首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
内蒙古色尔腾山地区花岗绿岩带糜棱岩变形变质过程探讨   总被引:2,自引:0,他引:2  
采用不同研究方法分析和解读岩石和矿物的显微构造特征,能再造结晶基底岩石复杂的变形和变质演化过程和条件。通过对色尔腾山地区花岗绿岩带中韧性剪切带的糜棱岩显微构造、石英组构、矿物化学等综合分析,发现该区糜棱岩在经历了低角闪岩相区域变质及绿帘角闪岩相退变质变形之后,发生了不均匀进变质重结晶作用及中低绿片岩相退变质变形等几个演化阶段。由不同阶段温压条件所限定的p-T演化轨迹为一个在早期顺时针的基础上叠加了一个晚期逆时针环的复杂图像。  相似文献   

2.
酸性岩的变质相   总被引:1,自引:0,他引:1       下载免费PDF全文
张翊钧 《地球学报》1988,10(1):105-115
在沸石相变质条件下,花岗岩里浊沸石交代了斜长石和石英,在酸性火山岩里产生明矾石、埃洛石或高岭石。经受绿纤石-葡萄石相变质的花岗岩,其中黑云母变为钙铝榴石、帘石、绿纤石和葡萄石集合体,同时斜长石发生绢云母化。绿片岩相内酸性岩的浅色矿物有石英、微斜长石、钠长石和绿帘石,暗色矿物有绿泥石和黑云母。在角闪岩相变质的酸性岩中,开始出现中、基性斜长石,其中暗色矿物黑云母的镁铁比值要大于角闪石的镁铁比值。经受麻粒岩相变质后,紫苏花岗岩的矿物组成没有变化,但有铀、钍和钾的迁出。  相似文献   

3.
Microcrystals (1–15 μm) of unusual monazite (La) with 41–47 mol% cheralite [ThCa(PO4)2] component and a strong negative Ce anomaly are described from a metadiorite from the SW Slavonian Mountains, Psunj, Croatia. The dioritic host rock still shows a relictic igneous fabric on macroscopic scale. However, metamorphic reaction textures can be recognized in thin section. These include partial recrystallization of igneous plagioclase to albite coupled with the formation of epidote. Furthermore, partial replacement of igneous hornblende by a fine-grained orthoamphibole-chamosite-epidote paragenesis can be observed and replacement of ilmenite by titanite. The compositions of the metamorphic minerals indicate upper greenschist facies conditions (460–500 °C according to two-feldspar geothermometry) under a high oxygen fugacity. Microstructures show that the monazite crystals belong to the metamorphic paragenesis and formed at the expense of magmatic allanite. Their negative Ce anomalies reflect the oxidizing conditions of metamorphism. Application of the xenotime in monazite solvus geothermometer provides unrealistically high temperatures of ~500–660 °C which disagree with the greenschist facies metamorphic paragenesis. We interpret that the presence of cheralite has a profound effect on the nature of the monazite-xenotime solvus curve and hence the existing calibrations of this geothermometer may be generally unsuitable for cheralite-rich monazite. An important geological result is that the Th-U-total Pb ages of the monazite grains are uniformingly Upper Cretaceous. Our data thus suggest that the imprint of the Alpine orogeny on the Slavonian Mountains was stronger than presumed until now.  相似文献   

4.
A microstructural analysis was carried out on mylonitic rocks of the Azul megashear zone (AMSZ), Tandilia, which were formed in a range of metamorphic conditions from lower greenschist to amphibolite facies. Tailed porphyroclasts are common and mostly symmetric. Scarce asymmetric rotated porphyroclasts show both sinistral and dextral senses of shear. In sections parallel to the mylonitic foliation, porphyroclasts are round. The AMSZ is probably related to the late Transamazonian orogenic cycle and may be due to NNE–SSW-directed convergence. In weakly deformed protolith and protomylonites, quartz deforms by dynamic recrystallization, mainly subgrain rotation in dislocation creep Regime 2. K-feldspar porphyroclasts and plagioclase show scarce fracturation and deform by dynamic recrystallization along grain boundaries. Quartz microstructures in mylonites indicate predominantly Regime 3 grain boundary migration recrystallization. Feldspar structures indicate recrystallization through the nucleation and growth of new grains at grain boundaries. The temperatures of deformation from mineral assemblages in the CNKFMASH system in four bulk compositions are in the range of 400–450 °C, and the pressures are more than 6 kb.  相似文献   

