首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
威信县地质构造较复杂,地质灾害破坏严重。主要地质灾害类型有滑坡、崩塌、泥石流、不稳定斜坡及地裂缝五种。其中以滑坡和不稳定斜坡为主,灾害点分布较广且个体规模小,稳定性较差。调查显示,威信县地质灾害的形成与发生时多种致灾因素相互作用的结果。通过对威信县地质灾害成因分析得出:地质构造、岩土体类型、地形地貌、生态植被等因素是滑坡、泥石流、崩塌及不稳定斜坡形成的基本条件;降雨及人类活动等因素是形成滑坡、泥石流、崩塌、地裂缝及不稳定斜坡的主导因素。对地质灾害的防治应采用以群测群防为基本手段,与搬迁避让、工程防治、生物防治、清除危岩(土)体及排水为主的防治措施相结合的综合治理方法。  相似文献   

2.
Landslides are the most established geological hazards in the frontal fold–thrust belt of Northwestern Himalaya comprising of Siwaliks and Murree strata. The continuous rainfall from 2 to 6 September, 2014 caused a massive landslide at village Sadal in Udhampur district of Jammu and Kashmir state. The landslide occurred in the early morning of September 6, 2014, destroying entire Sadal habitation comprising 45 houses, and killing 41 people and more than 500 domestic animals. Google earth images of pre and post-landslide events along with the field measurements show the kinematics of upper and lower parts of the slide. Horizontal and vertical components of displacement and mode of failure suggest the landslide as of complex nature. The shallow subsurface geophysical imaging through Ground Penetrating Radar (GPR) survey shows the failure plane composed of friable mudstone bed underlain by massive mudstone and overlain by cross-bedded sandstone. The depth of debris material above the failure plane ranges from 6 m at Site S1a-b to 10 m at Site-S2b and 20 m at Site S3a. The velocity analysis of Site-3 shows four thick layers represented from bottom to surface by L1—sandstone (V?=?0.16 m/ns, travel time?=?356.36 ns), L2—mudstone (V?=?0.17 m/ns, travel time?=?288.48 ns), L3—massive mudstone (V?=?0.19 m/ns, travel time 220.68 ns), and L4—cross-laminated sandstone (V?=?0.20 m/ns, travel time?=?77.58 ns) overlaying the failure plane. The study shows the landslide occur along the western limb of a fold identified during the present work. We mapped an old landslide on the same limb which shows 5–6 m-thick subsurface debris material with thick rock fragments involved in the landslide process. The detailed geological and geophysical investigations suggest that both the landslides were triggered by extreme rain fall events.  相似文献   

3.
贵州关岭大寨高速远程滑坡碎屑流研究   总被引:15,自引:1,他引:14  
2010年6月28日,贵州关岭因突降暴雨发生高速远程滑坡,滑程约1.5km,体积约174.9万m3,两个村组被毁,99人遇难。滑坡区位于西南地区常见的煤系地层区,上部为灰岩、白云岩,中部为相对较缓的砂岩地层,下部为页岩、泥岩地层,局部含煤,具有上硬下软的山体地质结构和上部富水下部隔水的水文地质结构,极易形成滑坡地质灾害。从地形上看,斜坡上陡下缓,形似靴状地形,上部陡峭地形导致山体易于失稳,而中下部开阔伸展良好的沟谷提供了远程的运动条件,较大的势能向动能的转化,容易形成高速远程滑坡碎屑流。6月27日和28日的降雨是触发此起特大灾害的主要原因,其24h降雨量达310mm,超过了当地近60a来的气象记录,分析表明,降雨产生的沟谷径流量是平时强降雨(100~150mmd-1)的沟谷径流的2倍之上,一是在滑源区砂岩裂隙岩体中形成静水压力和渗透压力,触使滑坡的失稳下滑; 二是在沟谷中产生地表径流,为碎屑流远程流动形成饱水下垫面,导致了碎屑流流动距离和速度的显著增加。近年来随着极端强降雨等灾害性天气的重现期缩短,高速远程滑坡造成的群死群伤特大地质灾害在我国呈逐渐增加趋势,应加强对这种灾害类型的调查与防范,特别是要进行滑坡安全避让范围和逃逸速度的研究。  相似文献   

