首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of the scenarios for the Cretaceous/Tertiary (K/T) boundary event is presented and a coherent hypothesis for the origin of the event is formulated. Many scientists now accept that the event was caused by a meteorite impact at Chicxulub in the Yucatan Peninsula, Mexico. Our investigations show that the oceans were already stressed by the end of the Late Cretaceous as a result of the long-term drop in atmospheric CO2, the long-term drop in sea level and the frequent development of oceanic anoxia. Extinction of some marine species was already occurring several million years prior to the K/T boundary. The biota were therefore susceptible to change. The eruption of the Deccan Traps, which began at 66.2 Ma, coincides with the K/T boundary events. It erupted huge quantities of H2SO4, HCl, CO2, dust and soot into the atmosphere and led to a significant drop in sea level and marked changes in ocean temperature. The result was a major reduction in oceanic productivity and the creation of an almost dead ocean. The volcanism lasted almost 0.7 m.y.. Extinction of biological species was graded and appeared to correlate with the main eruptive events. Elements such as Ir were incorporated into the volcanic ash, possibly on soot particles. This horizon accumulated under anoxic conditions in local depressions and became the marker horizon for the K/T boundary. An oxidation front penetrated this horizon leading to the redistribution of elements. The eruption of the Deccan Traps is the largest volcanic event since the Permian-Triassic event at 245 Ma. It followed a period of 36 m.y. in which the earth’s magnetic field failed to reverse. Instabilities in the mantle are thought to be responsible for this eruption and therefore for the K/T event. We therefore believe that the K/T event can be explained in terms of the effects of the Deccan volcanism on an already stressed biosphere. The meteorite impact at Chicxulub took place after the onset of Deccan volcanism. It probably played a regional, rather than a global, role in the K/T extinctions.  相似文献   

2.
New data from geothermal wells in Iceland have permitted empirical calibration of the chalcedony and NaK geothermometers in the range of 25–180°C and 25–250°C respectively. The temperature functions are:
t°C=11124.91?log SiO2?273.15
t°C=9330.993+log Na/K?273.15
Concentrations are expressed in ppm. These temperature functions correspond well with the chalcedony solubility data of Fournier (1973) and the thermodynamic data for low-albite/microcline/solution equilibria of Heloeson (1969).A new CO2 geothermometer is proposed which is considered to be useful in estimating underground temperatures in fumarolic geothermal fields. Its application involves analysis of CO2 concentrations in the fumarole steam. The temperature function which applies in the range 180?300°C is: logCO2 = 37.43 + 73192/T- 11829· 103/T2 + 0.18923T- 86.187·logT where T is in °K and CO2 in moles per kg of steam.  相似文献   

3.
《Applied Geochemistry》2001,16(7-8):883-894
Total CO2 output from fumaroles, bubbling and water dissolved gases and soil gases was investigated at Pantelleria Island volcano, Italy. The preliminary results indicate an overall output of 0.39 Mt a−1 of CO2 from the island. The main contribution to the total output was from diffuse soil degassing (about 0.32 Mt a−1), followed by dissolved CO2 (0.034 Mt a−1), focussed soil degassing (0.028 Mt a−1) and bubbling CO2 (0.013 Mt a−1). The contribution of CO2 from fumarole gases was found to be negligible (1.4×10−6 Mt a−1). Carbon-13 values for CO2 coupled with those for associated He in gases from fumaroles and sites of focussed soil degassing clearly rule out any significant organic CO2 component and suggest a common mantle origin for these gas species. The inferred mantle source beneath Pantelleria would seem to have peculiar geochemical characteristics, quite distinct from those of mantle producing MORB but compatible with those of magmatic sources of central Mediterranean and central European volcanoes. These findings indicate that the Pantelleria volcanic complex is a site of active mantle degassing that is worthy of attention for future geochemical surveillance of the island.  相似文献   

