首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The survey of radiometric and paleomagnetic work on the mafic rocks of South Carolina is consistent with, and amplifies the studies on the acidic rocks of the southeast by Ellwood (1982). The westerly post-early Mesozoic tilt of the southeastern Appalachians proposed by Dooley and Smith (1982) over most of the Piedmont balances out the post-late Paleozoic southeastern tilt of Ellwood (1982). Only in the Elberton-Sparta block is the tilting important and here the interpretation proposed is of a greater initial tilt (approximately 25–30°) reduced by the post-early Mesozoic tilt.There is no evidence of displaced terrains as far as the King's Mountain, Charlotte, and Slate belts are concerned at least since 300 m.y. ago and perhaps as early as 350 m.y. ago. The anomalous paleomagnetic data from the Kiokee belt is best interpreted as due to tectonic displacements associated with the late Paleozoic event described by Secor and Snoke (1978) and Snokeet al. (1980).The paleopoles of the mafic rocks are in agreement with paleopoles on the North American apparent polar wander path (APWP) at about 300 m.y. The resolution of K–Ar apparent ages of 350 m.y. or older will require40Ar/39Ar studies and such age relationships are critical to the reasonable application of tilt corrections in the southern Appalachians.  相似文献   

2.
The Kalpin nappe structure is a strongest thrust and fold deformation belt in front of the Tianshan Mountains since the Cenozoic time. The tectonic deformation occurred in 5―6 striking Meso-zoic-Cenozoic fold zones, and some renascent folds formed on the recent alluvial-proluvial fans in front of the folded mountains. We used the total station to measure gully terraces along the longitudinal to-pographic profile in the renascent fold zones and collected samples from terrace deposits for age de-termination. Using the obtained formation time and shortening amount of the deformed terraces, we calculated the shortening rate of 4 renascent folds to be 0.1±0.03 mm/a, 0.12±0.04 mm/a, 0.59±0.18 mm/a, and 0.26±0.08 mm/a, respectively. The formation time of the renascent folds is some later than the major tectonic uplift event of the Qinghai-Tibet Plateau 0.14 Ma ago. It may be the long-distance effect of this tectonic event on the Tianshan piedmont fold belt.  相似文献   

3.
本研究利用国家地震台网131个地震台站2009—2016年记录的1 749次近震的初至P波和S波走时数据,与采用快速行进方法正演计算得到的华北地区4个三维地壳速度模型对应的走时数据进行对比,通过统计分析的方法,评价这4个速度模型与真实地下结构的近似程度。结果表明:4个速度模型在大范围内存在较高的一致性,在整个研究区内(111°E—119.5°E,37°N—42°N),Shen等的模型(简称“S模型”)相对优于Fang等的模型(简称“F模型”)和Duan等的模型(简称“D模型”),Laske等的Crust1.0模型(简称“C模型”)相对较差。我们认为该结果与上述几个模型所使用的数据及其分辨率有关。对于研究区域内的构造单元,D模型在燕山褶皱带西南部、太行山山前构造带西北部和沧县隆起区表现较好,F模型在太行山隆起区中部、沧县隆起北部、黄骅凹陷区和燕山褶皱带表现较好,S模型在西部地块、山西凹陷区、太行山山前构造带和冀中凹陷区表现较好,C模型无明显连片表现较好区域。   相似文献   

4.
Past studies have shown that high coastal uplift rates are restricted to active areas, especially in a subduction context. The origin of coastal uplift in subduction zones, however, has not yet been globally investigated. Quaternary shorelines correlated to the last interglacial maximum (MIS 5e) were defined as a global tectonic benchmark (Pedoja et al., 2011). In order to investigate the relationships between the vertical motion and the subduction dynamic parameters, we cross-linked this coastal uplift database with the “geodynamical” databases from Heuret (2005), Conrad and Husson (2009) and Müller et al. (2008). Our statistical study shows that: (1) the most intuitive parameters one can think responsible for coastal uplift (e.g., subduction obliquity, trench motion, oceanic crust age, interplate friction and force, convergence variation, dynamic topography, overriding and subducted plate velocity) are not related with the uplift (and its magnitude); (2) the only intuitive parameter is the distance to the trench which shows in specific areas a decrease from the trench up to a distance of ∼300 km; (3) the slab dip (especially the deep slab dip), the position along the trench and the overriding plate tectonic regime are correlated with the coastal uplift, probably reflecting transient changes in subduction parameters. Finally we conclude that the first order parameter explaining coastal uplift is small-scale heterogeneities of the subducting plate, as for instance subducting aseismic ridges. The influence of large-scale geodynamic setting of subduction zones is secondary.  相似文献   

