首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
The XV mafic-ultramafic intrusion is located in the western part of the Posht-e-Badam Block (PBB) within the Central Iranian Micro-Continent (CIMC). Petrographically, the intrusion is composed of gabbro and pyroxenite. Apatite U–Pb dating has established the crystallization age of this intrusion to be 363 ± 67 Ma. The XV intrusive rocks are tholeiitic to slightly calc-alkaline in nature and are characterized by an enrichment of large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high field strength elements (HFSE) and Heavy Rare Earth Elements (HREE), respectively. The major oxide elements display continuous trends relative to SiO2. The 87Sr/86Sr(i) ratios range from 0.7045 to 0.7056, and the εNd(i) values range from 2.63 to 3.30. In addition, the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios exhibit a narrow range, varying from 18.68 to 18.70, 15.67 to 15.71, and 38.84 to 38.99, respectively. The geochemical and isotopic characteristics suggest that the parental magma was derived from a Sub- Continental Lithospheric Mantle (SCLM) that was modified by oceanic slab-derived components. The locations of the XV intrusive rocks in εNd(i) versus TDM (Ga) and Nb/La versus discrimination diagrams further support this conclusion. Fractional crystallization is identified as the dominant process influencing the formation of distinct lithological units within the XV intrusive rocks. Our newly presented isotopic and geochronological data, when considered in the regional context, suggest that the XV intrusive rocks were formed in an extensional tectonic setting. In this scenario, upwelling from the asthenospheric mantle induced heating, leading to the melting of previously subduction-modified SCLM. Comparative analysis with previously published ages indicates that extensional magmatism in the PBB continued into the Middle Paleozoic.  相似文献   

2.
This paper presents systematic studies on the C—O and Sr—Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C—O isotopic compositions with δ13C and δ18O in the range of −4.8‰—−7.6‰ and +9.9‰—+13.2‰, respectively. However, Cretaceous three different types of mantlederived rocks have quite different C—O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr—Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C—O and Sr—Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demonstrates that the lithospheric mantle beneath the region underwent at least twice reconstructions since the Paleozoic. Available data imply that the first reconstruction mainly happened during the Triassic-Jurassic time with gradual changes and the second in the Cretaceous with abrupt changes. Results also show that the early Cretaceous (especially at 120-130 Ma) was perhaps the key period leading to the dramatic change of the Mesozoic geodynamics on the eastern North China Craton.  相似文献   

3.
Following the 2001 and 2002–2003 flank eruptions, activity resumed at Mt. Etna on 7 September 2004 and lasted for about 6 months. This paper presents new petrographic, major and trace element, and Sr–Nd isotope data from sequential samples collected during the entire 2004–2005 eruption. The progressive change of lava composition allowed defining three phases that correspond to different processes controlling magma dynamics inside the central volcano conduits. The compositional variability of products erupted up to 24 September is well reproduced by a fractional crystallization model that involves magma already stored at shallow depth since the 2002–2003 eruption. The progressive mixing of this magma with a distinct new one rising within the central conduits is clearly revealed by the composition of the products erupted from 24 September to 15 October. After 15 October, the contribution from the new magma gradually becomes predominant, and the efficiency of the mixing process ensures the emission of homogeneous products up to the end of the eruption. Our results give insights into the complex conditions of magma storage and evolution in the shallow plumbing system of Mt. Etna during a flank eruption. Furthermore, they confirm that the 2004–2005 activity at Etna was triggered by regional movements of the eastern flank of the volcano. They caused the opening of a complex fracture zone extending ESE which drained a magma stored at shallow depth since the 2002–2003 eruption. This process favored the ascent of a different magma in the central conduits, which began to be erupted on 24 September without any significant change in eruptive style, deformation, and seismicity until the end of eruption.  相似文献   

