共查询到15条相似文献,搜索用时 109 毫秒
1.
Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases简 总被引:2,自引:0,他引:2
The variability of the East Asian winter monsoon (EAWM) can be divided into an ENSO-related part (EAWMEN) and an ENSO-unrelated part (EAWMres).The influence of EAWMres on the ENSO-East Asian summer monsoon (EASM) relationship in the decaying stages of ENSO is investigated in the present study.To achieve this,ENSO is divided into four groups based on the EAWMres:(1) weak EAWMres-E1Ni(n)o (WEAWMres-EN); (2) strong EAWMres-E1Ni(n)o (SEAWMresEN); (3) weak EAWMres-La Ni(n)a (WEAWMres-LN); (4) strong EAWMres-La Ni(n)a (SEAWMres-LN).Composite results demonstrate that the EAWMres may enhance the atmospheric responses over East Asia to ENSO for WEAWMres-EN and SEAWMres-LN.The corresponding low-level anticyclonic (cyclonic) anomalies over the western North Pacific (WNP) associated with El Ni(n)o (La Ni(n)a) tend to be strong.Importantly,this feature may persist into the following summer,causing abundant rainfall in northern China for WEAWMres-EN cases and in southwestern China for SEAWMres-LN cases.In contrast,for the SEAWMres-EN and WEAWMres-LN groups,the EAWMres tends to weaken the atmospheric circulation anomalies associated with E1 Ni(n)o or La Ni(n)a.In these cases,the anomalous WNP anticyclone or cyclone tend to be reduced and confined to lower latitudes,which results in deficient summer rainfall in northern China for SEAWMres-EN and in southwestern China for WEAWMres-LN.Further study suggests that anomalous EAWMres may have an effect on the extra-tropical sea surface temperature anomaly,which persists into the ensuing summer and may interfere with the influences of ENSO. 相似文献
2.
Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western Pacific region, this paper investigates extreme winter circulation conditions in thenorthwestern Pacific and their evolution. The results show that the extreme winter circulation anomalyin the northwestern Pacific exhibits a strong association with those appearing in the high latitudes of theNorthern Hemisphere including the northern Asian continent, part of the Barents Sea, and the northeasternPacific. As the season progresses, an anticyclonic (cyclonic) circulation anomaly appearing in the north-western Pacific gradually moves northeastwards and extends westwards. Its axis in the west-east directionis also stretched. Therefore, easterly (westerly) anomalies in the southern part of the anticyclonic (cyclonic)circulation anomaly continuously expand westwards to the peninsula of India. Therefore, the South Asiansummer monsoon would be weaker (stronger). Simultaneously, another interesting phenomenon is theevolution of SLP anomalies. As the season progresses (from winter to the following summer), SLP anoma-lies originating from the tropical western Pacific gradually move towards, and finally occupy the Asiancontinent, and further influence the thermal depression over the Asian continent in the following summer. 相似文献
3.
Improvements in Climate Simulation with Modifications to the Tiedtke Convective Parameterization in the Grid-Point Atmospheric Model of IAP LASG (GAMIL) 总被引:11,自引:9,他引:11
The grid-point atmospheric model of IAP LASG (GAMIL) was developed in and has been evaluated since early 2004. Although the model shows its ability in simulating the global climate, it suffers from some problems in simulating precipitation in the tropics. These biases seem to result mainly from the treatment of the subgrid scale convection, which is parameterized with Tiedtke's massflux scheme (or the Zhang-McFarlane scheme, as an option) in the model. In order to reduce the systematic biases, several modifications were made to the Tiedtke scheme used in GAMIL, including (1) an increase in lateral convective entrainment/detrainment rate for shallow convection, (2) inclusion of a relative humidity threshold for the triggering of deep convection, and (3) a reduced efficiency for the conversion of cloud water to rainwater in the convection scheme.