4.
Calculations based on approximately 350 new measurements (CaT-PCO2) of the solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C indicate the following values for the log of the equilibrium constants KC, KA, and KV respectively, for the reaction CaCO3(s) = Ca2+ + CO2?3: Log KC = ?171.9065 ? 0.077993T + 2839.319T + 71.595 log TLog KA = ?171.9773 ? 0.077993T + 2903.293T +71.595 log TLog KV = ?172.1295 ? 0.077993T + 3074.688T + 71.595 log T where T is in oK. At 25°C the logarithms of the equilibrium constants are ?8.480 ± 0.020, ?8.336 ± 0.020 and ?7.913 ± 0.020 for calcite, aragonite and vaterite, respectively.The equilibrium constants are internally consistent with an aqueous model that includes the CaHCO+3 and CaCO03 ion pairs, revised analytical expressions for CO2-H2O equilibria, and extended Debye-Hückel individual ion activity coefficients. Using this aqueous model, the equilibrium constant of aragonite shows no PCO2-dependence if the CaHCO+3 association constant is Log KCahco+3 = 1209.120 + 0.31294T — 34765.05T ? 478.782 log T between 0 and 90°C, corresponding to the value logKCahco+3 = 1.11 ± 0.07 at 25°C. The CaCO03 association constant was measured potentiometrically to be log KCaCO03 = ?1228.732 ? 0.299444T + 35512.75T + 485.818 log T between 5 and 80°C, yielding logKCaCO03 = 3.22 ± 0.14 at 25°C.The CO2-H2O equilibria have been critically evaluated and new empirical expressions for the temperature dependence of KH, K1 and K2 are log KH = 108.3865 + 0.01985076T ? 6919.53T ? 40.45154 log T + 669365.T2, log K1 = ?356.3094 ? 0.06091964T + 21834.37T + 126.8339 log T — 1684915.T2 and logK2 = ?107.8871 ? 0.03252849T + 5151.79/T + 38.92561 logT ? 563713.9/T2 which may be used to at least 250°C. These expressions hold for 1 atm. total pressure between 0 and 100°C and follow the vapor pressure curve of water at higher temperatures.Extensive measurements of the pH of Ca-HCO3 solutions at 25°C and 0.956 atm PCO2 using different compositions of the reference electrode filling solution show that measured differences in pH are closely approximated by differences in liquid-junction potential as calculated by the Henderson equation. Liquid-junction corrected pH measurements agree with the calculated pH within 0.003-0.011 pH.Earlier arguments suggesting that the CaHCO+3 ion pair should not be included in the CaCO3-CO2-H2O aqueous model were based on less accurate calcite solubility data. The CaHCO+3 ion pair must be included in the aqueous model to account for the observed PCO2-dependence of aragonite solubility between 317 ppm CO2 and 100% CO2.Previous literature on the solubility of CaCO3 polymorphs have been critically evaluated using the aqueous model and the results are compared.  相似文献   

5.
The following hardsphere modified Redlich-Kwong (HSMRK) equation of state was obtained by least squares fitting to available P-V-T data for methane (P in bars; T in Kelvins; v in cm3 mol?1; b = 60.00 cm3 mol?1; R = 83.14 cm3barmol?1K?1): PRT(1 + y + y2?y3v(1?y)3)-c(T) + d(T)v + e(T)v2/v(v + b)T12y = b4vc(T) = 13.403 × 106 + (9.28 × 104)T + 2.7 T2d(T) = 5.216 × 109 ? (6.8 × 106)T + (3.28 × 103)T2e(T) = (?2.3322 × 1011) + (6.738 × 108)T + (3.179 × 105)T2 For the P-T range of experimental data used in the fit (50 to 8600 bars and from 320 to 670 K), calculated volumes and fugacity coefficients for CH4 relative to experimentally determined volumes and fugacity coefficients have average percent deviations of 0.279 and 1.373, respectively. The HSMRK equation, which predicts linear isochores over a wide P-T range, should yield reasonable estimates of fugacity coefficients for CH4 to pressures and temperatures well outside the P-T range of available P-V-T data. Calculations for the system H2O-CO2-CH4, using the HSMRK equations for H2O and CO2 of Kerrick and Jacobs (1981) and the HSMRK equation for CH4 of this study, indicate that compared to the binary H2O-CO2 system, small amounts of CH4 in the ternary system H2O-CO2-CH4 slightly increases the activity of H2O, and significantly decreases the activity of CO2.  相似文献   