5.
Raman spectral analyses of carbonaceous material (CM) extracted from pelitic samples along two sections traversing the metamorphic belt of Taiwan were carried out in the present study. The results show similar spectral variations of CM with metamorphic grade as those documented in the literature. However, continuous sampling from zeolite facies through prehnite–pumpellyite facies to greenschist facies metamorphic rocks in the present study does reveal some interesting features on the Raman spectra of CM that were not noted before. Both the Raman D (disordered-)/O (ordered-) peak area (i.e. integrated intensity) ratio and the D/O peak width (i.e. full width at half maximum, FWHM) ratio of the CM decrease with progressive metamorphism, but the most prominent change in the D/O peak area ratio occurs in samples of lower greenschist facies metamorphic grade, while the most significant decrease in the D/O peak width ratio occurs in samples near the boundary of prehnite–pumpellyite facies and greenschist facies. This phenomenon is interpreted as a result of the decoupling of the changing rates of in-plane crystallite size and degree of defects of CM with progressive metamorphism. It is postulated that the Raman spectrum of CM can serve as a metamorphic grade indicator to distinguish samples of prehnite–pumpellyite facies metamorphic grade from those of greenschist facies metamorphic grade.  相似文献   

6.
In the Schirmacher Hills, most of the ductile shearing took place under high to medium grade amphibolite facies metamorphism. The microstructure of the mylonites shows characteristic features of high temperature deformation and thus gives us an idea of deformation mechanisms of the constituent minerals at great crustal depth. The variation in microstructure of the sheared rock is partly due to heterogeneity of the intensity of strain from domain to domain, producing protomylonites, orthomylonites and ultramylonites. However, a large part of the microstructural variation has resulted from syn- to post-tectonic recrystallization and grain growth of constituent minerals. Both quartz and feldspar have deformed by crystal plastic processes with dominant grain boundary migration. The present aspect ratio of the feldspar grains is a result of various degrees of dynamic recrystallization along the grain boundary. The ratio varies between 1.5 and 2. Presence of exsolution lamellae in perthites and formation of myrmekite at the strained grains of K-feldspar suggest diffusion assisted dislocation creep. These mylonites are characterized by the presence of weakly strained or unstrained long quartz ribbons. The development of quartz ribbons with the absence of significant strain suggests grain recovery and grain growth during high temperature mylonitization. The growth of quartz ribbons took place by coalescing neighbouring grains both along and across the ribbon length. At the ultramylonite stage the fine-grained matrix of quartz and feldspar mostly accommodates the bulk strain.  相似文献   