Two experiments, one with the original Tiedtke scheme used in GAMIL and the other with the modified scheme, were conducted to evaluate the performance of the modified scheme in this study. The results show that both the climatological mean state, such as precipitation, temperature and specific humidity, and interannual variability in the model simulation are improved with the use of this modified scheme. Results from several additional experiments show that the improvements in the model performance in different regions mainly result from either the introduction of the relative humidity threshold for triggering of the deep convection or the suppressed shallow convection due to enhanced lateral convective entrainment/detrainment rates. 相似文献
Two experiments, one with the original Tiedtke scheme used in GAMIL and the other with the modified scheme, were conducted to evaluate the performance of the modified scheme in this study. The results show that both the climatological mean state, such as precipitation, temperature and specific humidity, and interannual variability in the model simulation are improved with the use of this modified scheme. Results from several additional experiments show that the improvements in the model performance in different regions mainly result from either the introduction of the relative humidity threshold for triggering of the deep convection or the suppressed shallow convection due to enhanced lateral convective entrainment/detrainment rates. 相似文献
4.
Ping Huang Pengfei Wang Kaiming Hu Gang Huang Zhihua Zhang Yong Liu Bangliang Yan 《大气科学进展》2014,31(5):1136-1146
This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of E1 Nifio as one of the most important factors on EA-WNP climate. ICM successfully reproduces the distribution of sea surface temperature (SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA-WNP climate E1 Nifio and the East Asia-Pacific Pattern--are also well simulated in ICM, with realistic spatial pattern and period. The simulated E1 Nifio has significant impact on EA-WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA-WNP climate. 相似文献
5.
The Regional Atmospheric Modeling System (RAMS), which is a non-hydrostatic numerical model, has been used to investigate the impact of terrain shape and large-scale forcing on the Antarctic surface-wind regime, focusing on their roles in establishing favorable flow conditions for the formation of katabatic flow jumps. A series of quasi-2D numerical simulations were conducted over idealized slopes representing the slopes of Antarctica during austral winter conditions. Results indicate that the steepness and variations of the underlying slope play a role in the evolution of near-surface flows and thus the formation of katabatic flow jumps. However, large-scale forcing has a more noticeable effect on the occurrence of this small-scale phenomenon by establishing essential upstream and downstream flow conditions, including the upstream supercritical flow, the less stably stratified or unstable layer above the cold katabatic layer, as well as the cold-air pool located near the foot of the slope through an interaction with the underlying topography. Thus, the areas with steep and abrupt change in slopes, e.g. near the coastal areas of the eastern Antarctic, are preferred locations for the occurrence of katabatic flow jumps, especially under supporting synoptic conditions. 相似文献
6.
To improve the land surface simulation in the arid and semi-arid areas of northern China,
the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the
parameters in the land surface model, BATS, through calibration with the multicriteria method.
Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters
need to be calibrated in two sites with different environmental and climate regimes. Comparison of
observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated
ones shows the simulations with the optimized parameters have been substantially improved. Especially,
the holistic simulations with the calibration of the parameter values are much closer to the
observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters
can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the
parameter calibration of the land surface model is important when the model is to be used to investigate
the land-air interaction. 相似文献
7.
利用NCEP/NCAR再分析资料、Hadley中心海温资料及CMAP降水资料等,通过亚澳季风联合指数挑选异常年份,对东亚夏季风和澳洲冬季风强度反相变化特征进行研究。结果表明,当东亚夏季风偏强、澳洲冬季风偏弱时,南北半球中低纬地区都出现了复杂的异常环流系统。在热带地区对流层低层,西北太平洋为异常反气旋式环流系统所控制,与南太平洋赤道辐合带的异常反气旋环流在赤道地区发生耦合,形成赤道异常东风,而在南北印度洋上则存在两个异常气旋式环流系统。在这两对异常环流之间的海洋性大陆地区,出现赤道以南为反气旋环流而赤道以北为气旋式环流。在东亚季风区,东南沿海的东侧海洋上存在反气旋异常,中国东南地区受异常反气旋西南侧的东南风影响。此外,澳洲北部受异常西风影响。这就形成了东亚夏季风偏强、澳洲冬季风偏弱的情形,从而东亚夏季风和澳洲冬季风活动出现了强弱互补的变化特征。当东亚夏季风偏弱、澳洲冬季风偏强时,南北半球的环流特征则出现与上述相反的环流特征。总体而言,当东亚夏季风偏强、澳洲冬季风偏弱时,东亚—澳洲季风区在南北半球呈现出不同的气候异常分布特征,即北半球降水北少南多、气温北高南低,南半球降水西多东少、气温西高东低。 相似文献
8.