6.
The oxygen fugacity (fO2) of the Earth's upper mantle appears to lie somewhat above that of the iron-wüstite buffer, its fO2 is assumed to have been similar to the present value at the time of core formation. In the upper mantle, the Fe-rich liquid protocore that would form under such conditions of fO2 at elevated temperatures would lie predominantly in the system Fe-S-O. Distribution coefficients for Co, Cu, Ni, Ir, Au, Ir, W, Re, Mo, Ag and Ga between such liquids and basalt are known and minimum values are known for Ge. From these coefficients, upper mantle abundances for the above elements can be calculated by assuming cosmic abundances for the whole Earth and equilibrium between the Fe-S-O protocore and upper mantle. These calculated abundances are surprisingly close to presently known upper mantle abundances; agreements are within a factor of 5, except for Cu, W, and Mo. Therefore, siderophile element abundances in the upper mantle based on known distribution coefficients do not demand a late-stage meteoritic bombardment, and a protocore formed from the upper mantle containing S and O seems likely.As upper mantle abundances fit a local equilibrium model, then either the upper mantle has not been mixed with the rest of the mantle since core formation, or else partition coefficients between protocore and mantle were similar for the whole mantle regardless of P, T, and fO2. The latter possibility seems unlikely over such a P-T range.  相似文献   

7.
《Applied Geochemistry》2001,16(9-10):1033-1039
The CO2 gas pools of Jiyang sag are located along the Gaoqing–Pingnan fault within a region of alkaline basalts. The concentration of CO2 in the gas pools is in the range of 68.85–96.99%. All of the geochemical tracers for the CO2 gas pools support the suggestion that CO2 was mainly derived from mantle degassing. The δ13C values of CO2 in the gas pools are in the range of −5.67–−3.41‰, which are higher than those of organogenic CO2, and near to those of abiogenic CO2. Their 3He/4He ratios are 2.80–4.47×106, i.e. the R/Ra ratios are 2.00–3.19, showing that the Jiyang sag had undergone strong mantle degassing. CO2/3He ratios are 0.59–0.89×109, which are identical to those for N-MORB, indicating that CO2 in these CO2 gas pools was mainly derived from the mantle. Accompanying the intrusion of mantle-derived magma, the mantle-derived CO2 migrated upwards along deep faults and was trapped in advantageous structures forming gas pools.  相似文献   

8.
A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world’s largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (∼80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1–CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment.  相似文献   

9.
About 5 per cent of all feldspars in sediments are authigenic. This amounts to 0·94 per cent of the total sedimentary mass. At least 2.1 × 1018 kg Na and 3.4 × 1018kg K have been removed from sea water by reconstitution of authigenic feldspars in the total mass of surviving sediments. Consequently, 9.3 × 1019 moles CO2 have been released by the formation of authigenic albite and 8.8 × 1019 moles CO2 by the formation of authigenic K-feldspar.  相似文献   