4.
The 2008 Ms 8.0 Wenchuan earthquake triggered a large number of extensive landslides. It also affected geologic properties of the mountains such that large-scale landslides followed the earthquake, resulting in the formation of a disaster chain. On 10 July 2013, a catastrophic landslide–debris flow suddenly occurred in the Dujiangyan area of Sichuan Province in southeast China. This caused the deaths of 166 people and the burying or damage of 11 buildings along the runout path. The landslide involved the failure of ≈1.47 million m3, and the displaced material from the source area was ≈0.3 million m3. This landslide displayed shear failure at a high level under the effects of a rainstorm, which impacted and scraped an accumulated layer underneath and a heavily weathered rock layer during the release of potential and kinetic energies. The landslide body entrained a large volume of surface residual diluvial soil, and then moved downstream along a gully to produce a debris flow disaster. This was determined to be a typical landslide–debris flow disaster type. The runout of displaced material had a horizontal extent of 1200 m and a vertical extent of 400 m. This was equivalent to the angle of reach (fahrböschung angle) of 19° and covered an area of 0.2 km2. The background and motion of the landslide are described in this study. On the basis of the above analysis, dynamic simulation software (DAN3D) and rheological models were used to simulate the runout behavior of the displaced landslide materials in order to provide information for the hazard zonation of similar types of potential landslide–debris flows in southeast China following the Wenchuan earthquake. The simulation results of the Sanxicun landslide revealed that the frictional model had the best performance for the source area, while the Voellmy model was most suitable for the scraping and accumulation areas. The simulations estimated that the motion could last for ≈70 s, with a maximum speed of 47.7 m/s.  相似文献   

5.
The Paonia-McClure Pass area of Colorado has been recognized as a region highly susceptible to mass movement. Because of the dynamic nature of this landscape, accurate methods are needed to predict susceptibility to movement of these slopes. The area was evaluated by coupling a geographic information system (GIS) with logistic regression methods to assess susceptibility to landslides. We mapped 735 shallow landslides in the area. Seventeen factors, as predictor variables of landslides, were mapped from aerial photographs, available public data archives, ETM + satellite data, published literature, and frequent field surveys. A logistic regression model was run using landslides as the dependent factor and landslide-causing factors as independent factors (covariates). Landslide data were sampled from the landslide masses, landslide scarps, center of mass of the landslides, and center of scarp of the landslides, and an equal amount of data were collected from areas void of discernible mass movement. Models of susceptibility to landslides for each sampling technique were developed first. Second, landslides were classified as debris flows, debris slides, rock slides, and soil slides and then models of susceptibility to landslides were created for each type of landslide. The prediction accuracies of each model were compared using the Receiver Operating Characteristic (ROC) curve technique. The model, using samples from landslide scarps, has the highest prediction accuracy (85 %), and the model, using samples from landslide mass centers, has the lowest prediction accuracy (83 %) among the models developed from the four techniques of data sampling. Likewise, the model developed for debris slides has the highest prediction accuracy (92 %), and the model developed for soil slides has the lowest prediction accuracy (83 %) among the four types of landslides. Furthermore, prediction from a model developed by combining the four models of the four types of landslides (86 %) is better than the prediction from a model developed by using all landslides together (85 %).  相似文献   

6.
The Guantan landslide, with a total displaced mass of about 468 × 104 m3, was triggered by the 2008 Wenchuan earthquake and succeeding rainfall in Jushui Town, Sichuan Province, China. The landslide occurred on an anti-dip hard rock slope with a weak rock founding stratum of 200 m in thickness. To investigate the failure mechanism of the Guantan landslide, dynamic behaviors of hard and soft rock slopes were investigated by means of large scale shaking table tests. The laboratory models attempted to simulate the field geological conditions of the Guantan landslide. Sinusoidal waves and actual seismic waves measured from the Wenchuan Earthquake were applied on the slope models under 37 loading configurations. The experimental results indicated that deformation mainly developed at a shallow depth in the upper part of the hard rock slope and in the upper (near the crest) and lower (near the toe) parts of the soft rock slope. An equation for predicting the depth of sliding plane was proposed based on the location of the maximum horizontal acceleration. Finally, it was concluded that the failure process of the Guantan landslide occurred in three stages: (1) toppling failure caused by compression of the underlying soft rock strata, (2) formation of crushed hard rock and sliding surface in soft rock as the result of seismic shocks, particularly in the horizontal direction, and (3) aftershock rainfall accelerates the process of mass movement along the sliding plane.  相似文献   