4.
The two parallel loci of recent Hawaiian volcanoes, Kea and Loa, have been regarded as the best targets to interpret the chemical structure of an upwelling mantle plume derived from the lower mantle. Here we show that the Sr–Nd–Hf–Pb isotopic data of the shield-building lavas along the Loa locus form a systematic trend from the main shield stage of Koolau (> 2.9 Ma) to the active Loihi volcanoes. During the growth of the Koolau volcano, the dominant material in the melting region successively changed from the proposed KEA, DMK (depleted Makapuu), to EMK (enriched Makapuu) components. The proportion of EMK, dominated by a recycled mafic component, is typified by some Koolau Makapuu-stage and some Lanai lavas. Subsequently, the EMK component decreased and LOIHI component increased toward the Loihi lavas. The temporal coincidence between the episodically elevated magma production rate and the abrupt appearance of the typical Loa-type lavas that is restricted to the last 3 Myr should be linked to magma genesis. We suggest that the abrupt appearance of Loa-type magmatism should be attributed to the transient incorporation of the relatively dense recycled material and surrounding less degassed lower mantle material that accumulated near the core–mantle boundary into the upwelling plume. This episodic involvement could have been trigged by episodic thermal pulses and buoyancy increases in the plume. The continuous appearance of Kea-type lavas during the long history of Hawaiian-chain magmatism and the larger magma volume of Kea-type lavas relative to that of the Loa-type lavas in the last 3 Myr indicate that the Kea locus is closer to the thermal centre of the Hawaiian plume relative to that of the Loa locus.  相似文献   

5.
Economic concentrations of Fe–Ti oxides occurring as massive layers in the middle and upper parts of the Hongge intrusion are different from other layered intrusions(Panzhihua and Baima) in the Emeishan large igneous province, SW China. This paper reports on the new mineral compositions of magnetite and ilmenite for selected cumulate rocks and clinopyroxene and plagioclase for basalts. We use these data to estimate the oxidation state of parental magmas and during ore formation to constrain the factors leading to the abundant accumulation of Fe–Ti oxides involved with the Hongge layered intrusion. The results show that the oxygen fugacities of parental magma are in the range of FMQ-1.56 to FMQ+0.14, and the oxygen fugacities during the ore formation of the Fe–Ti oxides located in the lower olivine clinopyroxenite zone(LOZ) and the middle clinopyroxenite zone(MCZ) of the Hongge intrusion are in the range of FMQ-1.29 to FMQ-0.2 and FMQ-0.49 to FMQ+0.82, respectively.The MELTS model demonstrates that, as the oxygen fugacity increases from the FMQ-1 to FMQ+1, the proportion of crystallization magnetite increases from 11 % to 16 % and the crystallization temperature of the Fe–Ti oxides advances from 1134 to 1164 °C. The moderate oxygen fugacities for the Hongge MCZ indicate that the oxygen fugacity was not the only factor affecting the crystallization of Fe–Ti oxides. We speculated that theinitial anhydrous magma that arrived at the Hongge shallow magma chamber became hydrous by attracting the H_2O of the strata. In combination with increasing oxygen fugacities from the LOZ(FMQ-1.29 to FMQ-0.2) to the MCZ(FMQ-0.49 to FMQ+0.82), these two factors probably account for the large-scale Fe–Ti oxide ore layers in the MCZ of the Hongge intrusion.  相似文献   

6.
This paper investigates the geochemistry of bulk rock and infers the petrogenesis of ultramafic rocks in the Boali Precambrian terrane in Mbi Valley, in the North of the Central African Republic(CAR). The studied rocks comprise coarse primary olivine and orthopyroxene relics(dominant phase), magnesio-hornblende, magnetite, and antigorite. Whole-rock analysis indicates low SiO2(average of 43.14 wt%) and high MgO(19.84–26.98 wt%)contents and their Mg number(Mg#) ranges from 74 to 82.The...  相似文献   

