首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical calculations for the electric current in the polar ionosphere have been made by assuming some realistic distributions of the electric field and conductivity. Two dynamo actions are taken into account; one of which is induced by ionospheric winds and the other by the solar wind. For the solar wind dynamo action, it is found that the secondary polarization field caused by non-uniform distribution of ionospheric conductivity is much larger than the primary field induced by the solar wind, suggesting its important effect on charged particles in the magnetosphere, and that the irrotational current having a source and sink is of the same order of magnitude as the solenoidal current closing its circuit in the ionosphere. It is also found that the solar wind is, in general, more effective than the ionospheric winds in producing polar current systems such as DP 1 and 2, but in some cases the ionospheric winds have a significant effect on the current distribution.  相似文献   

2.
Cassini’s Titan flyby on 16 April, 2005 (T5) is the only encounter when the two main ionizing sources of the moon’s atmosphere, solar radiation and corotating plasma, align almost anti-parallel. In this paper a single-fluid multi-species 3D MHD model of the magnetospheric plasma interaction for T5 conditions is analyzed. Model results are compared to observations to investigate the ionospheric dynamics at Titan as well as to understand the deviations from a typical solar wind interaction, such as Venus’ interaction with the solar wind. Model results suggest that for the T5 interaction configuration, corotating plasma is the dominant driver determining the global interaction features at high altitudes. In the lower ionosphere below ~1500 km altitude – where the control of the ionospheric composition transfers from dynamic to chemical processes – magnetic and thermal pressure gradients oppose each other locally, complicating the ionospheric dynamics. Model results also imply that the nightside ionosphere – produced only by the impact ionization in the model – does not provide enough thermal pressure to balance the incident plasma dynamic pressure. As a result, the induced magnetic barrier penetrates into the ionosphere by plasma convection down to ~1000 km altitude and by magnetic diffusion below this altitude. Moreover, strong horizontal drag forces due to ion-neutral collisions and comparable drag forces estimated from possible neutral winds in the lower ionosphere below ~1400 km altitude oppose over local regions, implying that the Titan interaction must be treated as a 3D problem. Ion and electron densities calculated from the model generally agree with the Cassini Ion Neutral Mass Spectrometer and Langmuir probe measurements; however, there are significant differences between the calculated and measured magnetic fields. We discuss possible explanations for the discrepancy in the magnetic field predictions.  相似文献   

3.
The three-dimensional current system over an enhanced conductivity strip identified with an auroral arc is calculated for the case of the magnetospheric plasma convection across this strip. The strip produces a stationary Alfvén wave which propagates along magnetic field lines and is carried simultaneously by the convecting plasma. The Alfvén wave generation corresponds to an appearance of field-aligned currents over the arc. The three-dimensional current system generated over the arc is studied, taking into account reflection of the waves from the ionosphere of the opposite hemisphere. The correspondence of the theory with the experimental results is found.  相似文献   

4.
The exchange of ions between the ionosphere of a planet with negligible intrinsic magnetic field, and the solar wind is examined. It is suggested that a balance exists between the outflow of ionospheric ions at the plasmapause and ions from the solar wind in a restricted region close to the subsolar point. This results in a current system towards the subsolar point on the surface of the ionopause and a toroidal magnetic field. Simple calculations are made of the current and field configuration that might result from the system for conditions similar to those encountered on the Viking 1 and 2 transits of the Mars ionosphere.  相似文献   

5.
The neutral gas temperature and circulation of the thermosphere are calculated for December solstice conditions near solar cycle maximum using NCAR's thermospheric general circulation model (TGCM). High-latitude heat and momentum sources significantly alter the basic solar-driven circulation during solstice. At F-region heights, the increased ion density in the summer hemisphere results in a larger ion drag momentum source for the neutral gas than in the winter hemisphere. As a result there are larger wind velocities and a greater tendency for the neutral gas to follow the magnetospheric convection pattern in the summer hemisphere than in the winter hemisphere. There is about three times more Joule heating in the summer than the winter hemisphere for moderate levels of geomagnetic activity due to the greater electrical conductivity in the summer E-region ionosphere.

The results of several TGCM runs are used to show that at F-region heights it is possible to linearly combine the solar-driven and high-latitude driven solutions to obtain the total temperature structure and circulation to within 10–20%. In the lower thermosphere, however, non-linear terms cause significant departures and a linear superposition of fields is not valid.