7.
汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律   总被引:22,自引:4,他引:18  
512汶川大地震造成大量的次生斜坡灾害,本次研究区域为汶川大地震的11个重灾区,包括汶川、北川、青川、安县、平武、茂县、江油、彭州、什邡、绵竹、理县等市县。通过对重灾区航片、卫片、雷达图像的解译研究发现,重灾区次生斜坡灾害的主要灾种表现为崩塌、滑坡以及崩塌、滑坡高速运动解体形成的碎屑流(个别地方由于水的参与表现为泥石流)以及它们堵江形成的堰塞湖。研究发现地震次生斜坡灾害的发育具有明显的丛集性规律。从区域上看,次生斜坡灾害明显呈带状,沿龙门山断裂带展布,并主要受北川映秀断裂控制。各灾种的发育在不同地段发育的规模、频率差别较大。以灾害分布面积来排序,汶川县灾害面积最大,为131.55km2,其次为北川县,为45.57km2,其余9个县(市)灾害面积相差不大,均介于6~17km2,其中理县灾害面积最小,为6.25km2。各灾种的发育在不同地段发育的规模、频率差别较大。青川县、平武县灾种主要为滑坡,汶川县、茂县、安县、理县灾种主要表现崩塌转化的碎屑流,北川的主要灾种则为碎屑流,其次为滑坡,什邡、彭州、绵竹、江油等地主要灾种为崩塌。 灾种发育的这种地域性差别主要受控于地层岩性,除此而外,还与构造特征、地形地貌等因素紧密相关。研究表明:岩性对灾害种类的展布有决定性控制作用。统计发现,岩性越坚硬,崩塌、碎屑流发育率越高,滑坡则在软岩地区、较软岩地区和较坚硬区发育率最高,泥石流则在软岩地区最为发育。地形地貌对次生斜坡灾害的发育有重要影响,统计表明,崩塌、碎屑流以及泥石流在1200~2000m坡段范围内发育率最高,其次为800~1200m坡段;而滑坡则在800~1200m坡段范围发育率最高。对坡度而言,除11~20坡度范围外,崩塌和碎屑流的发育率总体具有随坡度增高而增大的特点;而滑坡和泥石流的发育率呈现典型的单峰特征,在1~20范围内发育率最大。坡向对地震次生斜坡灾害的发育影响不明显。 地震次生斜坡灾害的发育规律表明,地震斜坡灾害的发生主要受控于活动构造本身,并沿活动构造呈带状展布,同时受场地条件如岩性、地形地貌等因素的强烈控制。  相似文献   

8.
岩土体是组成斜坡地质结构的基本单元,斜坡地质结构类型与地质灾害的发育类型密切相关。店子街幅图幅调查范围内主要发育软弱-较坚硬层状泥岩、砂岩岩组,风积黄土单层土体,粉土、砂砾卵石双层土体,粉土、碎石和基岩碎屑多层土体等4类岩土体,这些不同的岩土体组成了6种不同的斜坡地质结构,进而演变形成了不同类型、不同规模的斜坡地质灾害。黄土斜坡结构和黄土—冲洪积层斜坡结构多演变发生小型滑坡灾害、黄土—泥岩斜坡结构多演变发生中—大型黄土泥岩滑坡灾害、泥岩与泥质砂岩互层斜坡结构多演变发生崩塌灾害、泥岩风化堆积层斜坡结构和滑坡堆积层斜坡结构多演变发生小-中型滑坡灾害。研究不同斜坡地质结构与地质灾害发育类型的发育关系,有助于进一步开展区域崩塌、滑坡形成机理研究,研究成果有助于洮河下游地质灾害防治工作的展开,并为地方政府科学制定地质灾害防灾减灾规划提供了技术支持。  相似文献   