10.
Basaltic glasses included in olivine phenocrysts from Kilauea volcano contain concentrations of H2O, CO2, and S similar to glassy Kilauean basalt dredged from the deep sea floor and greater than vesicular, subaerial Kilauean basalt. Our result contrasts with earlier reports that inclusions of basaltic glass in phenocrysts have little or no H2O and large ratios of CO2H2O. Our analysed inclusions of glass are larger than 100 micrometers thick and similar in chemical composition to the host glass surrounding the olivine crystals indicating that the trapped melts are representative of the bulk liquid from which the crystals grew. Crystallization of about 2–8% of olivine from the melts after they were trapped is indicated by slight departures from the experimentally established equilibrium distribution of Mg and Fe between olivine and liquid. The measured concentrations of CO2 correspond to phenocryst crystallization pressures of about 1.3 kbar for a subaerial basalt and about 5 kbar for a submarine basalt, consistent with geophysical models of Kilauea volcano. The compositions of volcanic gas predicted from our analyses are consistent with restored compositions of actual Kilauean gases. The rate of sulfur emission predicted from our analyses is greater than the sulfur dioxide emission rate observed during repose, but probably consistent with total degassing including eruptive episodes. The concentrations of H2O, K2O, Cl, and P in parental Kilauean basalt can be derived from upper mantle phlogopitic mica, pargasitic amphibole and apatite with compositions close to those of natural primary minerals in ultramafic xenoliths from continental kimberlites, or solely from apatite and phlogopitic mica with H2OK2O near 0.47 ± 0.03, slightly higher than the range of values reported. The amounts of phlogopitic mica and pargasitic amphibole contributing volatiles to Kilauean tholeiite is about 10 percent by mass of the parental liquid, or about 5% if the source does not include amphibole. In view of an estimated 20% of partial melting of mantle source rock to produce Kilauean tholeiites, there may be about 2 weight percent of mica plus amphibole in part of the mantle beneath Kilauea, or about 1 weight percent of phlogopitic mica if amphibole is absent.  相似文献   

11.
Composition of chromiferous spinel included in olivines of Mg-rich basalts and gabbros of the Deccan Traps (Gujarat and Western Ghats) are reported here. They vary from Al-rich compositions [Al2O3 = 53wt.%; Cr#, 100Cr/(Cr + Al) = 12] to Cr-rich compositions [Cr2O3 = 51wt.%; Cr# = 84], and from Cr-Al rich compositions towards Cr-rich Ti-magnetite (TiO2 up to 23 wt.%, ulvöspinel up to 67mol.%). The Mg# [100Mg/(Mg + Fe2+)] of spinel decreases from 81 to nearly zero. The highest Cr# has been found in the Bushe Fm., Thakurvadi Fm., and some high-Ti basalts of the Pavagadh section, whereas some of the low-Ti basalts of Saurashtra have Al-rich compositions typical of spinels found in mid-ocean ridge basalts. The chemical composition of the Deccan Trap spinels is completely different compared to that observed in mantle spinel suites, with very few exceptions. The decreasing Al and increasing Fe and Ti of spinel seems to be mainly the result of decrease of Mg in the locally coexisting melts and favourable cationic substitutions in the lattice. There is barely any evidence of general relationships between the composition of the Deccan spinels and inferred mantle sources of the host magmas. Pyroxene inclusions in spinels may witness a high-pressure stage of crystallization, but the possibility of non-equilibrium crystallization, or even magma mixing, cannot be ruled out. Overall, the compositional ranges of chromiferous spinel in the Deccan Traps closely match those observed in the other Large Igneous Provinces having mafic/ultramafic intrusions and mafic magma compositions (e.g., Siberian Traps, Karoo, Emeishan).  相似文献   

12.
Fluid driven metasomatism and mass transfer from the earth’s mantle have played an important role in the evolution of the lower continental crust in many geodynamically active areas. The epicentral region of the disastrous 1993 Killari earthquake (M 6.2), concealed below a thick suite of Deccan volcanics in central India, appear to be one such region. In connection with the study of seismotectonics of the earthquake prone Deccan volcanic region, we have carried out systematic and detailed geochemical and mineralogical investigation on core samples from the basement, obtained from the 617m deep KLR-1 borehole, drilled in the epicentral region of Killari. Our investigations indicate that the basement, concealed below 338m thick Deccan volcanics, is made up of CO2, Cl, FeO and CaO-rich, high density (2.82 g/cm3) — high velocity (avg. Vp: 6.2 km/s) moderately retrogressed upper amphibolite to granulite facies mid crustal rocks, which were subjected to pervasive Ca-metasomatism due to infiltration of mantle fluids. Graniticgneissic layer, typical of the upper crust, seems to be totally absent from this earthquake region. Chondrite normalized trace and rare earth elemental patterns display negative Eu anomalies together with LILE enrichment. Similarly, spider diagrams for incompatible elements show depletion in Zr, Hf, Y, Ta and Nb relative to the primitive mantle, indicating possible alterations of such relatively immobile elements at relatively high temperatures. Selective enrichment is also observed in transitional elements like Cu and Zn, indicating the possible role of chlorine in metal transport. The present study suggests that regional metasomatism beneath the Deccan Traps, which apparently alters the basic fabric of the rock during recrystallisation and makes it weak, may have a link with the nucleation of large earthquakes.  相似文献   