7.
Abstract Microprobe analyses of feldspars in granite mylonites containing flame perthite give compositions that invariably plot as three distinct clusters on a ternary feldspar diagram: orthoclase (Or92–97), albite and oligoclase-andesine. The albite occurs as grains in the matrix, as flame-shaped lamellae in orthoclase, and in patches within plagioclase grains. We present a metamorphic model for albite flame growth in the K-feldspar in these rocks that is related to reactions in plagioclase, rather than alkali feldspar exsolution. Flame growth is attributed to replacement and results from a combination of two retrograde reactions and one exchange reaction under greenschist facies conditions. Reaction 1 is a continuous or discontinuous (across the peristerite solvus) reaction in plagioclase, in which the An component forms epidote or zoisite. Most of the albite component liberated by Reaction 1 stays to form albite in the host plagioclase, but some Na migrates to form the flames within the K-feldspar. Reaction 2 is the exchange of K for Na in K-feldspar. Reaction 3 is the retrograde formation of muscovite (as ‘sericite’) and has all of the chemical components of a hydration reaction of K-feldspar. The Si and Al made available in the plagioclase from Reaction 1 are combined with the K liberated from the K-feldspar, to produce muscovite in Reaction 3. The muscovite forms in the plagioclase, rather than the K-feldspar, as a result of the greater mobility of K relative to Al. The composition of the albite flames is controlled by both the peristerite and the alkali feldspar miscibility gaps and depends on the position of these solvi at the pressure and temperature that existed during the reaction. Using an initial plagioclase composition of An20, the total reaction can be summarized as: 20 oligoclase + 1 K-feldspar + 2 H2O = 2 zoisite + muscovite + 2 quartz + 15 albiteplagioclase+ 1 albiteflame. This model does not require that any additional feldspar framework be accreted at replacement sites: Na and K are the only components that must migrate a significant distance (e.g. from one grain to the next), allowing Al to remain within the altering plagioclase grain. The resulting saussuritization is isovolumetric. The temperature and extent of replacement depends on when, and how much, water infiltrates the rock. The fugacity of the water, and therefore the pressure of the fluid, may have been significantly lower than lithostatic during flame growth.  相似文献   

8.
ABSTRACT The northern Dabie terrane consists of a variety of metamorphic rocks with minor mafic-ultramafic blocks, and abundant Jurassic-Cretaceous granitic plutons. The metamorphic rocks include orthogneisses, amphibolite, migmatitic gneiss with minor granulite and metasediments; no eclogite or other high-pressure metamorphic rocks have been found. Granulites of various compositions occur either as lenses, blocks or layers within clinopyroxene-bearing amphibolite or gneiss. The palaeosomes of most migmatitic gneisses contain clinopyroxene; melanosomes and leucosomes are intimately intermingled, tightly folded and may have formed in situ. The granulites formed at about 800–830 °C and 10–14 kbar and display near-isothermal decompression P–T paths that may have resulted from crust thickened by collision. Plagioclase-amphibole coronae around garnets and matrix PI + Hbl assemblages from mafic and ultramafic granulites formed at about 750–800 °C. Partial replacement of clinopyroxene by amphibole in gneiss marks amphibolite facies retrograde metamorphism. Amphibolite facies orthogneisses and interlayered amphibolites formed at 680–750 °C and c. 6 kbar. Formation of oligoclase + orthoclase antiperthite after plagioclase took place in migmatitic gneisses at T ≤ 490°C in response to a final stage of retrograde recrystallization. These P–T estimates indicate that the northern Dabie metamorphic granulite-amphibolite facies terrane formed in a metamorphic field gradient of 20–35 °C km-1 at intermediate to low pressures, and may represent the Sino-Korean hangingwall during Triassic subduction for formation of the ultrahigh- and high-P units to the south. Post-collisional intrusion of a mafic-ultramafic cumulate complex occurred due to breakoff of the subducting slab.  相似文献   

9.
吉林南部地区老岭群变质矿物较为发育,本文通过对其中发育的变质矿物进行详细鉴定和大量探针分析,将老岭群下亚群主要变质矿物划分为两个世代,分别代表两期变质作用M1和M2.结合研究区老岭群变质矿物组合、分布特征以及变质相带的研究,认为M1为中-低温区域动力热流变质作用,可以划分为低绿片岩相和高绿片岩相,而M2为局部热变质作用...  相似文献   