The F-region winds at high latitudes calculated by the TGCM are also compared to the meridional wind derived from measurements by the Fabry-Perot Interferometer (FPI) and the zonal wind derived from measurements by the Wind and Temperature Spectrometer (WATS) instruments onboard the Dynamics Explorer (DE−2) satellite for a summer and a winter day. For both examples, the observed and modeled wind patterns are in qualitative agreement, indicating a dominant control of high latitude winds by ion drag. The magnitude of the calculated winds (400–500 m s−1) for the assumed 60 kV cross-tail potential, however, is smaller than that of the measured winds (500–800 m s−1). This suggests the need for an increased ion drag momentum source in the model calculations due to enhanced electron densities, higher ion drift velocities, or some combination that needs to be further denned from the DE−2 satellite measurements.  相似文献   


6.
J.E. Ainsworth  J.R. Herman 《Icarus》1977,30(2):314-319
An examination of the effect of assumptions in the interpretation of the Venera wind data is made as a rebuttal to the suggestion by A.T. Young that the 140 m/sec Venera 8 horizontal wind at 45 km may be either spurious or anomalous. The Venera measurements of wind speed along with the Mariner measurements of a lower region of strong turbulence are evidence for a wide band of variable high-speed retrograde horizontal winds which girdle Venus at the equator. In the prevalent interpretation of the Mariner 10 uv photographs, the region of the top of the visible cloud is characterized by variable high-speed retrograde horizontal winds which orbit Venus with an average period of 4 Earth days, and by many features indicating vertical convection. This interpretation, together with the possibility of atmospheric corotation due to frictional coupling, suggests that the Venera-Mariner band of winds at 45 km extends well beyond the top of the visible cloud, and that the upper region of strong turbulence detected by the Mariners may result in part from vertical convection currents carried along by high-speed horizontal winds. In an alternate interpretation of the Mariner 10 uv photographs Young suggests that the predominant motions may be traveling wavelike disturbances with a 4-day period rather than bulk motion of the atmosphere. For this case the upper region of strong turbulence is interpreted as due mostly to vertical wind shear resulting from a rapid decrease in wind speed within a relatively short distance above the Venera-Mariner band of high-speed winds.  相似文献   

7.
In order to envisage the circulation pattern of the magnetospheric plasma produced by the dynamo action in the ionosphere, the distribution of the dynamo-induced electrostatic field resulting from basic ionospheric wind systems is studied. It is then shown by use of Maeda's field distribution that there exists a remarkable large-scale circulation of the magnetospheric plasma, inward (earthward) on the evening side of the magnetosphere and outward on the morning side. This motion is comparable to the motion produced by the Earth's rotation and by zonal winds in the ionosphere. It is shown also that the electrostatic field can cause a considerable radial motion of some of the energetic particles in the radiation belt.  相似文献   

8.
For low velocities of convection, the normal component of the current near the magnetopause is calculated in a case when the magnetopause is a tangential discontinuity. It is shown that for the great pressure of the magnetospheric plasma this component of the current, closing through the ionosphere, create the global system of field-aligned currents which is consistent with the Triad data on the value, the direction and the distribution with the local time.  相似文献   

9.
10.
We show that if Io-injected plasma is lost via a planetary wind a sun-fixed Birkeland current system may result. This is due to the fact that a current flows across a density gradient produced by the loss of plasma through the planetary wind in the tail. The divergent current is connected to field-aligned Birkeland currents which flow into the ionosphere at dawn and out of it at dusk. The closure currents in the ionosphere require a dawn-to-dusk electric field which at the orbit of Io is estimated to have a strength of a few mV m?1. Independent estimates derived from the local time asymmetry of the torus u.v. emission indicate a field of 1.5mVm?1.  相似文献   

11.
One of the most consistent and often dramatic interactions between the high latitude ionosphere and the thermosphere occurs in the vicinity of the auroral oval in the afternoon and evening period. Ionospheric ions, convected sunward by the influence of the magnetospheric electric field, create a sunward jet-stream in the thermosphere, where wind speeds of up to 1 km s?1 can occur. This jet-stream is nearly always present in the middle and upper thermosphere (above 200 km altitude), even during periods of very low geomagnetic activity. However, the magnitude of the winds in the jet-stream, as well as its location and range in latitude, each depend on geomagnetic activity. On two occasions, jet-streams of extreme magnitude have been studied using simultaneous ground-based and satellite observations, probing both the latitudinal structure and the local time dependence. The observations have then been evaluated with the aid of simulations using a global, three-dimensional, time-dependent model of thermospheric dynamics including the effects of magnetospheric convection and particle precipitation. The extreme events, where sunward winds of above 800 ms?1 are generated at relatively low geomagnetic latitudes (60–70°) require a greatly expanded auroral oval and large cross-polar cap electric field ( ~ 150 kV). These in turn are generated by a persistent strong Interplanetary Magnetic Field, with a large southward component. Global indices such as Kp are a relatively poor indicator of the magnitude and extent of the jet-stream winds.  相似文献   