西太平洋副高的东西进退与东亚夏季风系统的相互影响与关联 总被引:1,自引:1,他引:1
利用1980-2010年NCEP/NCAR再分析资料和美国NOAA向外长波辐射(outgoing longwave radiation,OLR)资料,根据关键区500 hPa位势高度的变化定义了西太平洋副高东西位置指标,利用该指标围绕东亚夏季风系统开展分析,详细对比了夏季6月、7月副高东西向活动异常时,季风区相应的环流及对流活动差异.结果表明:副高东西位置的年际变化反映了亚洲夏季风的强弱变化,副高偏西(东)年,南海夏季风偏弱(强),副热带夏季风偏强(弱);副高的东西进退与东亚夏季风系统成员之间相互影响、相互制约;副高偏西年,南亚高压偏东、偏强,季风槽不发展、强度偏弱,西风带长波槽发展加深,南半球马斯克林高压和澳大利亚高压减弱,越赤道气流减弱,而副高偏东年情况则反之. 相似文献
9.
10.
The sensitivity of the East Asian summer monsoon to soil moisture anomalies over China was investigated based on ensembles of seasonal simulations(March–September) using the NCEP GCM coupled with the Simplified Simple Biosphere Model(NCEP GCM/SSi B). After a control experiment with free-running soil moisture, two ensembles were performed in which the soil moisture over the vast region from the lower and middle reaches of the Yangtze River valley to North China(YRNC) was double and half that in the control, with the maximum less than the field capacity. The simulation results showed significant sensitivity of the East Asian summer monsoon to wet soil in YRNC. The wetter soil was associated with increased surface latent heat flux and reduced surface sensible heat flux. In turn, these changes resulted in a wetter and colder local land surface and reduced land–sea temperature gradients, corresponding to a weakened East Asian monsoon circulation in an anomalous anticyclone over southeastern China, and a strengthened East Asian trough southward over Northeast China. Consequently, less precipitation appeared over southeastern China and North China and more rainfall over Northeast China. The weakened monsoon circulation and strengthened East Asian trough was accompanied by the convergence of abnormal northerly and southerly flow over the Yangtze River valley, resulting in more rainfall in this region.In the drier soil experiments, less precipitation appeared over YRNC. The East Asian monsoon circulation seems to show little sensitivity to dry soil anomalies in NCEP GCM/SSi B. 相似文献
11.
东亚冬夏季风关系在1970s末的年代际转变 总被引:1,自引:0,他引:1
利用NCEP/NCAR和Hadley中心的大气与海洋再分析资料,选取具有代表性的东亚冬、夏季风指数,采用滑动相关和线性回归等方法,主要讨论了受ENSO影响的东亚冬季风分量和后期夏季风之间关系的年代际变化,并分析了二者关系发生变化的原因。结果表明:在1965—1979年,受ENSO影响的冬季风与后期夏季风强度的对应关系并不明显。在1980—2004年,受ENSO影响的冬季风强,对应后期的夏季风偏弱,弱冬季风对应的后期夏季风偏强。当受ENSO影响的冬季风较强时,冬季在对流层低层西北太平洋出现了异常气旋并可以维持到次年夏季,低纬地区位势高度偏低,削弱了西太平洋副热带高压,异常气旋西部的偏北气流阻碍了西南风的北进,导致夏季风偏弱。海表温度异常在1980年前后春、夏季不同的分布型可以解释环流在不同时段内的差异。 相似文献
12.
东亚夏季风和ENSO关系的不稳定性 总被引:8,自引:0,他引:8
Wang Huijun 《大气科学进展》2002,19(1):1-11
通过本项研究,发现了东亚夏季风和ENSO的相互关系在长期变化中是不稳定的。不稳定指的是在一段时期两者关系比较紧密而在另一段时期两者关系比较微弱。文章揭示:在东亚季风和ENSO关系紧密时期(HCP)和关系微弱时期(LCP)夏季大气环流的年际变率有显著差别。在关系紧密时期,南热带东太平洋区的信风、热带东太平洋区的低层大气温度、两个半球的副热带高压系统等的年际变率均显著高于关系微弱时期。并且,HCP和LCP时期中国夏季降水和ENSO的关系也有明显差异。 相似文献
13.