10.
郯庐断裂带中-南段走滑构造特征与变形规律   总被引:36,自引:13,他引:23       下载免费PDF全文
朱光  徐佑德  刘国生  王勇生  谢成龙 《地质科学》2006,41(2):226-241,255
在大别造山带东端和苏鲁造山带西端,郯庐断裂带存在着同造山期和早白垩世两期左旋走滑韧性剪切带,在张八岭隆起南段迄今为止只发现了早白垩世的走滑剪切带。这些剪切带由若干条小型韧性剪切带组成,带内糜棱岩都具有陡倾的糜棱面理和平缓的矿物拉伸线理。野外构造、显微构造及石英C轴组构皆指示了左旋走滑剪切指向。新生矿物组合和矿物变形行为分析显示大别山东端郯庐早、晚两期剪切带主要形成于中绿片岩相的变质温度环境,张八岭隆起南段剪切带主要形成于高绿片岩相的变质温度环境,苏鲁造山带西端郯庐早、晚两期剪切带则形成于高角闪岩相的变质温度环境。糜棱岩内基质中新生白云母的电子探针分析指示大别山东端和张八岭隆起南段出露的郯庐韧性剪切带形成于低压环境下,而苏鲁造山带西端的郯庐韧性剪切带形成于高压榴辉岩相环境。这些详细的构造研究显示:在华北与华南板块的碰撞造山期郯庐断裂带以左旋走滑构造型式存在,而在早白垩世太平洋构造域中它又再次发生了强烈的左行平移。  相似文献   

11.
Complex reaction textures in coronitic metagabbros and retrograded eclogites of the KTB pilot and an adjacent drilling provide evidence for a multistage metamorphic history in the Variscan basement of the NW Bohemian Massif. The eclogites show complete metamorphic recrystallization leaving no textural or mineral relics of their igneous precursors. In contrast, textural relics of the igneous protolith are still preserved in the metagabbros where the metamorphic overprint under high pressure conditions achieved only partial replacement of the initial assemblage plagioclase + augite + amphibole (+olivine or orthopyroxene?) + ilmenite to form the eclogite facies assemblage garnet + omphacite + kyanite + zoisite + quartz+rutile. The garnets in the metagabbros occur in the typical ‘necklace’ fashion at the borders between the original plagioclase and mafic phase domains. In the same rocks, omphacite formed by a topotactic reaction mechanism replacing igneous augite as well as in smaller grains at the margins of the texturally igneous clinopyroxene where it occurs without fixed orientation with respect to the relict phase. Both eclogites and metagabbros show a partial breakdown under high pressure granulite (transitional to high pressure amphibolite) facies conditions during which omphacite broke down to vermicular symplectites of diopside + plagioclase. A later pervasive medium pressure metamorphism under amphibolite facies conditions led to the development of assemblages dominated by hornblende + plagioclase+titanite: phases prevailing in the overwhelming majority of the surrounding metabasites. Subsequent vein-associated retrogression produced minerals typical of the greenschist to zeolite facies. All metamorphic stages may be represented in a single thin section but although the overall reaction sequence is apparent, the obvious disequilibrium in the rocks makes the use of conventional geothermobarometry difficult. However, calculations made by assuming an approach to domainal equilibrium show that both the eclogite facies and early breakdown occurred above 10 kb. As the metamorphic unit hosting these particular metabasites is generally characterized by pressures below 10 kb these results have important implications for understanding the tectonometamorphic evolution of the region. The relationship between the studied rocks and other units in the NW Bohemian Massif exhibiting a multistage metamorphic evolution is discussed and possible tectonic models evaluated.  相似文献   

12.
Structural and kinematic investigations of the West Bohemian Shear Zone (WBS) clearly indicate late Variscan orogen-parallel (WSW-ENE) extension within the Variscan internides. Along the WBS the western part of the Tepla-Barrandian (TB) was downthrown to the east against the adjacent Moldanubian. According to seismic data, the steeply east-dipping WBS flattens with depth, forming a prominent detachment zone. The western part of the TB was tilted along this zone, producing the patterns of metamorphic isograds, the age of which is probably Cadomian. Cross-cutting relationships of WBS mylonites and Carboniferous granites, as well as the overall cooling ages of hornblende and mica, suggest that ductile normal faulting along the WBS was active from about 330 to 310 Ma.Geothermobarometric data, derived from WBS mylonites, prove that during the extensional movements relatively cold crust of the TB (medium pressure greenschist facies) was juxtaposed to relatively hot Moldanubian crust (low pressure amphibolite facies). Thus mylonites which originate from TB rocks show a first-stage prograde development reaching the lower amphibolite facies under medium pressure conditions. This stage was followed by further (uplift-related) retrograde shearing under low pressure greenschist facies conditions.Extensional movements and the emplacement of granitoids along the WBS, as well as the strong low pressure/high temperature metamorphism of the Moldanubian rocks are remarkably similar in age (Middle Carboniferous). Therefore, a close relationship and mutual dependence of all these features is suggested. Rapid advective thinning of the deeper part of the previously thickened lithosphere and associated rapid crustal uplift are the most probable processes to explain the high Middle Carboniferous heat flow as well as magmatism and extension.  相似文献   

