首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen stable isotope of atmospheric water vapor is widely used to study the modern process of cli- mate. Atmospheric water vapor samples were collected at Dlingha, northeast of Tibetan Plateau during the period from July 2005 to February 2006. The variation of δ18O and the relationships between δ18O and both the temperature and specific humidity are analyzed in this paper. Results show that the sea- sonal variation of δ18O of atmospheric water vapor at Delingha is remarkable with higher δ18O in summer and lower δ18O in winter. The temporal variation of vapor δ18O shows obvious fluctuations, with magnitude of over 37‰. The daily variation of the δ18O is highly correlated with air temperature. The relationship between δ18O and atmospheric water vapor content is complex. Study shows that δ18O of atmospheric water vapor is positively correlated with specific humidity in winter in seasonal scale and inversely correlated with specific humidity in summer rainy period. The δ18O values of at- mospheric water vapor are lower than those of precipitation at Delingha, and the average difference is 10.7‰. Variations of δ18O of atmospheric water vapor is also found to be affected by precipitation events, The model results show that the precipitation effect could have caused the vapor δ18O in the raining season to lower by 7% in average in July and August.  相似文献   

2.
The studies of the oxgen and carbon isotopes of the rainwater in Guilin area, the drip water and the present carbonate deposit in Panlong cave of Guilin show that: (i) as to the general characteristics of the oxygen isotopes of the rainwater within a year and between years, the δ18O values decrease with an increase of air temperature and the rainfall, and the correlation between δ18O values and the mean monthly air temperature is much better than that between δ18O values and the rainfall, and the δ18O values of the rainwater during the summer monsoon are much smaller than those during winter monsoon; (ii) δ18O values of the drip water have a quite good correlation with the δ18O values of the rainwater in the same period; (iii) when the conditions are appropriate, δ13C can be used as an environmental proxy, that is, the smaller δ13C of speleothems is, the larger the proportion of C3 plants is and the more plentiful the rainfall is. On the contrary, C4 plants may be prevailing or the environment may be a stony desert caused by climate changes or human activity.  相似文献   

3.
Hydrogen isotopes in lipid biomarkers can trace past changes in the hydrologic cycle. Recent studies have revealed the potential of hydrogen isotopes in microalgal lipids for quantitatively reconstructing water δ~2H(δD) values and salinity. In this study we collected suspended particles along a salinity gradient from the Changjiang River Estuary(CRE), and measured δD values in fatty acids in these particles. The results indicated that δD values of water were correlated highly with salinity from the CRE, in agreement with the results from other estuaries. δD values in palmitic acid and stearic acid had a positive correlation with δD values of water from the CRE. Nevertheless, in the CRE, hydrogen isotope fractionation in fatty acids relative to water increased as salinity increased, opposite the trend in hydrogen isotope fractionation with salinity found in microalgal culture and field studies. We attribute the increase in hydrogen isotope fractionation as salinity increased to light availability, which was likely lower in the particle rich mixing zone at the end of the estuary, and potentially as well to multiple sources of fatty acids in the CRE.  相似文献   

4.
The future potential changes in precipitation and monsoon circulation in the summer in East Asia are projected using the latest generation of coupled climate models under Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A1B scenario (a medium emission scenario).The multi-model ensemble means show that during the period of 2010-2099,the summer precipitation in East Asia will increase and experience a prominent change around the 2040s,with a small increase (~1%) before the end of the 2040s and a large increase (~9%) afterward.This kind of two-stage evolution characteristic of precipitation change can be seen most clearly in North China,and then in South China and in the mid and lower Yangtze River Valley.In 2010-2099,the projected precipitation pattern will be dominated by a pattern of "wet East China" that explains 33.6% of EOF total variance.The corresponded time coefficient will markedly increase after the 2040s,indicating a great contribution from this mode to the enhanced precipitation across all East China.Other precipitation patterns that prevail in the current climate only contribute a small proportion to the total variance,with no prominent liner trend in the future.By the late 21st century,the monsoon circulation will be stronger in East Asia.At low level,this is due to the intensification of southwesterly airflow north of the anticyclone over the western Pacific and the SCS,and at high level,it is caused by the increased northeasterly airflow east of the anticyclone over South Asia.The enhanced monsoon circulation will also experience a two-stage evolution in 2010-2099,with a prominent increase (by ~0.6 m s-1) after the 2040s.The atmospheric water vapor content over East Asia will greatly increase (by ~9%) at the end of 21st century.The water vapor transported northward into East China will be intensified and display a prominent increase around the 2040s similar to other examined variables.These indicate that the enhanced precipitation over East Asia is caused by the increases in both monsoon circulation and water vapor,which is greatly different from South Asia.Both the dynamical and thermal dynamic variables will evolve consistently in response to the global warming in East Asia,i.e.,the intensified southwesterly monsoon airflow corresponding to the increased water vapor and southwesterly moisture transport.  相似文献   

