首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robinson  P.A.  Benz  A.O. 《Solar physics》2000,194(2):345-369
Bidirectional coronal type III bursts are modeled by combining a model of coronal electron heating and beam generation via time-of-flight effects with semiquantitative estimates of quasilinear relaxation. Electromagnetic emissivities are estimated by extending the recently developed theory of interplanetary type III bursts to coronal emissions, including its features of stochastic Langmuir-wave growth and three-wave interactions. The results are investigated for heating on open and closed coronal field lines and are compared with observations of normal, reverse-slope, bidirectional, and inverted-J and -U coronal type III radio bursts. Harmonic emission is predicted to dominate at plasma frequencies above roughly 100 MHz where the efficiency of fundamental emission falls off steeply, while its free-free reabsorption rises. The model also explains the observed trends in the likelihood of occurrence of normal, reverse-slope, and bidirectional coronal type III bursts.  相似文献   

2.
3.
We perform a statistical analysis on 157 M-class soft X-ray flares observed during 1997?–?2014 with and without deca-hectometric (DH) type II radio bursts aiming at the reasons for the non-occurrence of DH type II bursts in certain events. All the selected events are associated with halo Coronal Mass Ejections (CMEs) detected by the Solar and Heliospheric Observatory (SOHO) / Large Angle Spectrometric and COronograph (LASCO). Out of 157 events, 96 (61%; “Group I”) events are associated with a DH type II burst observed by the Radio and Plasma Wave (WAVES) experiment onboard the Wind spacecraft and 61 (39%; “Group II”) events occur without a DH type II burst. The mean CME speed of Group I is \(1022~\mbox{km}/\mbox{s}\) and that of Group II is \(647~\mbox{km}/\mbox{s}\). It is also found that the properties of the selected M-class flares such as flare intensity, rise time, duration and decay time are greater for the DH associated flares than the non-DH flares. Group I has a slightly larger number (56%) of western events than eastern events (44%), whereas Group II has a larger number of eastern events (62%) than western events (38%). We also compare this analysis with the previous study by Lawrance, Shanmugaraju, and Vr?nak (Solar Phys. 290, 3365L, 2015) concerning X-class flares and confirm that high-intensity flares (X-class and M-class) have the same trend in the CME and flare properties. Additionally we consider aspects like acceleration and the possibility of CME-streamer interaction. The average deceleration of CMEs with DH type II bursts is weaker (\(a = - 4.39\mbox{ m}/\mbox{s}^{2}\)) than that of CMEs without a type II burst (\(a = -12.21\mbox{ m}/\mbox{s}^{2}\)). We analyze the CME-streamer interactions for Group I events using the model proposed by Mancuso and Raymond (Astron. Astrophys. 413, 363, 2004) and find that the interaction regions are the most probable source regions for DH type II radio bursts.  相似文献   

4.
V. G. Ledenev 《Solar physics》2008,253(1-2):191-198
If plasma waves propagate in the direction of the plasma density decrease, their spectrum shifts to large wave numbers (to small phase velocities). This means that the spectrum of plasma waves excited by an electron beam concentrates near the distribution function (“plateau”) border, which shifts in the region of low velocities in the process of quasilinear relaxation. As the spectrum of excited plasma waves shifts in the region of large wave numbers, their frequency grows in accordance with the dispersion equation, which describes these waves. When the growth of the plasma wave frequency exceeds the decrease of the frequency owing to the regular inhomogeneity in the corona, the branch with positive frequency drift appears on the dynamic spectrum of the radio emission. Our computations allow us to estimate the density and energy of electron beams generating type U bursts.  相似文献   

5.
6.
The twin STEREO and the Wind spacecraft make remote multipoint measurements of interplanetary radio sources of solar origin from widely separated vantage points. One year after launch, the angular separation between the STEREO spacecraft reached 45°, which was ideal for locating solar type III radio sources in the heliosphere by three-spacecraft triangulation measurements from STEREO and Wind. These triangulated source locations enable intrinsic properties of the radio source, such as its beaming characteristics, to be deduced. We present the first three-point measurements of the beaming characteristics for two solar type III radio bursts that were simultaneously observed by the three spacecraft in December of 2007 and in January of 2008. These analyses suggest that individual type III bursts exhibit a wide beaming pattern that is approximately beamed along the direction tangent to the Parker spiral magnetic field line at the source location.  相似文献   

7.
It is generally believed that the conversion of Langmuir wave (LW) to electromagnetic wave is the generating mechanism of solar type III bursts. The Langmuir wave can be easily excited by the instability of the electron-beam current, and the interaction of the forward and backward Langmuir waves is considered to be the cause for the second harmonic of a type III burst, but, so far, the dispersion equation and generating mechanism of the backward Langmuir wave have not yet been thoroughly studied. For the equation of two-stream instability with temperature included, an analytical solution is derived. It is found that the dispersion relation of the forward LW strongly depends on the beam-current speed, while that of the backward LW depends only on the thermal velocity, when the other parameters are fixed. These analytical results are partially confirmed by particle-in-cell (PIC) simulations. With the PIC simulation, the generating mechanism of the backward LW is studied, and it is revealed that the backward LW can not be excited directly by the electron-beam current, and that its energy is obtained basically from the scattering of the forward LW. However, the electron-beam current does cause a direct amplification of the second harmonic of the forward LW.  相似文献   