13.
R Offler  L Aguirre  B Levi  S Child 《Lithos》1980,13(1):31-42
An unconformity bound, episodic pattern of burial metamorphism is preserved in marine and terrestrial volcanic and sedimentary rocks which were deposited in the West Peruvian Trough during the Mesozoic and Cenozoic Eras. A particular metamorphic facies series is developed in each of the stratigraphic-structural units bounded by unconformities. In each unit, grade increases with stratigraphic depth and covers part or all of the range from zeolite to greenschist facies. At every unconformity a mineralogic break occurs where higher grade assemblages on top of the unconformity plane overlie lower grade assemblages. The presence of wairakite and the development of a wide range of metamorphic facies in thin sequences suggest high geothermal gradients, possibly related to generation of magma at depth.  相似文献   

14.
Metamorphic and tectonic domains of China   总被引:5,自引:0,他引:5  
Abstract Ten metamorphic domains can be distinguished in China, comprising four cratonic, three intracratonic and three intercratonic domains. Each domain contains one or more metamorphic belts, each of which, in turn, contains a characteristic metamorphic facies or facies series that was formed during a distinct metamorphic epoch.
The metamorphic domains reflect the tectonic domains and tectonic evolution of China. Ancient continental nucleii in the North China and Tarim–Alxa cratons were probably unified with the Yangtze craton during the Early Proterozoic to form the China Platform. Widespread greenschist facies metamorphism, during the Middle and Late Proterozoic, accompanied by glaucophane–greenschist facies metamorphism, represents a rifting and closure event in the China Platform; a second rifting and closure event in the China Platform occurred during the Caledonian. The China and Siberian platforms were closed during the Hercynian to form the Eurasian Continent. Closure of the ancient Tethys Ocean occurred in the Indosinian epoch, and subduction and collision within Xizang (Tibet) and Taiwan occurred during Mesozoic–Cenozoic time.
The distribution in time of types of metamorphism in China suggests cyclical changes of metamorphism known as the Archaean, Proterozoic and Phanerozoic megacycles. Each megacycle since the Archaean consists of a change from progressive, low- to intermediate-grade metamorphism to lower grade, greenschist metamorphism that was superimposed on a general trend in which high-grade metamorphism became progressively less important with time. The change in metamorphic megacycles shows a general secular decrease in regional heat supply during metamorphism punctuated by episodic high-grade, progressive metamorphism within orogenic belts.  相似文献   

15.
The Penjwin meta-peridotite rock represents one of the five main metamorphosed ultramafic bodies in Kurdistan region, Northwest Zagros Thrust Zone. It underwent at least two successively low-retrograde metamorphic events with one progressive one which all modified the original mineralogy and texture of primary dunite and harzburgite. The primary upper mantle mineral assemblage olivine?+?orthopyroxene?+?chromian spinel is replaced by olivine?+?tremolite–actiolite?+?anthopylite?+?talc?+?ferichromite?+?Cr-chlorite assemblage of amphibolite facies. The further retrograde metamorphic amphibolite facies assemblage is replaced by lizardite–chrysotile?+?Cr-chlorite?+?syn-serpentinization Cr-magnetite of lower greenschist facies. Later at the main Zagros thrust fault, low greenschist facies underwent progressive metamorphism due to the local effect of shear stress as a result of the exhumation and obduction of Penjwin ophiolite suite over Merga Red bed series during Tertiary. Lizardite–chrysotile transformed to antigorite and producing antigorite?+?carbonate?+?syn-serpentinization Cr-magnetite?+?Cr-chlorite assemblage of upper greenschist facies. Chromian spinel is concentrically zoned as a result of multi-stages retrogressive metamorphic events, in which the Cr # (Cr/(Cr?+?Al)) increases from core to rim (0.5 to 1). Three zones can be identified from core to rim: The core is primary Al-rich and mantled by ferrichromite of amphibolite facies. The most outer zone of chromian spinel grains is represented by syn-serpentinization Cr-magnetite of greenschist facies.  相似文献   