5.
Precipitation δ 18O at Yushu, eastern Tibetan Plateau, shows strong fluctuation and lack of clear seasonality. The seasonal pattern of precipitation stable isotope at Yushu is apparently different from either that of the southwest monsoon region to the south or that of the inland region to the north. This different seasonal pattern probably reflects the shift of different moisture sources. In this paper, we present the spatial comparison of the seasonal patterns of precipitation δ 18O, and calculate the moisture transport flux by using the NCAR/NCEP reanalysis data. This allows us to discuss the relation between moisture transport flux and precipitation δ 18O. This study shows that both the southwest monsoon from south and inland air mass transport from north affected the seasonal precipitation δ 18O at Yushu, eastern Tibetan Plateau. Southwest monsoon brings the main part of the moisture, but southwest transport flux is weaker than in the southern part of the Tibetan Plateau. However, contribution of the inland moisture from north or local evaporation moisture is enhanced. The combined effect is the strong fluctuation of summer precipitation δ 18O at Yushu and comparatively poor seasonality.  相似文献   

6.
Using correlation and EOF analyses on sea level pressure from 57-year NCEP-NCAR reanalysis data, the Arabian Peninsula-North Pacific Oscillation (APNPO) is identified. The APNPO reflects the co-variability between the North Pacific high and South Asian summer monsoon low. This teleconnec- tion pattern is closely related to the Asian summer monsoon. On interannual timescale, it co-varies with both the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM); on decadal timescale, it co-varies with the EASM: both exhibit two abrupt climate changes in the middle 1960s and the late 1970s respectively. The possible physical process for the connections between the APNPO and Asian summer monsoon is then explored by analyzing the APNPO-related atmospheric circulations. The results show that with a strong APNPO, the Somali Jet, SASM flow, EASM flow, and South Asian high are all enhanced, and an anomalous anticyclone is produced at the upper level over northeast China via a zonal wave train. Meanwhile, the moisture transportation to the Asian monsoon regions is also strengthened in a strong APNPO year, leading to a strong moisture convergence over India and northern China. All these changes of circulations and moisture conditions finally result in an anoma- lous Asian summer monsoon and monsoon rainfall over India and northern China. In addition, the APNPO has a good persistence from spring to summer. The spring APNPO is also significantly corre- lated with Asian summer monsoon variability. The spring APNPO might therefore provide valuable in- formation for the prediction of Asian summer monsoon.  相似文献   