9.
Earthquakes in mountainous areas may produce many landslides that involve abundant snow, but few observations have been made of these hazardous phenomena. The 12 March 2011 north Nagano Prefecture earthquake (MJMA 6.7) occurred in a mountainous part of Japan that typically has an annual snow cover of more than 2 m, and it induced many snowy landslides. Some of these traveled relatively long distances. We examined the snowy Tatsunokuchi landslide to reconstruct the landsliding processes over deep snow. We infer that the Tatsunokuchi landslide occurred by collapse of a rock debris mass of 5?×?104 m3 that plunged into the abundant snow, forming a mixture of snow and rock debris, which then traveled on top of the snow. Later, the displaced mass included a large amount of snow which was pushed forward at the front and to the sides. The velocity of the landslide was estimated to be approximately 14 m/s. It appears that the displaced mass, having only a small proportion of rock debris, had a low enough density to travel easily on top of the snow. Our observations suggest that there was much liquid water at the base of the displaced mass shortly after the event. Our results suggest that landslides may damage wider areas than expected if they travel over deep snow.  相似文献   

10.
Landslides and slope failures are recurrent phenomena in the Indian Himalayas. The study area comprises the hill slopes along a road stretch of 1.5 km at a distance of 9 km from Pipalkoti on Chamoli–Badrinath highway (NH-58) in the Garhwal Himalayas, India. Based on the field survey, contour map, and the hillshade, the study area has been divided into different zones. Three different zones/slopes in this study area including one potential debris slide, one stable debris slope, and one potential rock slide have been undertaken for investigation and modeling. Field mapping, data collection related to slope features and soil/rock sample collection, and discontinuity mapping for all the slopes have been carried out in field. Soil samples have been tested in the laboratory to determine the physico-mechanical properties. These properties along with some material properties from the literature have been used as input parameters for the numerical simulation. To investigate the failure process in the debris/rock slides as well as stable debris slope, the slopes were modeled as a continuum using 2D finite element plain strain approach. Shear strength reduction analysis was performed to determine the critical strength reduction factor. The computed deformations and the stress distributions, along the failure surface, have been compared with the field observations and found to be in good agreement. The analysis results indicated rock/debris slide slopes to be highly unstable. The debris slide modeling depicted failures both above and below road levels as observed in field. The rock slide modeling could depict the exact pattern of failure involving 3 sets of discontinuities simultaneously as observed in real-field scenario which is a major limitation in case of limit equilibrium analysis. The field-observed stable slope comes to be stable through FE analysis also. Based on these analyses, landslide hazard assessment of the study area could be done.  相似文献   

11.
A dry debris avalanche will produce different volumes of colluviums or depositions (loose materials), which can have a significant impact on mountainous rivers or gullies. The loose material supply process caused by a debris avalanche is an important issue for understanding secondary disasters that form via the coupling of water flow and loose materials. Two flumes were designed for laboratory tests of the loose materials supply process to rivers/gullies, and the related impact factors were analyzed. Experimental results show that the supply of loose materials is a continuous process that directly relates to the avalanche’s mass movement processes. The sliding masses with smaller particle sizes are more sensitive to the flume slope and exhibited a longer supply time. The time-consuming for the debris avalanche travel in the flume decreased with the increasing particle size (such as flume B, time-consuming is decreased 0.2 s when the particle size increased from <1.0 to 20–60 mm), landslide volume and flume slope (flume A, consuming 1.6–2.1 s when flume slope is 29° decreased to consuming 1.3–1.5 s when flume slope is 41°), which means the increasing mobility of loose materials. The total supply time increased with the increasing landslide volume or decreasing particle size and flume slope. An empirical model for the process is presented based on numerous laboratory tests and numerical simulations, which can successfully describe the supply process for loose materials to a river/gully. The supply process of loose materials to mountainous gully from a dry debris avalanche is controlled by the material compositions of sliding masses, topographical conditions, landslide volume and bed friction, where large-volume debris avalanches that occur in mountainous river regions are more likely to obstruct the river flow and form a landslide-dammed lake.  相似文献   