13.
Earth-atmosphere evolution models are mathematically simulated and the resulting present isotopic ratio (40Ar/36Ar) in the mantle is given for each.Differential outgassing experiments on several recent submarine glasses were made to estimate an isotopic ratio (40Ar/36Ar) in the present mantle. Estimations of (40Ar/36Ar) in the mantle by various methods are also critically reviewed. From the experimental results and these considerations a minimum value of 2000 for (40Ar/36Ar) ratio in the present mantle is inferred. By assuming that (40Ar/36Ar)M is larger than 2000 and that the potassium content in the present mantle is larger than 50 ppm, we can limit considerably a choice among various Earth-atmosphere evolution models, i.e. (1) a continuous degassing process can not explain rare gas evolution in the atmosphere, (2) early sudden degassing is more likely and (3) such sudden degassing must have occurred earlier than 4.35 b.y.  相似文献   

14.
Diopside-melt and forsterite-melt rare earth (REE) and Ni partition coefficients have been determined as a function of bulk compositions of the melt. Available Raman spectroscopic data have been used to determine the structures of the melts coexisting with diopside and forsterite. The compositional dependence of the partition coefficients is then related to the structural changes of the melt.The melts in all experiments have a ratio of nonbridging oxygens to tetrahedral cations (NBOT) between 1 and 0. The quenched melts consist of structural units that have, on the average, 2 (chain), 1 (sheet) and 0 (three-dimensional network) nonbridging oxygens per tetrahedral cation. The proportions of these structural units in the melts, as well as the overall NBOT, change as a function of the bulk composition of the melt.It has been found that Ce, Sm, Tm and Ni crystal-liquid partition coefficients (Kcrystal?liqi = CcrystaliCliqi) decrease linearly with increasing NBOT. The values of the individual REE crystal-liquid trace element partition coefficients have different functional relations to NBOT, so that the degree of light REE enrichment of the melts would depend on their NBOT.The solution mechanisms of minor oxides such as CO2, H2O, TiO2, P2O5 and Fe2O3 in silicate melts are known. These data have been recast as changes of NBOT of the melts with regard to the type of oxide and its concentration in the melt. From such data the dependence of crystal-liquid partition coefficients on concentration and type of minor oxide in melt solution has been calculated.  相似文献   

15.
16.
We report new stepped heating He, Ar, CO2 and water data on a petrogenetically diverse suite of lavas from the Manus back-arc basin, where a plume component has previously been identified. The aim of this study is to evaluate the superimposed effects of degassing and contamination in order to identify mantle source characteristics. CO2 abundances and carbon isotopes in both the vesicle ([CO2] up to 180ppm; δ13C as low as -33.6 ‰) and glass ([CO2] up to 270ppm; δ13C as low as -34.3 ‰) phases reveal that samples have been modified by varying degrees of degassing. High water concentration samples (back-arc basin basalts (BABB) and arc type samples) show the highest degrees of degassing (i.e. lower δ13C values and lower CO2 contents). The results are modelled for both the glass and vesicle phases using batch and fractional degassing models. Parental melt compositions can be constrained to show the following CO2 concentration trend: arc-type > BABB s.r. (southern rift) > MORB-2, E-MORB, X-BABB (extreme BABB), BABB > MORB-1 and MORB-smt. 4He/40Ar∗ ratios of samples (14.6-1100) are consistent with residual volatiles from a degassed source. Variations in CO2/3He values are likely due to degassing, followed by contamination from a crustal source (either the subducting Solomon Sea Plate or the pre-existing crust through which the lavas erupt), as evidenced by high K2O/TiO2 ratios and low δ13C. The CO2/3He of the Manus plume is best estimated by the MORB-smt and MORB-1 samples at 3.1 ± 0.6 x 109. This value is similar to previous estimates of plume CO2/3He values, which are either equal to or slightly greater than the upper mantle average of 2 x 109.  相似文献   