7.
To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs(Tingzikou, Xinzheng,Dongxiguan, Caojie) were collected in January and July,2016. The major cations, anions, and δ~(13)C_(DIC) values were analyzed. It was found that the dissolved compositions are dominated by carbonate weathering, while sulfuric acids may play a relatively important role during carbonate weathering and increasing DIC concentration. Different reservoirs had variable characteristics of water physiochemical stratification. The DIC concentrations of reservoir water were lower in summer than those in winter due to the dilute effects and intensive aquatic photosynthesis, as well as imported tributaries. The δ~(13)C_(DIC) values in Tingzikou Reservoir were higher during summer than those in winter,which indicated that intensive photosynthesis increased the δ~(13)C_(DIC) values in residual water, but a similar trend was not obvious in other reservoirs. Except for in Xinzheng Reservoir, the δ~(13)C_(DIC) values in inflow and outflow reservoir water were lower than those in the surface water of stratified sampling in summer. For stratified sampling, it could be found that, in summer, the Tingzikou Reservoir δ~(13)C_(DIC) values significantly decreased with water depthdue to the anaerobic breakdown of organic matter. The significant correlation(p0.01 or 0.05) between the DIC concentrations, the δ~(13)C_(DIC) values and anthropogenic species(Na~++K~+, Cl~–, SO_4~(2-) and NO_3~-) showed that the isotope composition of DIC can be a useful tracer of contaminants. In total, Tingzikou Reservoir showed lacustrine features, Xinzheng Reservoir and Dongxiguan Reservoir had "transitional' features, and Caojie Reservoir had a total of "fluvial' features. Generally, cascade reservoirs in the Jialing River exhibited natural river features rather than typical lake features due to characteristics of reservoir water in physiochemical stratification, spatiotemporal variations of DIC concentrations and isotopic compositions. It is evident that the dissolved inorganic carbon dynamics of natural rivers had been partly remolded by dam building.  相似文献   

8.
The hydrogen isotopic composition(δD) of n-alkanes in lacustrine sediments is widely used in palaeoenvironmental studies, but the heterogeneous origins and relative contributions of these lipids provide challenges for the interpretation of the increasing dataset as an environment and climatic proxy. We systematically investigated n-alkane δD values from 51 submerged plants(39 Potamogeton, 1 Myriophyllum, and 11 Ruppia), 13 algae(5 Chara, 3 Cladophora, and 5 Spirogyra) and 20 terrestrial plants(10 grasses and 10 shrubs) in and around 15 lakes on the Tibetan Plateau. Our results demonstrate that δD values of C_(29) nalkane are correlated significantly with the lake water δD values both for algae(R~2=0.85, p0.01, n=9) and submerged plants(R~2=0.90, p0.01, n=25), indicating that δD values of these algae and submerged plants reflect the δD variation of lake water. We find that apparent hydrogen isotope fractionation factors between individual n-alkanes and water(εa/w) are not constant among different algae and submerged plants, as well as in a single genus under different liminological conditions, indicating that the biosynthesis or environmental conditions(e.g. salinity) may affect their δD values. The δD values of submerged plant Ruppia in the Xiligou Lake(a closed lake) are significant enriched in D than those of terrestrial grasses around the lake(one-way ANOVA,p0.01), but the algae Chara in the Keluke Lake(an open lake) display similar δD values with grasses around the lake(one-way ANOVA, p=0.8260.05), suggesting that the n-alkane δD values of the algae and submerged plants record the signal of D enrichment in lake water relative to precipitation only in closed lakes in arid and semi-arid area. For each algae and submerged plant sample, we find uniformed δD values of different chain length n-alkanes, implying that, in combination with other proxies such as Paq and Average Chain Length, the offset between the δD values of different chain length n-alkanes can help determine the source of sedimentary n-alkanes as well as inferring the hydrological characteristics of an ancient lake basin(open vs closed lake).  相似文献   

9.
The evolution of the East Asian summer monsoon(EASM) during the Holocene has long been of significant interest.Knowledge of past EASM variability not only increases our understanding of monsoon dynamics on a long timescale,but it also provides an environmental and climatic background for research into Chinese cultural development.However,the timing of the EASM maximum remains controversial.The popular concept of an "early Holocene maximum" is mainly based on speleothemδ~(18)O(δ~(18)O_c) records from caves in southern China;however,the interpretation of δ~(18)O_C as a reliable proxy for EASM intensity is being increasingly challenged.The present paper is a critical review of the climatic significance of the δ~(18)O_C record from China.Firstly,we suggest that precipitation in northern China is an appropriate index of EASM intensity,the variation of which clearly indicates a mid-Holocene monsoon maximum.Secondly,an interregional comparison demonstrates that the precipitation record in northern China is quite different from that in southern China on a range of timescales,and is inconsistent with the spatial similarity exhibited by speleothem oxygen isotope records.Furthermore,both modeling and observational data show that the δ~(18)O_C records from southern China indeed reflect changes in precipitation δ~(18)O(δ~(18)O_P) rather than precipitation amount,and therefore that their use as an EASM proxy is inappropriate.Finally,we address several significant monsoon-related issues-including the driving mechanism of the EASM on an orbital timescale,the climatic significance of speleothem oxygen isotopes,and the relationship between atmospheric circulation and precipitation in monsoonal regions.  相似文献   