12.
碎石土滑坡已经成为工程建设的主要病害之一。本文从碎石土滑坡发育的工程地质条件出发,通过大量文献研究和工程实践,系统地总结和归纳了碎石土滑坡滑体的物理力学性质和渗透性质,滑带土的颗粒成分、化学成分、微观结构、物理力学性质、遇水弱化性质和渗透性质。根据碎石土滑坡发育的工程地质特性,得到碎石土滑坡的工程地质模型、水文地质模型并提出了防治措施,对于工程实践中碎石土滑坡的稳定性分析和防治方案的设计具有重要的指导意义。  相似文献   

13.
Cao  Juan  Zhang  Zhao  Du  Jie  Zhang  Liangliang  Song  Yun  Sun  Geng 《Natural Hazards》2020,102(3):851-871

Jiuzhaigou, located in the transitional area between the Qinghai–Tibet Plateau and the Sichuan Basin, is highly prone to geological hazards (e.g., rock fall, landslide, and debris flow). High-performance-based hazard prediction models, therefore, are urgently required to prevent related hazards and manage potential emergencies. Current researches mainly focus on susceptibility of single hazard but ignore that different types of geological hazards might occur simultaneously under a complex environment. Here, we firstly built a multi-geohazard inventory from 2000 to 2015 based on a geographical information system and used satellite data in Google earth and then chose twelve conditioning factors and three machine learning methods—random forest, support vector machine, and extreme gradient boosting (XGBoost)—to generate rock fall, landslide, and debris flow susceptibility maps. The results show that debris flow models presented the best prediction capabilities [area under the receiver operating characteristic curve (AUC 0.95)], followed by rock fall (AUC 0.94) and landslide (AUC 0.85). Additionally, XGBoost outperformed the other two methods with the highest AUC of 0.93. All three methods with AUC values larger than 0.84 suggest that these models have fairly good performance to assess geological hazards susceptibility. Finally, evolution index was constructed based on a joint probability of these three hazard models to predict the evolution tendency of 35 unstable slopes in Jiuzhaigou. The results show that these unstable slopes are likely to evolve into debris flows with a probability of 46%, followed by landslides (43%) and rock falls (29%). Higher susceptibility areas for geohazards were mainly located in the southeast and middle of Jiuzhaigou, implying geohazards prevention and mitigation measures should be taken there in near future.

  相似文献   

14.
四川茂县新磨村高位滑坡铲刮作用分析   总被引:1,自引:1,他引:0       下载免费PDF全文
2017年6月24日,四川省茂县叠溪镇新磨村发生高位顺层山体滑坡,滑动高差达1 160 m,滑动平距约2 200 m。该滑坡的滑动方量巨大,与其滑动过程中产生的铲刮效应有关。为分析其铲刮效应,文章通过现场调查、遥感影像解译和无人机航拍图像,确定该滑坡的滑动全过程为:多次历史地震造成滑坡源区岩体结构破碎,降雨沿顶部裂隙入渗导致水压力增大及石英砂岩中的薄层板岩软化,在长期疲劳效应下斜坡上部岩体最终发生滑动;上部滑体在运移过程中,对斜坡中部浅表风化层、部分基岩及下部老滑坡堆积体进行铲刮并重新堆积。采用Rockfall软件模拟源区滑体的运动路径、速度与能量,结果表明:在碎屑流区和老滑坡堆积区都存在明显的集中铲刮作用,整个滑坡的高危险区也主要位于该区域,所以危险性分区可代表不同滑坡区域的铲刮程度。计算得两个区域的铲刮方量分别为4.9×106,4.38×106 m3,滑坡总方量为13.35×106 m3。该模拟和计算方法迅速有效,可为以后类似滑坡的应急、救灾和铲刮方量计算提供参考。  相似文献   