7.
In addition to traditional degassing of the melt in the subsurface magma chambers of the “dormant” El’brus volcano, alsodegassing through pores and microcracks that occur in the top of magma chambers has also been detected. It is proven by studies of compactness, porosity, and permeability of the rocks. The speeds at which gases (H, He, H2S, CO2, F, and Cl) pass through gneiss and volcanic rocks were estimated. Magma chambers on the ground surface are expressed in stable thermal anomalies revealed by night-time thermal sounding from an NOAA satellite. The presence of magma chambers at depths of 2–12 km was proven by magnetotelluric sounding [Sobisevich et al., 2003] and gravity studies. In addition to occasional “columns” of bright-white fluorescence above the thermal anomalies, aerosol “clouds” and hydrogen flows were detected by lidar and hydrogen surveying [Alekseev et al., 2007, 2009]. Observation at the same sites detected steam outbursts occurring periodically, the snow-ice cover thaws and the smell of hydrogen sulfide is felt. Geochemical characteristics of degassing were studied by snow sampling from up to 1 m deep pits. They were taken within contours of the thermal anomalies, above active fault zones, in the sites of bright-white fluorescence “columns,” and on a new fumarole locality. It is shown that the degassing of melt was accompanied by the gas transporting many elements (Li, B, Si, P, S, Ca, Zn, Pb, Mo, Ba, W, Hg, Ag, U, Th, I, Au, and Pt) in a fine-grained state (a few microns or possibly nanometers) with an active participation of F and Cl. Native platinum, chalcopyrite, halite, sylvite, barite, gypsum, zircon, opal, chlorinated organics, etc. were for the first time discovered in the Mt. El’brus area using electron microscope studies of solid residue from dehydrated snow samples. “Hidden” ore mineralization genetically related to degassing of melts enriched in ore elements may be supposedly found in paleo- and present-day areas of volcanic activity.  相似文献   

8.
New major and trace element and Sr–Nd isotope data are presented for basaltic glasses from active spreading centers (Central Lau Spreading Center (CLSC), Relay Zone (RZ) and Eastern Lau Spreading Center (ELSC)) in the Central Lau Basin, SW Pacific. Basaltic lavas from the Central Lau Basin are mainly tholeiitic and are broadly similar in composition to mid-ocean ridge basalts (MORB). Their generally high 87Sr/86Sr ratios, combined with relatively low 143Nd/144Nd ratios are more akin to MORB from the Indian rather than Pacific Ocean. In detail, the CLSC, RZ and ELSC lavas are generally more enriched in large ion lithophile elements (Rb, Ba, Sr, and K) than average normal-MORB, which suggests that the mantle beneath the Central Lau Basin was modified by subducted slab-derived components. Fluid mobile/immobile trace element and Sr – Nd isotope ratios suggest that the subduction components were essentially transferred into the mantle via hydrous fluids derived from the subducted oceanic crust; contributions coming from the subducted sediments are minor. Compared to CLSC lavas, ELSC and RZ lavas show greater enrichment in fluid mobile elements and depletion in high field strength elements, especially Nb. Thus, with increasing distance away from the arc, the influence of subduction components in the mantle source of Lau Basin lavas diminishes. The amount of hydrous fluids also influences the degree of partial melting of the mantle beneath the Central Lau Basin, and hence the degree of melting also decreases with increasing distance from the arc.  相似文献   

9.
The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag)deposit is located in the western part of Yunkai Area, with an abundance of Pubei batholiths. Zircon U–Pb geochronology of Pubei batholiths shows that crystallization age ranges from 251.9 ± 2.2 to 244.3 ± 1.8 Ma, thus belonging to Indosinian orogeny. Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust. In addition, strontium isotope of sphalerite from the Xinhua Pb–Zn–(Ag) deposit, has limited ranges in ~(87)Rb/~(86)Sr and ~(87)Sr/~(86)Sr, ranging from 0.4077 to 1.0449, and 0.718720 to 0.725245, respectively. The initial ~(87)Sr/~(86)Sr ratios of sphalerite ranges between 0.718720 and 0.725245, which is higher than that of upper continental crust and lower than that of the Pubei batholiths, illustrating the fluid might be derived from the mixing of Pubei pluton and upper continental crust.  相似文献   