10.
Shales are a major sink for K into seawater delivered from continental weathering,and are potential recorders of K cycling.High precision K isotope analyses reveal a[0.6%variation in δ^41K values(41K/39K relative to NIST SRM 3141a)from a set of well characterized postArchean Australian shale(PAAS)samples.By contrast,loess samples have relatively homogenous δ^41K values(-0.5±0.1%),which may represent the average K composition of upper continental crust.Most of the shales analyzed in this study have experienced K enrichment relative to average continental crust,and the majority of them define a trend of decreasing δ^41K value(from-0.5to-0.7%)with increasing K content and K/Na ratio,indicating cation exchange in clays minerals is accompanied by K isotope fractionation.Several shale samples do not follow the trend and have elevated δ^41K values up to-0.1%,and these samples are characterized by variable Fe isotope compositions,which reflect post-depositional processes.The K isotope variability observed in shales,in combination with recent findings about K isotope fractionation during continental weathering,indicates that K isotopes fractionate during cycling of K between different reservoirs,and K isotopes in sediments may be used to trace geological cycling of K.  相似文献   

11.
The δ18O variations in an 80.36 m ice core retrieved in the accumulation zone of the East Rongbuk Glacier, Mount Qomolangma (Everest), is not consistent with changes of air temperature from both southern and northern slopes of Himalayas, as well as these of the temperature anomalies over the Northern Hemisphere. The negative relationship between the δ18O and the net accumulation records of the ice core suggests the "amount effect" of summer precipitation on the δ18O values in the region. Therefore, the δ18O records of the East Rongbuk ice core should be a proxy of Indian Summer Monsoon intensity, which shows lower δ18O values during strong monsoon phases and higher values during weak phases.  相似文献   

12.
Water stable isotopes(δ~2 H and δ~(18)O) can record surface water evaporation,which is an important hydrological process for understanding watershed structure and function evolution.However,the isotopic estimation of water evaporation losses in the mountain watersheds remains poorly explored,which hinders understanding spatial variations of hydrological processes and their relationships with the temperature and vegetation.Here we investigated δ~2 H,δ~(18)O,and d-excess values of stream water along an altitude gradient of 2130 to 3380 m in Guan'egou mountain watershed at the east edge of the Qinghai-Tibet Plateau in China.The mean δ~2 H(-69.6‰±2.6‰),δ~(18)O(-10.7‰±0.3‰),and dexcess values(16.0‰±1.4‰) of stream water indicate the inland moisture as the major source of precipitation in study area.Water stable isotopes increase linearly with decreasing altitudes,based on which we estimated the fractions of water evaporation losses along with the altitude and their variations in different vegetations.This study provides an isotopic evaluation method of water evaporation status in mountain watersheds,the results are useful for further understanding the relationship between hydrological processes and ecosystem function under the changing climate surrounding the Qinghai-Tibet Plateau.  相似文献   