8.
We report on the detailed analysis of a set of 38 multiple type II radio bursts observed by Culgoora radio spectrograph from January 1997 to July 2003. These events were selected on the basis of the following criteria: (i) more than one type II were reported within 30 min interval, (ii) both fundamental and harmonic were identified for each of them. The X-ray flares and CMEs associated with these events are identified using GOES, Yohkoh SXT, SOHO/EIT, and SOHO/LASCO data. From the analysis of these events, the following physical characteristics are obtained: (i) In many cases, two type IIs with fundamental and harmonic were reported, and the time interval between the two type IIs is within 15 min; (ii) The mean values of starting frequency, drift rate, and shock speed of the first type II are significantly higher than those of the second type II; (iii) More than 90% of the events are associated with both X-ray flares and CMEs; (iv) Nearly 75% of the flares are stronger than M1 X-ray class and 50% of CMEs have their widths larger than 200^∘ or they are halo CMEs; (v) While most of the first type IIs started within the flare impulsive phase, 22 out of 38 second type IIs started after the flare impulsive phase. Weak correlations are found between the starting and ending frequencies of these type II events. On the other hand, there was no correlation between two shock speeds between the first and the second type II. Since most of the events are associated with both the flares and CMEs, and there are no events which are only associated with multiple impulsive flares or multiple mass ejections, we suggest that the flares and CMEs (front or flank) both be sources of multiple type IIs. Other possibilities on the origin of multiple type IIs are also discussed.  相似文献   

9.
马兵  陈玲  吴德金 《天文学报》2023,(3):35-233
与太阳射电爆发相比,通常认为频率较低的行星际射电爆发产生于远离低日冕的行星际空间.地球电离层的截止导致地基设备无法对其进行观测.美国国家航空航天局(National Aeronautics and Space Administration, NASA)发射的帕克太阳探测器(Parker Solar Probe, PSP)是迄今为止距离太阳最近的空间探测器.其搭载的射电频谱仪能够对10 k Hz–19.17 MHz频段范围内的射电辐射进行观测. PSP能够靠近甚至可能穿越行星际III型射电爆发的辐射源区,因此使用PSP对行星际射电爆发进行观测具有前所未有的优势.简要介绍了目前为止使用PSP的射电观测数据对行星际III型射电爆发的多方面研究,包括爆发的发生率、偏振、散射、截止频率、可能的辐射机制和相关的辐射源区等方面的研究进展,并讨论了其未来的研究前景.  相似文献   

10.
11.
The phenomenological features of type V radiation are discussed at the basis of fine structure records taken at the Astrophysical Observatory Potsdam since 1958. A phenomenological subclassification is derived from the various forms of appearance. It is believed that significant qualities are only the longer duration than that of normal type III bursts and the fact that nearly always a type III burst is preceding. It seems that there are no urgent reasons to consider type V emission as continuum radiation. It is assumed that no different excitation mechanism is effective for type III and type V. The observational facts are tentatively explainable by special assumptions about the structure of the exciting electron stream. Additionally it is taken into consideration that the prolonged duration of type V is due to a merging process. It is suggested that merging occurs if the same coronal area is reexcited by a second electron stream, whereas superposition occurs if different areas are excited by both the streams. The possibility is considered that harmonics partly contribute to the observed features.  相似文献   

12.
Wentzel  Donat G. 《Solar physics》1997,175(1):191-196
Circularly polarized radio radiation maintains its polarization even where the magnetic field reverses its sign relative to the ray (QT region) if the reversal is sufficiently abrupt (strong QT region). Bastian (1995) suggested that coronal turbulence scatters radiation, such as type I bursts, sufficiently to make the reversal abrupt where it would otherwise not be. However, the observed directivity of type I bursts sets an upper limit on the scattering. This limit implies that the turbulent scattering is not sufficient to maintain the circular polarization as in a strong QT region. The conclusion is strengthened by an analytical calculation of the polarization. Apparently, the fully polarized type I bursts, near disk center, encounter no horizontal magnetic fields, at least not until high enough in the corona that the QT region is strong anyway.  相似文献   

13.
We revisit in this work a model for repeating Fast Radio Bursts based of the release of energy provoked by the magnetic field dynamics affecting a magnetar's cr...  相似文献   