10.
A detailed survey of morphological and biological markers of paleo-shorelines has been carried out along the coastal sector of Mt. Etna volcano (eastern Sicily, Italy), in order to better define causes and timing of vertical deformation. We have mapped markers of raised Holocene shorelines, which are represented by beach rocks, wave-cut platforms, balanid, vermetid and algal rims. The timing of coastal uplift has been determined by radiocarbon dating of shells collected from the raised paleo-shorelines and, to correctly assess the total amount of tectonic uplift of the coast during the Late Holocene, we have compared the elevation-age data of sampled shells to the local curve of Holocene sea-level rise. Taking into account the nominal elevation of the associated paleo-shorelines, an uplift rate of 2.5–3.0 mm/year has been estimated for the last 6–7 ka. This general process of uplifting is only locally interrupted by subsidence related to flank sliding of the volcanic edifice, measured at docks and other manmade structures, and by acceleration along the hinge of an active anticline and at the footwall of an active fault. Based on this new data we suggest more precise time–space constraints for the dynamics of the lower eastern flank of Mt. Etna volcano.  相似文献   

11.
Since the formation of the primal nucleus at 3.8Ga[1], the North China had underwent the multi-cycle geologic processes such as arc accretion[2—4] andrift[5—7], and finally accomplished the craton[8] aroundat 1.8 Ga[2,3,9]. Paleozoic Fuxian kimberlites (LiaoningProvince) contain not only abundant peridotitic butalso mafic xenoliths. The investigation on peridotiticxenoliths indicted that the North China Craton hadcold and thick lithospheric root in the middle Ordovi-cian. The deep part o…  相似文献   

12.
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indica...  相似文献   

13.
The Hidaka Metamorphic Belt is a well-known example of island-arc crustal section, in which metamorphic grade increases westwards from unmetamorphosed sediment up to granulite facies. It is divided into lower (granulite to amphibolite facies) and upper (amphibolite to greenschist facies) metamorphic sequences. The metamorphic age of the belt was considered to be ~55 Ma, based on Rb – Sr whole-rock isochron ages for granulites and related S-type tonalities. However, zircons from the granulites in the lower sequence yield U – Pb ages of ~21 – 19 Ma, and a preliminary report on zircons from pelitic gneiss in the upper sequence gives a U – Pb age of ~40 Ma. In this paper we provide new zircon U – Pb ages from two pelitic gneisses in the upper sequence to assess the metamorphic age and also the maximum depositional age of the sedimentary protolith. The weighted mean 206Pb/238U ages from a biotite gneiss in the central area of the belt yield 39.6 ± 0.9 Ma for newly grown metamorphic rims and 53.1 ± 0.9 Ma for the youngest detrital cores. The ages of zircons from a cordierite–biotite gneiss in the southern area are 35.9 ± 0.7 Ma for metamorphic rims and 46.5 ± 2.8 Ma for the youngest detrital cores. These results indicate that metamorphism of the upper sequence took place at ~40 – 36 Ma, and that the sedimentary protolith was deposited after ~53 – 47 Ma. These metamorphic ages are consistent with the reported ages of ~37–36 Ma plutonic rocks in the upper sequence, but contrast with the ~21–19 Ma ages of metamorphic and plutonic rocks in the lower sequence. Therefore, we conclude that the upper and lower metamorphic sequences developed independently but coupled with each other before ~19 Ma as a result of dextral reverse tectonic movement.  相似文献   

14.
The Yueguang gold deposit is located in Fengjia, Xinhua County, Hunan Province, South China. It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt, west of the Baimashan granitic batholith. In order to discern the characteristics of the ore-forming fluids, the underlying mineralization processes, and establish a foundation for the origin of the Yueguang gold deposit fluid inclusion micro-thermometry, as well as quartz hydro...  相似文献   

15.
16.
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号