17.
Some rocks of the Onverwacht Group, South Africa, have been analyzed for Rb and Sr concentrations and Sr isotopie composition. These rocks include volcanic rocks, layered ultramafic differentiates and cherty sediments. Whole rock data indicate that the Rb-Sr isotopie systems in many samples were open and yield no reasonable isochron relationships. However, the data of mineral separates from a basaltic komatiite define a good isochron of t = 3.50 ± 0.20 (2δ) b.y. with an initial Sr87/Sr86 ratio of 0.70048 ± 5(2δ). The orthodox interpretation of this age is the time of the low grade metamorphism. Since the basaltic komatiite is stratigraphically lower than the Middle Marker Horizon (dated as 3.36 ± 0.07 b.y. Hurley et al., 1972), and since it is commonly found that volcanism, sedimentary deposition, metamorphism and igneous intrusion in many Archean greenstone-granite terrain all took place in a relatively short time interval (less than 100 m.y.), it is reasonable to assume that the age of 3.50 b.y. might also represent the time of initial Onverwacht volcanism and deposition. The initial Sr87/Sr86 ratio obtained above is important to an understanding of the Sr isotopic composition of the Archean upper mantle. If the komatiite represents a large degree of partial melt (40–80 per cent) of the Archean upper mantle material, then the initial ratio obtained from the metamorphic komatiite should define an upper limit for the Sr isotopic composition of the upper mantle under the African crustal segment.  相似文献   

18.
The lava sequence of the central-western Deccan Traps (from Jalgaon towards Mumbai) is formed by basalts and basaltic andesites having a significant variation in TiO2 (from 1.2 to 3.3 wt%), Zr (from 84 to 253 ppm), Nb (from 5 to 16ppm) and Ba (from 63 to 407 ppm), at MgO ranging from 10 to 4.2 wt%. Most of these basalts follow a liquid line of descent dominated by low pressure fractionation of clinopyroxene, plagioclase and olivine, starting from the most mafic compositions, in a temperature range from 1220° to 1125°C. These rocks resemble those belonging to the lower-most formations of the Deccan Traps in the Western Ghats (Jawhar, Igatpuri and Thakurvadi) as well as those of the Poladpur formation. Samples analyzed for87Sr/86Sr give a range of initial ratios from 0.70558 to 0.70621. A group of flows of the Dhule area has low TiO2 (1.2–1.5 wt%) and Zr (84–105 ppm) at moderate MgO (5.2–6.2 wt%), matching the composition of low-Ti basalts of Gujarat, low-Ti dykes of the Tapti swarm and Toranmal basalts, just north of the study area. This allows chemical correlations between the lavas of central Deccan, the Tapti dykes and the north-western outcrops. The mildly enriched high field strength element contents of the samples with TiO2 > 1.5 wt% make them products of mantle sources broadly similar to those which generated the Ambenali basalts, but their high La/Nb and Ba/Nb, negative Nb anomalies in the mantle normalized diagrams, and relatively high87Sr/86Sr, make evident a crustal input with crustally derived materials at less differentiated stages than those represented in this sample set, or even within the sub-Indian lithospheric mantle.  相似文献   

19.
We have calculated the amounts of CO2 and H2 produced by complete degassing of mid-ocean ridge basalt (MORB) magma, and by degassing during transient diking-eruptive events. Our CO2 calculations are based on a model estimate of an initial CO2 content of 1800 ppm in MORB magma, which is equivalent to 2.2 × 1012 mol CO2 per year for magma production at worldwide ocean ridges. Observations indicate that many MORB magmas are emplaced in numerous small pulses of dikes and associated lava flows with very short emplacement times, which would result in release of relatively large amounts of CO2 over short intervals. For example, a dike injected into the oceanic crust that extends from the top of its magma chamber at 2 km depth to the seafloor would degas 2.3 × 104 mol CO2 per m2 surface area of dike, and produce another 4.0 × 104 mol CO2 per m2 on complete crystallization.