14.
The Solar Electron Proton Telescope on board the twin STEREO spacecraft measures electrons and ions in the energy range from 30 to above 400 keV with an energy resolution better than 10%. On 22 February 2010 during a short interval of 100 minutes, a sequence of impulsive energetic electron events in the range below 120 keV was observed with the STEREO-A/SEPT instrument. Each of the four events was associated with a type III radio burst and a narrow EUV jet. All the events show nearly symmetric “spike”-like time profiles with very short durations ≃ 5 min. The estimated electron injection time for each individual event shows a small time delay between the electron spike and the corresponding type III radio emission and a close coincidence with an EUV jet. These observations reveal the existence of spike-like electron events showing nearly “scatter-free” propagation from the Sun to STEREO-A. From the time coincidence we infer that the mildly relativistic electrons are accelerated at the same time and at the same location as the accompanying type III emitting electrons and coronal EUV jets. The characteristics of the spikes reflect the injection and acceleration profiles in the corona rather than interplanetary propagation effects.  相似文献   

15.
Kalaivani  P. Pappa  Prakash  O.  Shanmugaraju  A.  Feng  Li  Lu  Lei  Gan  Weigun  Michalek  G. 《Astrophysics》2021,64(3):327-344
Astrophysics - We analyze radio bursts observed in events with interacting/non-interacting CMEs that produced major SEPs (Ip > 10 MeV) from April 1997 to December 2014. We compare properties...  相似文献   

16.
Y. Ma  R. X. Xie  M. Wang 《Solar physics》2006,238(1):105-115
Detailed statistics and analysis of 264 type III bursts observed with the 625–1500 MHz spectrograph during the 23rd solar cycle (from July 2000 to April 2003) are carried out in the present article. The main statistical results are similar to those of microwave type III bursts presented in the literature cited, such as the correlation between type III bursts and flares, polarization, duration, frequency drift rate (normal and reverse slopes), distribution of type III bursts and frequency bandwidth. At the same time, the statistical results also point out that the average values of the frequency drift rates and degrees of polarization increase with the increase in frequency and the average value of duration decreases with the increase in frequency. Other statistical results show that the starting frequencies of the type III bursts are mainly within the range from 650 to 800 MHz, and most type III bursts have an average bandwidth of 289 MHz. The distributions imply that the electron acceleration and the place of energy release are within a limited decimetric range. The characteristics of the narrow bandwidth possibly involve the magnetic configuration at decimetric wavelengths, the location of electron acceleration in the magnetic field nearto the main flare, the relevant runaway or trapped electrons, or the coherent radio emission produced by some secondary shock waves. In addition, the number of type III bursts with positive frequency drift rates is almost equal to that with negative frequency drift rates. This is probably explained by the hypothesis that an equal number of electron beams are accelerated upwards and downwards within the range of 625 to 1500 MHz. The radiation mechanism of type III bursts at decimetric wavelengths probably includes these microwave and metric mechanisms and the most likely cause of the coherent plasma radiation are the emission processes of the electron cyclotron maser.  相似文献   

17.
EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts   总被引:1,自引:0,他引:1  
Type-I bursts (i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7?–?0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. (Solar Phys. 193, 227, 2000).  相似文献   

18.
为解释太阳运动Ⅳ型射电爆发的相干辐射机制提出一个理论模型.从耀斑中产生的高能电子,可以被扩展上升的太阳磁流管俘获.在磁流管顶部,这些高能电子的速度分布形成为类束流速度分布,激发柬流等离子体的不稳定性,并且主要直接放大O模电磁波.不稳定性增长率敏锐地依赖了日冕等离子体参数fpe/fce和射束温度Tb,这能定性解释在太阳运动Ⅳ型射电爆发中观测到的高亮温度和高偏振度,以及宽频谱的特性.  相似文献   

19.
Wentzel  Donat G. 《Solar physics》1997,175(1):175-189
Solar Physics - What are the observational effects if type I bursts are deflected by lower-hybrid waves? The deflection creates an elliptical radio mirage, with the direct source at one end of the...  相似文献   

20.
We have analyzed radio type IV bursts in the interplanetary (IP) space at decameter–hectometer (DH) wavelengths to determine their source origin and a reason for the observed directivity. We used radio dynamic spectra from the instruments on three different spacecraft, STEREO-A, Wind, and STEREO-B, which were located approximately 90 degrees apart from each other in 2011?–?2012, and thus gave a 360 degree view of the Sun. The radio data were compared to white-light and extreme ultraviolet (EUV) observations of flares, EUV waves, and coronal mass ejections (CMEs) in five solar events. We find that the reason that compact and intense DH type IV burst emission is observed from only one spacecraft at a time is the absorption of emission in one direction and that the emission is blocked by the solar disk and dense corona in the other direction. The geometry also makes it possible to observe metric type IV bursts in the low corona from a direction where the higher-located DH type IV emission is not detectable. In the absorbed direction we found streamers, and they were estimated to be the locations of type II bursts, caused by shocks at the CME flanks. The high-density plasma was therefore most probably formed by shock–streamer interaction. In some cases, the type II-emitting region was also capable of stopping later-accelerated electron beams, which were visible as type III bursts that ended near the type II burst lanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号