12.
In a steady-state model for the interaction of the solar wind with the atmosphere of a non-magnetic planet, the magnetized solar wind acts as a dynamo over the dayside of the planet and induces Ohmic currents in the planet's ionosphere. A model for the dynamo mechanism and for the induced current configuration is developed. Based on this model and assumed model atmospheres of Mars and Venus, the distribution of currents entering the ionosphere through the ionopause is calculated. The requirement that the total current be of such a magnitude as to cancel the shock-compressed interplanetary magnetic field fixes the ionopause altitude. The calculations for Venus are in reasonable agreement with observations. The calculations for Mars indicate the possibility of an observable ionopause in the altitude range from 325 to 425 km.  相似文献   

13.
The strength and direction of the Interplanetary Magnetic Field (IMF) controls the transfer of solar wind momentum and energy to the high latitude thermosphere in a direct fashion. The sense of “ Y” component of the IMF (BY) creates a significant asymmetry of the magnetospheric convection pattern as mapped onto the high latitude thermosphere and ionosphere. The resulting response of the polar thermospheric winds during periods when BY is either positive or negative is quite distinct, with pronounced changes in the relative strength of thermospheric winds in the dusk-dawn parts of the polar cap and in the dawn part of the auroral oval. In a study of four periods when there was a clear signature of BY, observed by the ISEE-3 satellite, with observations of polar winds and electric fields from the Dynamics Explorer-2 satellite and with wind observations by a ground-based Fabry-Perot interferometer located in Kiruna, Northern Sweden, it is possible to explain features of the high latitude thermospheric circulation using three dimensional global models including BY dependent, asymmetric, polar convection fields. Ground-based Fabry-Perot interferometers often observe anomalously low zonal wind velocities in the (Northern) dawn auroral oval during periods of extremely high geomagnetic activity when BY is positive. Conversely, for BY negative, there is an early transition from westward to southward and eastward winds in the evening auroral oval (excluding the effects of auroral substorms), and extremely large eastward (sunward) winds may be driven in the auroral oval after magnetic midnight. These observations are matched by the observation of strong anti-sunward polar-cap wind jets from the DE-2 satellite, on the dusk side with BY negative, and on the dawn side with BY positive.  相似文献   

14.
15.
Many previous researchers have shown that convection in the magnetosphere is reflected in the ionosphere by an eastward electrojet in the evening sector and a westward electrojet in the post-midnight sector. In this paper we shall demonstrate the existence of eastward electrojet flow in the dawn sector in the latitude regime normally occupied by the westward convection electrojet. It will be shown that the convection westward electrojet near dawn may co-exist with the eastward electrojet while lying poleward of it. It is suggested that this eastward electrojet consists of Pedersen current flow driven by an eastward electric field and it is shown that the field lines which penetrate the eastward electrojet are populated by energetic electrons normally associated with the plasma sheet as well as high energy electrons normally associated with the trapped particle population. The high conductivity channel is generated by processes associated with the precipitation of high energy (E > 20 keV) electrons drifting eastwards from midnight in the trapping region. It is further shown that antiparallel current sheets may flow on the magnetic lines of force penetrating the electrojet, and that this flow is closed in the ionosphere by Hall currents flowing equatorward in the high conductivity channel.  相似文献   

16.
Theoretical calculations of the electrostatic field in the ionosphere are presented for different seasons and longitude zones. The corresponding current systems have been shown earlier to give good agreement with the geomagnetic Sq variations. The question of whether the electrostatic field is generated by winds in the ‘dynamo region’ or by other processes higher in the magnetosphere is evaluated in the light of recent observations. Several details of the electrostatic field variation, such as an increase near sunset, are noted.  相似文献   

17.
A modelling study of the effects of neutral air winds on the electron content of the mid-latitude ionosphere and protonosphere in winter has been made. The theoretical models are based on solutions of time dependent momentum and continuity equations for oxygen and hydrogen ions. The computations are compared with results from slant path observations of the ATS-6 radio beacon made at Lancaster (U.K.) and Boulder, Colorado (U.S.A.).It is found that the magnitude of the poleward neutral air wind velocity has a strong effect on the general magnitude of the electron content, but that the daily pattern of electron content variation is relatively insensitive to changes in the magnitude and phase of the wind pattern. These results are in contrast with the behaviour reported previously (Sethia et al., 1983) for summer conditions. However, the night-time electron content is increased by advancing the phase of the neutral air wind and decreased by retarding it. It appears that day-to-day variations in the electron content pattern in winter cannot be explained as effects of changing neutral air winds, which again contrasts with the findings for summer. As in summer, the wind has a major effect on the filling of the protonosphere, but in opposite sense.It is argued that the effect of the neutral air wind on the ionospheric and the protonospheric electron contents depends on the duration of the poleward wind in relation to daylight and on whether or not the wind reverses direction whilst the ionosphere is sunlit.  相似文献   