Unlike CO2, which is not strictly governed by crystallization-alteration processes, H2 is produced from MORB by the reduction of H2O by ferrous iron in the magma to form magnetite and H2 as the magma cools and crystallizes. From published paired analyses of MORB glass and crystalline rock, we estimate that the amount of H2 produced from one cubic meter of rock averages 301 mol. We suggest that the oxidizing agent is H2O dissolved in the magma, which results in rapid generation of H2. The amount of pre-alteration oxidation may be limited by the amount of H2O dissolved in the magma; thus relatively water-rich magmas will undergo greater oxidation. For the case of the two-kilometer-high dike reaching the seafloor, the amount of H2 released is 6.2 × 105 moles H2 per m2 surface area of the dike. This is 10 times greater than the total CO2 released by degassing and crystallization of the dike. Assuming that the H2 generation rate for the entire basaltic layer of the oceanic crust is the same as for MORB lavas (312 mol/m3), then the annual global H2 production rate is 6.3 × 1012 mol H2 per year. This amount is about three times greater than our calculated annual CO2 production from MORBs. Given that the annual CO2 production rate from MORBs over 3.3 Ga can account for all CO2 found in the Earth's crust, hydrosphere, and atmosphere, it is likely that the H2 produced at mid-ocean ridges plays a significant role as a reducing agent in the global redox state of the Earth's surface.

In contrast to time-averaged global production rates, the rapid release of CO2 and H2 in diking-eruptive events may locally result in formation of a separate gas phase containing H2-CO2-H2O in that order of abundance. The amounts of CO2 and H2 produced could provide a significant energy source for autotrophic microorganisms. It has been demonstrated that such a CO2-H2-H2O gas mixture yields methanol in magnetite-surface catalyzed reactions at seafloor hydrothermal conditions. Such abiotic synthesis reactions could have been important in early Earth processes.  相似文献   

20.
Aqueous solubilities of methane at 25°C have been determined in single-salt solutions equilibrated with a CH4 gas phase at 350, 550, and 750 psia. Measurements were made over a range of ionic strengths in NaCl, KCl, CaCl2, MgCl2, Na2SO4, K2SO4, MgSO4, Na2CO3, K2CO3, NaHCO3, and KHCO3 aqueous solutions.At 25°C and constant pressure and methane fugacity, methane solubilities were largely controlled by the stoichiometric ionic strength, I, and the cation of the salt. Except for an increased salting-out due to HCO3?, the anion effect was relatively insignificant. Different but consistent solubility trends were followed in monovalent and divalent cation salt solutions as a function of I. Solubilities increased in salt solutions having a common anion in the following cation sequence: Na+ < K+ ? Ca2+ < Mg2+.The molal salting coefficient, km, for each salt was constant under the experimental conditions of the study, km is defined by logγch4I where γch4, the molal activity coefficient, is the methane solubility ratio (mH2Omsalt solution) measured at constant temperature, pressure, and CH4 fugacity. Single-salt km values are as follows: 0.121, NaCl (4m); 0.121, Na2SO4 (1m); 0.118, Na2CO3 (1.5m); 0.146, NaHCO3 (0.5m); 0.101, KCl (4m); 0.108, K2SO4 (0.5m); 0.111, K2CO3 (2m); 0.145, KHCO3 (0.5m); 0.071, CaCl2 (2m); 0.063, MgCl2 (2m); and 0.066, MgSO4 (1.5m) where the molalities in parentheses refer to the maximum salt concentrations used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号