13.
The kinetic fractionation of open-water evaporation against the stable water isotope H_2 ~(18)O is an important mechanism underlying many hydrologic studies that use ~(18)O as an isotopic tracer. A recent in-situ measurement of the isotopic water vapor flux over a lake indicates that the kinetic effect is much weaker(kinetic factor 6.2‰) than assumed previously(kinetic factor14.2‰) by lake isotopic budget studies. This study investigates the implications of the weak kinetic effect for studies of deuterium excess-humidity relationships, regional moisture recycling, and global evapotranspiration partitioning. The results indicate that the low kinetic factor is consistent with the deuterium excess-humidity relationships observed over open oceans.The moisture recycling rate in the Great Lakes region derived from the isotopic tracer method with the low kinetic factor is a much better agreement with those from atmospheric modeling studies than if the default kinetic factor of 14.2‰ is used. The ratio of transpiration to evapotranspiration at global scale decreases from 84±9%(with the default kinetic factor) to 76±19%(with the low kinetic factor), the latter of which is in slightly better agreement with other non-isotopic partitioning results.  相似文献   

14.
Organic carbon isotope(δ13Corg) data from two well-preserved sections across a shallow-to-deep water transect of the late Ediacaran-Early Cambrian Yangtze Platform in South China show significant temporal and spatial variations. In the shallow-water Jiulongwan-Jijiapo section, δ13Corg values of the late Ediacaran Dengying Formation range from -29‰ to -24‰. In the deep-water Longbizui section, δ13Corg values from time-equivalent strata of the Dengying Formation are mostly between –35‰ and -32‰. These new data, in combination with δ13Corg data reported from other sections in South China, reveal a 6‰–8‰ shallow-to-deep water δ13Corg gradient. High δ13Corg values(-30‰) occur mostly in shallow-water carbonate rocks, whereas low δ13Corg values(-32‰) dominate the deep-water black shale and chert. The large temporal and spatial δ13Corg variations imply limited buffering effect from a large dissolved organic carbon(DOC) reservoir that was inferred to have existed in Ediacaran-Early Cambrian oceans. Instead, δ13Corg variations between platform and basin sections are more likely caused by differential microbial biomass contribution to total organic matter. High δ13Corg values(-30‰) documented from shallow-water carbonates are within the range of typical Phanerozoic δ13Corg data and may record the isotope signature of organic matter from primary(photosynthetic) production. In contrast, low δ13Corg values(-32‰) from deep-water sections may have resulted from higher chemoautotrophic or methanotrophic biomass contribution to bulk organic matter in anoxic environments. The δ13Corg data provide indirect evidence for ocean stratification and episodic chemocline fluctuations in the Ediacaran-Early Cambrian Yangtze Platform.  相似文献   

15.
Based on weathering characteristics of the fifth palaeosol layer (S5) of four sections in Guanzhong Plain, the thickness of the weathered profile of the paleosol is determined to be greater than the ordi- nary soil, a weathered and leached loess layer thicker than 2 m. The distribution depth of the red argil- lans, the weathered and leached loess layer, Fe2O3, CaCO3 and Sr content under the S5 all indicate that the precipitation in Guanzhong Plain was over 900 mm at that time. The distribution depth of gravity water zone reached 4.2 m at least, and the soil moisture content was generally more than 20% within the range of 4.2 m. At that time there was sufficient soil moisture and no dried earth layer developed in Guanzhong Plain, suitable for the forest to develop. When this soil developed, the mean annual pre- cipitation was more than the annual soil moisture evaporation. The value of soil moisture balance was positive and the atmospheric precipitation could supply the underground water normally. Soil water was weak acidic in the middle and late stages when S5 developed in Guanzhong Plain. It was a kind of subtropical climate and even more humid and warmer than the northern edge of the subtropical climate zone in Guanzhong Plain when the S5 developed. At that time the subtropical climate was prevailing over the northern side and southern side of Qingling Mountains, showing the Mountains no longer to be the boundary between the subtropical zone and the temperate zone in China. The summer monsoon acted intensely and could go over Qingling Mountains frequently bring abundant precipitation.  相似文献   

