removal terms is to be preferred over the extension with the zeroth order term removal. Truncation of this process at the point recommended for the Stokes integration, namely, the first zero crossing of the Stokes kernel function, leaves negligible truncation errors.  相似文献   

20.
 In a comparison of the solution of the spherical horizontal and vertical boundary value problems of physical geodesy it is aimed to construct downward continuation operators for vertical deflections (surface gradient of the incremental gravitational potential) and for gravity disturbances (vertical derivative of the incremental gravitational potential) from points on the Earth's topographic surface or of the three-dimensional (3-D) Euclidean space nearby down to the international reference sphere (IRS). First the horizontal and vertical components of the gravity vector, namely spherical vertical deflections and spherical gravity disturbances, are set up. Second, the horizontal and vertical boundary value problem in spherical gravity and geometry space is considered. The incremental gravity vector is represented in terms of vector spherical harmonics. The solution of horizontal spherical boundary problem in terms of the horizontal vector-valued Green function converts vertical deflections given on the IRS to the incremental gravitational potential external in the 3-D Euclidean space. The horizontal Green functions specialized to evaluation and source points on the IRS coincide with the Stokes kernel for vertical deflections. Third, the vertical spherical boundary value problem is solved in terms of the vertical scalar-valued Green function. Fourth, the operators for upward continuation of vertical deflections given on the IRS to vertical deflections in its external 3-D Euclidean space are constructed. Fifth, the operators for upward continuation of incremental gravity given on the IRS to incremental gravity to the external 3-D Euclidean space are generated. Finally, Meissl-type diagrams for upward continuation and regularized downward continuation of horizontal and vertical gravity data, namely vertical deflection and incremental gravity, are produced. Received: 10 May 2000 / Accepted: 26 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号