东亚夏季风环流对气溶胶分布的影响 总被引:1,自引:1,他引:1
用2001—2012年逐月的MODIS-TERRA卫星观测气溶胶光学厚度(AOD)资料和NCEP/NCAR风场资料,分析了5—8月东亚地区AOD的时-空分布特征,研究东亚夏季风环流对气溶胶时-空分布的影响。主要结论如下:5—8月的中国东部及邻近海洋上AOD有着显著的季节演变特征,尤其是32.5 °N附近的AOD高值区,其强度和范围在5—8月逐渐增强然后又减弱。东亚夏季风通过环流输送作用对各地的AOD产生了不同程度的影响,使中国南部AOD减少,而华北和东北地区AOD增加。在强、弱季风年背景下,7月观测的AOD差异与环流输送作用差异的分布特征有着一定的相似性,体现出东亚夏季风年际变化对气溶胶分布的影响。在东亚夏季风演变的不同阶段,季风环流对气溶胶输送大部分情况下,可解释局地气溶胶变化10%~20%的方差。 相似文献
14.
采用1950-2000年逐月观测的不同海域(全球、热带外、热带、热带印度洋-太平洋、热带印度洋及热带太平洋)海表温度分别驱动NCAR CAM3全球大气环流模式,进行了多组长时间积分试验,对比ERA-40和NCEP/NCAR再分析资料,讨论了这些海域海表温度异常对东亚夏季风年代际变化的影响。数值试验结果表明:全球、热带、热带印度洋-太平洋和热带太平洋海表温度变化对东亚夏季风的年代际变化具有重要作用,均模拟出了东亚夏季风在20世纪70年代中后期发生的年代际减弱现象,以及强、弱夏季风年代夏季大气环流异常分布的显著不同,这与观测结果较一致,表明热带太平洋是影响东亚夏季风此次年代际变化的关键海区;利用热带印度洋海表温度驱动模式模拟出的东亚夏季风在20世纪70年代中后期发生年代际增强现象,即当热带印度洋海表温度年代际偏暖(冷)时,东亚夏季风年代际增强(减弱),与热带太平洋海表温度变化对东亚夏季风年代际变化的影响相反;热带太平洋海表温度年代际背景的变化对东亚夏季风在20世纪70年代中后期的年代际减弱有重要作用。 相似文献
15.
东亚夏季风异常活动的空间多模态特征 总被引:1,自引:0,他引:1
利用ERA40再分析资料,采用相关、合成、自然正交函数展开(EOF分析)等方法,探讨了东亚地区夏季风活动的多空间模态特征及其与大气环流异常的可能联系。结果表明:1)东亚夏季风活动存在3种差异明显的典型空间模态。第一模态反映了夏季风活动在我国东部沿海及以东洋面与其以西地区的反相变化,主要体现了夏季风活动主体位置的东西变动;第二模态反映了自我国华南,经长江中下游、山东半岛、渤海湾至我国东北及朝鲜半岛一带夏季风活动的一致性变化,体现了东亚夏季风活动的整体强弱;第三模态主要反映了夏季风活动在中国以东洋面、朝鲜半岛、东北亚一带与我国华南地区的反相变化,主要体现了夏季风活动主体位置的南北移动。2)东亚夏季风活动的多空间模态对应的大气环流异常存在显著差异。东亚夏季风第一空间模态与亚洲南部区域以及鄂霍次克海上空的SLP呈负相关,而与北极极区、贝加尔湖地区及日本以东洋面的SLP呈正相关;而与同期500hPa高度场的相关分布主要表现为自极地经鄂霍次克海至日本以东洋面的“+-+”的波列分布特征。第二模态与SLP和500hPa高度场的相关分布具有非常相似的空间分布形势,均表现为东北、朝鲜半岛、日本海一带与菲律宾洋面、鄂霍次克海地区的反位相分布,自低纬向高纬呈现“+-+”的波列分布特征。第三模态与SLP和500hPa高度场的相关分布,主要表现为菲律宾附近洋面、日本及以东洋面、贝加尔湖到亚洲北部的负正相间的分布形势。 相似文献