16.
Stable isotope paleoaltimetry has provided unprecedented insights into the topographic histories of many of the world's highest mountain ranges. However, on the Tibetan Plateau(TP), stable isotopes from paleosols generally yield much higher paleoaltitudes than those based on fossils. It is therefore essential when attempting to interpret accurately this region's paleoaltitudes that the empirical calibrations of local stable isotopes and the relations between them are established. Additionally,it is vital that careful estimations be made when estimate how different isotopes sourced from different areas may have been influenced by different controls. We present here 29 hydrogen isotopic values for leaf wax-derived n-alkanes(i.e., δD_(wax) values,and abundance-weighted average δD values of C_(29) and C_(31)) in surface soils, as well as the δD values of soil water(δD_(sw)) samples(totaling 22) from Mount Longmen(LM), on the eastern TP(altitude ~0.8–4.0 km above sea level(asl), a region climatically affected by the East Asian Monsoon(EAM). We compared our results with published data from Mount Gongga(GG). In addition,47 river water samples, 55 spring water samples, and the daily and monthly summer precipitation records(from May to October,2015) from two precipitation observation stations were collected along the GG transect for δD analysis. LM soil δD_(wax) values showed regional differences and responded strongly to altitude, varying from.160‰ to.219‰, with an altitudinal lapse rate(ALR) of.18‰ km~(-1)(R~2=0.83; p0.0001; n=29). These δD_(wax) values appeared more enriched than those from the GG transect by ~40‰. We found that both the climate and moisture sources led to the differences observed in soil δD_(wax) values between the LM and GG transects. We found that, as a general rule, ε_(wax/rw), ε_(wax/p) and εwax/sw values(i.e., the isotopic fractionation of δD_(wax) corresponding to δD_(rw), δD_p and δD_(sw)) increased with increasing altitude along both the LM and GG transects(up to 34‰ and 50‰, respectively). Basing its research on a comparative study of δD_(wax), δD_p, δD_(rw)(δD_(springw)) and δD_(sw), this paper discusses the effects of moisture recycling, glacier-fed meltwater, relative humidity(RH), evapotranspiration(ET), vegetation cover, latitude,topography and/or other factors on ε_(wax/p) values. Clearly, if ε_(wax-p) values at higher altitudes are calculated using smaller ε_(wax-p) values from lower altitudes, the calculated paleowaterδD_p values are going to be more depleted than the actual δD values, and any paleoaltitude would therefore be overestimated.  相似文献   

17.
This study investigates the Stratosphere-Troposphere Exchange(STE) of water vapor,emphasizes its interdecadal variations over Asia in boreal summer,and discusses the influences of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific(WNP) on them by using the Wei method with reanalysis data from the European Centre for Medium-Range Weather Forecasts(ECMWF) for the years of 1958-2001.The climatology shows that the upward transport of water vapor across the tropopause in boreal summer is the most robust over the joining area of the South Asian Peninsula and Indian-Pacific Oceans(defined as AIPO).The upward transport over there can persistently convey the abundant water vapor into the stratosphere and then influence the distribution and variation of the stratospheric water vapor.The analysis shows that interdecadal variations of the water vapor exchange over the AIPO are significant,and its abrupt change occurred in the mid-1970s and the early 1990s.In these three periods,as important channels of the water vapor exchange,the effect of Bay of Bengal-East Asia as well as South China Sea was gradually weakening,while the role of the WNP becomes more and more important.Further studies show that atmospheric heat sources over the Tibetan Plateau and the WNP are two main factors in determining the interdecadal variations of water vapor exchange.The thermal influences over the Tibetan Plateau and the WNP have been greatly adjusted over the pass 44 years.Their synthesis influences the interdecadal variations of the water vapor exchange by changing the Asian summer monsoon,but their roles vary with time and regions.Especially after 1992,the influence of heat source over the Tibetan Plateau remarkably weakens,while the heat source over the WNP dominates the across-tropopause water vapor exchange.Results have important implications for understanding the transport of other components in the atmosphere and estimating the impact of human activities(emission) on global climate.  相似文献   