18.
A model for the production and loss of energetic electrons in Jupiter's radiation belt is presented. It is postulated that the electrons originate in the solar wind and are diffused in toward the planet by perturbations which violate the particles' third adiabatic invariant. At large distances, magnetic perturbations, electric fields associated with magnotospheric convection, or interchange instabilities driven by thermal plasma gradients may drive the diffusion. Inside about 10 RJ the diffusion is probably driven by electric fields associated with the upper atmosphere dynamo which is driven by neutral winds in the ionosphere. The diurnal component of the dynamo wind fields produces a dawn-dusk asymmetry in the decimetric radiation from the electrons in the belts, and the lack of obvious measured asymmetries in the decimetric radiation measurements provides estimates of upper limits for these Jovian ionospheric neutral winds. The average diurnal winds are less than or comparable to those on earth, but only modest fluctuating winds are required to drive the energetic electron diffusion referred to above.The winds required to diffuse the energetic particles across the orbit of the satellite lo in a time equal to their drift period are also estimated. If Io is non-conducting, modest winds are required, but if Io is conducting, only small winds are needed. It is concluded that both protons and electrons are diffused in from the solar wind to small distances without serious losses occurring due to the particles being swept up by the satellites.Consideration of proton and electron diffusion in energy shows that once the electrons become relativistic, the ratio of proton to electron energy increases. Thus, if protons and electrons have the same energy in the solar wind, when the electrons reach nMeV, the protons will be nMeV if n ? 1 or n2 MeV if n ? 1. If the proton-to-electron energy ratio is initially, e.g., 5, then these figures are 5n and 5n2, respectively.  相似文献   

19.
In the present article, the results of theoretical investigation of the dynamics of generation and propagation of planetary (with wavelength 103 km and more) ultra-low frequency (ULF) electromagnetic wave structures in the dissipative ionosphere are given. The physical mechanism of generation of the planetary electromagnetic waves is proposed. It is established, that the global factor, acting permanently in the ionosphere—inhomogeneity (latitude variation) of the geomagnetic field and angular velocity of the earth's rotation—generates the fast and slow planetary ULF electromagnetic waves. The waves propagate along the parallels to the east as well as to the west. In E-region the fast waves have phase velocities (2-20) km s−1and frequencies (10−1-10−4) s−1; the slow waves propagate with local winds velocities and have frequencies (10−4-10−6) s−1. In F-region the fast ULF electromagnetic waves propagate with phase velocities tens-hundreds km s−1 and their frequencies are in the range of (10-10−3) s−1. The slow mode is produced by the dynamoelectric field, it represents a generalization of the ordinary Rossby-type waves in the rotating ionosphere and is caused by the Hall effect in the E-layer. The fast disturbances are the new modes, which are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field and are connected with the large-scale internal vortical electric field generation in the ionosphere. The large-scale waves are weakly damped. The features and the parameters of the theoretically investigated electromagnetic wave structures agree with those of large-scale ULF midlatitude long-period oscillations (MLO) and magnetoionospheric wave perturbations (MIWP), observed experimentally in the ionosphere. It is established, that because of relevance of Coriolis and electromagnetic forces, generation of slow planetary electromagnetic waves at the fixed latitude in the ionosphere can give rise to the reverse of local wind structures and to the direction change of general ionospheric circulation. It is considered one more class of the waves, called as the slow magnetohydrodinamic (MHD) waves, on which inhomogeneity of the Coriolis and Ampere forces do not influence. These waves appear as an admixture of the slow Alfven- and whistler-type perturbations. The waves generate the geomagnetic field from several tens to several hundreds nT and more. Nonlinear interaction of the considered waves with the local ionospheric zonal shear winds is studied. It is established, that planetary ULF electromagnetic waves, at their interaction with the local shear winds, can self-localize in the form of nonlinear solitary vortices, moving along the latitude circles westward as well as eastward with velocity, different from phase velocity of corresponding linear waves. The vortices are weakly damped and long lived. They cause the geomagnetic pulsations stronger than the linear waves by one order. The vortex structures transfer the trapped particles of medium and also energy and heat. That is why such nonlinear vortex structures can be the structural elements of strong macroturbulence of the ionosphere.  相似文献   

20.
The electric currents induced in the atmosphere of a non-magnetic planet such as Venus by the interaction of the solar wind satisfy a generalized Ohm's Law relationship with tensor conductivity. The distribution of these currents within the planetary ionosphere may be calculated by a variational technique which minimizes the Joule heating over the ionospheric volume. In this paper, we present the development of the variational technique, and apply it to a model of the solar wind interaction with Venus.Potential and current distributions are shown, and the use of these distributions in determining convective transport patterns of planetary ions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号