15.
This work focuses on developing multidisciplinary researches concerning weathering profiles related to landscape evolution of the Capo Vaticano promontory on the Calabria Tyrrhenian side (southern Italy). In this area, the tectonic uplift, occurred at least since Pleistocene, together with the Mediterranean climatic conditions, is the main cause of deep weathering and denudation processes. The latter occurred on the outcropping rocks of the crystalline-metamorphic basement, made up of weathered granitoids, in turn belonging to the Monte Poro granitoid complex (intermediate to felsic plutonic rocks covered by Cenozoic sedimentary successions). Field observations coupled to borehole explorations, geophysical surveys, and minero-petrographical analyses allowed the characterization of the granitoid outcrops typical of the studied area in terms of kind and degree of slope instability. This characterization was based on suitable correlations verified between several factors as weathering degree, elastic properties of rocks, and discontinuity features. Weathering profiles are mainly composed by rock masses varying from completely weathered rock with corestones of highly weathered rock (classes IV–V) to slightly weathered rocks (class II). The weathered rocks are involved in several landslide typologies such as debris flow (frequency 48.5%), translational slide (frequency 33.3%), and minor rock fall and rotational slide (frequency 9%). The achieved data allowed the establishment of a general correlation between weathering degree and type of slope instability. Debris flow-type instabilities are predominant on the steeper slopes, involving very poor rock masses ascribed to the shallowest portions of the weathering class IV. Translational slides are less widespread than the previous ones and often involve a mixture of soil and highly weathered rocks. Rotational slides are more frequently close to the top of the slopes, where the thicknesses of more weathered rocks increase, and involve mainly rock masses belonging to the weathering classes IV and V. Rock falls mostly occur on the vertical escarpments of the road cuts and are controlled by the characteristics of the main discontinuities. The assessment of rock mass rating and slope mass rating, based on the application of the discontinuity data, allowed respectively an evaluation of the quality of rock masses and of the susceptibility of rock slopes to failure. The comparison between the last one and the real stability conditions along the cut slopes shows a good correspondence. Finally, the geological strength index system was also applied for the estimation of rock mass properties. The achieved results give a worthy support for a better understanding of the relationship between the distribution of landslides and the geological features related to different weathering degrees. Therefore, they can provide a reliable tool to evaluate the potential stability conditions of the rock slopes in the studied area and a general reference framework for the study of weathering processes in other regions with similar geological features.  相似文献   

16.
Zhang  Yansong  Chen  Jianping  Zhou  Fujun  Bao  Yiding  Yan  Jianhua  Zhang  Yiwei  Li  Yongchao  Gu  Feifan  Wang  Qing 《Landslides》2022,19(4):941-962

A large paleolandslide occurred opposite the Gangda village in the upper Jinsha River, SE Tibetan Plateau. Field geological investigations and remote sensing indicated that the Gangda paleolandslide once blocked the Jinsha River. Evidence of river blocking, including landslide dam relics, upstream lacustrine sediments, and downstream outburst sediments, has been well preserved. To understand the river-blocking event including landslide, dam breach, and associated outburst flooding, optically stimulated luminescence (OSL) dating and numerical simulations were performed in this study. OSL dating results showed that the paleolandslide dam was formed at 5.4?±?0.5 ka BP and breached at 3.4?±?0.3 ka BP, indicating that the dam lasted approximately 2000 years. The discrete element method was used to simulate the dynamics of the Gangda rock landslide based on the restored topography, while a fluid–solid coupling model was performed to simulate the landslide dam breaching and flooding. The fluid–solid coupling model can simultaneously reflect the process of landslide-dam collapse and the propagation of outburst flood. The simulated results indicate that the whole landslide process lasted about 60 s with a peak velocity of 38 m/s. It is significant that the simulated morphology of the residual landslide dam and downstream outburst sediments is consistent with the field observations. The combined numerical investigation in this paper provided new insights into the research of landscape evolution and helped to understand the chain disaster of landslide, dam breach, and flooding.

  相似文献   

17.
A rock avalanche is a geological event that is always sudden, rapid and with a long run-out, and can result in large loss of lives and property. The Wenjiagou rock avalanche was a high-speed rock landslide caused by a strong earthquake, in Mianzhu, Sichuan Province, southwest China. In this study, we reproduce the movement and deposition processes of the sliding mass by numerical simulation. We analyze the effects of the friction coefficient of each slip surface and the strength of the parallel bonds and contact stiffness between particles on the dynamic process and deposit features using three-dimensional particle flow code (PFC3D). The simulation results agree with the field measurements when the friction coefficient is 0.2, parallel bond strength is 2 MPa, and contact stiffness is 2?×?108 kN/m. The landslide lasted about 115 s from the initial movement to the final deposition at the exit of the valley. The maximum velocity of the sliding mass was 114 m/s.  相似文献   