16.
In the Dora Maira Massif, western Alps, essentially undeformed ultrahigh-pressure (UHP) metamorphic granites (Brossasco granite) are embedded in, and locally grade into, granite gneisses or augengneisses and mylonites. In this study, the quartz microfabrics of the undeformed granites are compared against the augengneisses and mylonites in a representative number of samples from several locations. In the undeformed granites, the fine-grained quartz aggregates that formed from coesite upon decompression are characterized by a foam structure and random crystallographic orientation. In the deformed granites, the quartz microstructures and the crystallographic preferred orientation (CPO) indicate deformation by dislocation creep. Most of the deformation of the granites (if not all) must have happened at a late stage during exhumation, after transformation of coesite to quartz, at greenschist facies conditions in the middle crust. The deformed granites provide no evidence of deformation during subduction, at (U)HP metamorphic conditions, and in the earlier stages of exhumation. The diameter of internally undeformed slices of continental crust subducted to and exhumed from about 100 km can exceed that of the presently exposed Brossasco granite, i.e. it can be on the kilometre scale.  相似文献   

17.
滇西高黎贡断裂带糜棱岩的显微变形特征及其构造意义   总被引:3,自引:2,他引:3  
李康  钟大赉 《岩石学报》1991,7(3):65-72,T001
采用扫描电镜(SEM)、超高压透射电镜(HTEM)及电子探针等手段研究了主高黎贡断裂带糜棱岩的显微构造特征,提出长石经历了碎粒流动和部分固态塑性流变过程;而石英晶粒经历了动态重结晶和静态回复阶段。认为高黎贡剪切带是在相当于高绿片岩相—低角闪岩相的变质条件下形成的,是晚第三纪右旋走滑活动的产物。  相似文献   

18.
Semi‐pelitic rocks ranging in grade from the prehnite–pumpellyite to the greenschist facies from south‐eastern Otago, New Zealand, have been investigated in order to evaluate the reactions leading to formation and breakdown of stilpnomelane. Detrital grains of mica and chlorite along with fine‐grained authigenic illite and chlorite occur in lower‐grade rocks with compactional fabric parallel to bedding. At higher grades, detrital grains have undergone dissolution, and metamorphic phyllosilicates have crystallized with preferred orientation (sub)parallel to bedding, leading to slaty cleavage. Stilpnomelane is found in metapelites of the pumpellyite–actinolite facies and the chlorite zone of the greenschist facies, but only rarely in the biotite zone of the greenschist facies. Illite or phengite is ubiquitous, whereas chlorite occurs only rarely with stilpnomelane upgrade of the pumpellyite‐out isograd. Chemical and textural relationships suggest that stilpnomelane formed from chlorite, phengite, quartz, K‐feldspar and iron oxides. Stilpnomelane was produced by grain‐boundary replacement of chlorite and by precipitation from solution, overprinting earlier textures. Some relict 14 Å chlorite layers are observed by TEM to be in the process of transforming to 12 Å stilpnomelane layers. The AEM analyses show that Fe is strongly partitioned over Mg into stilpnomelane relative to chlorite (KD≈2.5) and into chlorite relative to phengite (KD≈1.9). Modified A′FM diagrams, projected from the measured phengite composition rather than from ideal KAl3Si3O10(OH)2, are used to elucidate reactions among chlorite, stilpnomelane, phengite and biotite. In addition to pressure, temperature and bulk rock composition, the stilpnomelane‐in isograd is controlled by variations in K, Fe3+/Fe2+, O/OH and H2O contents, and the locus of the isograd is expected to vary in rocks of different oxidation states and permeabilities. Biotite, quartz and less phengitic muscovite form from stilpnomelane, chlorite and phengite in the biotite zone. Projection of bulk rock compositions from phengite, NaAlO2, SiO2 and H2O reveals that they lie close to the polyhedra defined by the A′FM minerals and albite. Other extended A′FM diagrams, such as one projected from phengite, NaAlO2, CaAl2O4, SiO2 and H2O, may prove useful in the evaluation of other low‐grade assemblages.  相似文献   