18.
Actual evapotranspiration(ET_a) over the Tibetan Plateau(TP) is an important component of the water cycle,and greatly influences the water budgets of the TP lake basins.Quantitative estimation of ET_a within lake basins is fundamental to physically understanding ET_a changes,and thus will improve the understanding of the hydro logical processes and energy balance throughout the lake basins.In this study,the spatiotemporal dynamic changes of ET_α within the Lake Selin Co(the TP's largest lake) and its surrounding small lakes and land area during 2003-2012 are examined at the basin scale.This was carried out using the well-established Water and Energy Budget-based Distributed Hydrological Model(WEB-DHM) for the land area,the Penman method for the water area when unfrozen,and a simple sublimation estimation approach for the water area when frozen.The relationships between ET_a changes and controlling factors are also discussed.Results indicate that the simulated land ET_a from the WEB-DHM reasonably agrees with the estimated ET_a values from the nonlinear complementary relationship model using appropriately calibrated parameter values at a point scale.Land ET_a displayed a non-significant increase of 7.03 mm year~(-1),and largely depends on precipitation.For the water area,the combined effects of reduced wind speed and net radiation offset the effect of rising temperature and vapor pressure deficit,and contributed to a non-significant decrease in evaporation of 4.17 mm year~(-1).Sensitivity analysis shows that vapor pressure deficit and wind speed are the most sensitive variables to the changes of evaporation from the water area.  相似文献   

19.
Long-term highly accurate surface soil moisture data of TP(Tibetan Plateau)are important to the research of Asian monsoon and global atmospheric circulation.However,due to the sparse in-situ networks,the lack of soil moisture observations has seriously hindered the progress of climate change researches of TP.Based on the Dual-Channel soil moisture retrieval algorithm and the satellite observation data of AMSR-E(Advanced Microwave Scanning Radiometer for EOS),we have produced the surface soil moisture data of TP from 2003 to 2010 and analyzed the seasonal characteristic of the soil moisture spatial distribution and its multi-year changing trend in area of TP.Compared to the in-situ observations,the accuracy of the soil moisture retrieved by the proposed algorithm is evaluated.The evaluation result shows that the new soil moisture product has a better accuracy in the TP region than the official product of AMSR-E.The spatial distribution of the annual mean values of soil moisture and the seasonal variations of the monthly-averaged soil moisture are analyzed.The results show that the soil moisture variations in space and time are consistent with the precipitation distribution and the water vapor transmission path in TP.Based on the new soil moisture product,we also analyzed the spatial distribution of the changing trend of multi-year soil moisture in TP.From the comparisons with the precipitation changing trend obtained from the meteorological observation sites in TP,we found that the spatial pattern of the changing trend of soil moisture coincides with the precipitation as a whole.  相似文献   

20.
Chen  Dongyu  Lian  Ergang  Shu  Yeqiang  Yang  Shouye  Li  Yalong  Li  Chao  Liu  Pengfei  Su  Ni 《中国科学:地球科学(英文版)》2020,63(10):1564-1576
Oxygen isotope(δ~(18)O) of seawater is an excellent proxy for tracing the origins of water masses and their mixing processes. Combining with hydrographic observation, hybrid coordinate ocean model(HYCOM) analysis data, and seawater oxygen isotope, we investigated the source of the South China Sea Warm Current(SCSWC) in the southwestern Taiwan Strait and its underlying mechanism. Results show that the Kuroshio subsurface water(KSSW) can intrude the continental slope in the southwestern Taiwan Strait, and thereby climb up the continental slope coupled with upwelling. The δ~(18)O-salinity relationship further indicates that in spring, the SCSWC in the southwestern Taiwan Strait originates from the upslope deflection of the slope current formed by the KSSW intrusion into the South China Sea, rather than from the west segment of the SCSWC formed to the east of Hainan Island. In addition, the southward flowing Zhe-Min Coastal Current(ZMCC) can reach as far as the Taiwan Bank(TB) and deflects offshore over the western TB at approximately 23.5°N, to some extent affecting the SCSWC. Moreover, this study reveals that seawater δ~(18)O is exquisitely sensitive to the determination of the origin and transport of water masses as compared with traditional potential temperature-salinity plot(θ-S) and HYCOM analysis data. In addition, their coupling can more reliably interpret the mixing processes of shelf water masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号