18.
汶川地震极震区泥石流物源动储量统计方法讨论   总被引:6,自引:0,他引:6  
本文总结了汶川地震灾区泥石流物源的主要类型,即:滑坡堵沟型物源、崩塌覆盖型物源、碎屑坡积型物源。根据三类物源参与泥石流活动的特点,建立了泥石流动储量的启动地质模式,沟谷下切侵蚀堵溃式和沟谷侧缘侵蚀滑坍式。在此基础上,选择地震灾区44处泥石流为样本,采用数学统计方法获得了总物源量与动储量的相关性,基本呈线性关系。总物源量为50×104m3以内时,动储量可达到15%;总物源量为100×104m3以内时,动储量可达到30%;总物源量为200×104m3以内时,动储量可达到37%;总物源量超过300×104m3时,动储量可超过40%。根据动储量的启动地质模式,本文还提供了计算单体动储量的图解法。  相似文献   

19.
Haivan Station is an important station on the North-South railway line in central Vietnam. Field investigation has identified a precursor stage of a landslide that would threaten this railway. Therefore, a landslide susceptibility assessment for Haivan Station was urgently needed to protect passenger safety and the national railway. Conducted investigations included air-photo interpretation, drilling, ground water and inclinometer monitoring, laboratory testing, and landslide simulation. This research applied the undrained dynamic loading ring shear apparatus ICL-2 to drill-core samples from the precursor landslide. Samples for ring shear tests were taken from sandy soil layers found at depths of ~21, ~31, and ~50 m in the cores. Each of these was believed to be a possible sliding surface of a landslide, and all were tested to shear failure in the ICL-2 apparatus. The boundary between highly weathered granitic rock and weathered granitic rock was identified at about 50 m depth. The inclinometer monitoring detected slight movement at this depth. Therefore, the present day risk of a landslide forming at 50 m is higher than for one forming at either 21 or 31 m. The landslide dynamic parameters obtained from the ring shear test of the 50-m-deep sample were used in an integrated numerical simulation model LS-RAPID. The simulation result gave the critical pore-pressure ratio for landslide occurrence, and landslide’s likely maximum speed, total volume, and depth of landslide debris that could cover the railway. These estimates serve to raise awareness of the vulnerability of the Vietnam national railway sector to landslide impact.  相似文献   

20.
Lai  Qiyi  Zhao  Jianjun  Huang  Runqiu  Wang  Dujiang  Ju  Nengpan  Li  Qingmiao  Wang  Yunsheng  Xu  Qiang  Zhao  Weihua 《Landslides》2022,19(2):331-349

The Chada rock avalanche is a prehistoric high-elevation giant rock landslide located in the Boshula Mountains, Lhorong County, Southeast Tibet. It is composed of conglomerates with a volume of 6.62?×?106 m3 and has a height difference of 1450 m and a transport distance of 3155 m. The accumulational landform shows characteristics indicating rock avalanches. With a unique red conglomerate as the marker of landslide movement, we combined the results of geological surveys, aerial surveys, and engineering geological drilling to determine the entrainment and geomorphic features of the rock avalanche. The rock avalanche was divided into the main scarp, entrainment zone (residual deposit, mixed deposit, and impact fragmentation areas), transport zone (compressed, local landslide, and longitudinal ridge areas), and deposit zone. The sequence of deposits in the valley indicates that the rock avalanche formed before the first-stage terrace and after the second-stage terrace. Combined with 3D numerical simulation, four movement stages were obtained: (1) the rock mass was broken and disintegrated due to progressive failure, initiating high-speed sliding; (2) the sliding mass scraped the thick previous slope material and formed oblique ridges by forward extrusion and lateral friction; (3) the 4.95?×?106 m3 sliding mass was compressed and decelerated to form bending ridges, and the 1.67?×?106 m3 sliding mass continued to move through the channel; and (4) the sliding mass extended to form longitudinal ridges in the channel and hummocks in the valley. The rock avalanche accelerated three times and decelerated three times during its motion.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号