19.
The Simav metamorphic core complex of the northern Menderes massif, western Turkey, consists of a plutonic (Tertiary) and metamorphic (Precambrian) core (footwall) separated from an allochthonous cover sequence (hanging wall) by a low-angle, ductile-to-brittle, extensional fault zone (i.e. detachment fault). The core rocks below the detachment fault are converted into mylonites with a thickness of a few hundred metres. Two main deformation events have affected the core rocks. The first deformational event (D1) was developed within the Precambrian metamorphic rocks. The second event (D2), associated with the Tertiary crustal extension, includes two distinct stages. Stage one is the formation of a variably developed ductile (mylonitic) deformation (D2d) in metamorphic and granitic core rocks under greenschist facies conditions. The majority of the mylonites in the study area have foliations that strike NNW to NNE and dip SW to SE. Stretched quartz and feldspar grains define the mineral lineation trending SW-NE direction and plunging gently to SW. The kinematic indicators indicate a top-to-NE sense of shear. Stage two formation of brittle deformation (D2b) that affected all core and cover rocks. D2b involves the development of cataclasites and high-angle normal faults. An overall top towards the north sense of shear for the ductile (mylonitic) fabrics in the core rocks is consistent with the N-S regional extension in western Turkey.  相似文献   

20.
The P–T evolution of amphibolite facies gneisses and associated supracrustal rocks exposed along the northern margin of the Paleo to MesoArchean Barberton greenstone belt, South Africa, has been reconstructed via detailed structural analysis combined with calculated K(Mn)FMASH pseudosections of aluminous felsic schists. The granitoid‐greenstone contact is characterized by a contact‐parallel high‐strain zone that separates the generally low‐grade, greenschist facies greenstone belt from mid‐crustal basement gneisses. The supracrustal rocks in the hangingwall of this contact are metamorphosed to upper greenschist facies conditions. Supracrustal rocks and granitoid gneisses in the footwall of this contact are metamorphosed to sillimanite grade conditions (600–700 °C and 5 ± 1 kbar), corresponding to elevated geothermal gradients of ~30–40 °C km?1. The most likely setting for these conditions was a mid‐ or lower crust that was invaded and advectively heated by syntectonic granitoids at c. 3230 Ma. Combined structural and petrological data indicate the burial of the rocks to mid‐crustal levels, followed by crustal exhumation related to the late‐ to post‐collisional extension of the granitoid‐greenstone terrane during one progressive deformation event. Exhumation and decompression commenced under amphibolite facies conditions, as indicated by the synkinematic growth of peak metamorphic minerals during extensional shearing. Derived P–T paths indicate near‐isothermal decompression to conditions of ~500–650 °C and 1–3 kbar, followed by near‐isobaric cooling to temperatures below ~500 °C. In metabasic rock types, this retrograde P–T evolution resulted in the formation of coronitic Ep‐Qtz and Act‐Qtz symplectites that are interpreted to have replaced peak metamorphic plagioclase and clinopyroxene. The last stages of exhumation are characterized by solid‐state doming of the footwall gneisses and strain localization in contact‐parallel greenschist‐facies mylonites that overprint the decompressed basement rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号