5.
针对2015年4月25日发生于印度板块北边界中段的尼泊尔8.1级地震后,青藏高原中强以上地震活动呈现NE向条带分布的现象,本文将区域地质构造动力环境和以GPS水平位移为约束的数值模拟相结合,初步分析研究了这一地震活动条带的基本特征和形成机理;进而将其与1996年前后出现在青藏高原及东北部邻区的"西藏榭通门-内蒙古包头"NE向地震活动条带、以及该条带形成后强震活动由东向西的迁移状况进行比较,探讨了目前的NE向地震活动条带对未来强震活动趋势的预示意义。结果认为:尼泊尔8.1级地震后青藏高原NE向中强以上地震活动条带,是在印度板块北推挤压动力持续作用下,因青藏高原NE向构造应力加强引起的构造活动响应,并与尼泊尔大地震低角度逆冲错动和地壳介质能量传递影响有关;而未来地震趋势可能使该条带附近强震活动"填空",进而使该条带东、西两侧较大范围强震活动性增强。  相似文献   

6.
蒙古-贝加尔裂谷区地壳应变场及其地球动力学涵义   总被引:1,自引:0,他引:1       下载免费PDF全文
蒙古-贝加尔地区是现今构造最活跃的大陆地区之一,其地壳构造运动及变形对我们理解大陆动力学问题具有重要的科学意义.基于融合的这一区域的GPS速度场,本文计算了该区应变率场和应变能变化率场.结果显示,蒙古褶皱带以南区域表现为NNE-SSW方向的压缩状态,主压应变率约为-2.0×10-9/a,剪应变及面膨胀均较弱,表明蒙古褶皱带比较稳定.贝加尔裂谷整体处于拉张状态且伴有较强的剪应变和面膨胀,暗示可能有多种机制控制裂谷的张裂过程.蒙古高原西部有两条高应变率的构造带,结合深部存在地幔热柱等证据,我们认为这两条构造带及所围限的区域共同构成Amurian板块的西部边界—一条弥散变形的边界带.蒙古-贝加尔地区剪应变分布与0~40 km的地震活动性基本一致,表明该地区形变在地壳尺度耦合程度较高.地幔对流拖曳力场与主应变轴方向及应变率场的一致性表明,地幔对流可能是蒙古—贝加尔地区区域构造动力学过程主要控制因素之一.  相似文献   

7.
Lower Cretaceous red sedimentary rocks from the depositional basin of East Qilian fold belt have been collected for a paleomagnetic study. Stepwise thermal demagnetization reveals two or three components of magnetization from dark red sandstones. Low-temperature magnetic component is consistent with the present Earth Field direction in geographic coordinates. High-temperature magnetic components are mainly carried by hematite. The mean pole of 19 sites for high-temperature magnetic components after tilt-correction is λ=62.2°N, φ=193.4°E, A95=3.2°, and it passes fold tests at 99% confidence level and reversal tests at 95% confidence level. The paleopole is insignificantly different from that of Halim et al. (1998) from the same sampling area at the 95% confidence level. Compared with paleomagnetic results for North China, South China, and Eurasia, our results suggest that no significant relative latitudinal displacement has taken place between Lanzhou region and these blocks since Cretaceous time. Remarkably, the pole of Lanzhou shows a 20° clockwise rotation with respect to those of North China, South China, and Eurasia. Geological information indicates that the crustal shortening in the western part of Qilian is greater than that in eastern part. In this case, the clockwise rotation of sampling area was related to India/Eurasia collision, and this collision resulted in a left-lateral strike-slip motion of the Altun fault in north Tibetan Plateau after the Cretaceous.  相似文献   

8.
— The Indo-Burma (Myanmar) subduction boundary is highly oblique to the direction of relative velocity of the Indian tectonic plate with respect to the Eurasian plate. The area includes features of active subduction zones such as a Wadati-Benioff zone of earthquakes, a magmatic arc, thrust and fold belts. It also has features of oblique subduction such as: an arc-parallel strike-slip fault (Sagaing Fault) that takes up a large fraction of the northward component of motion and a buttress (the Mishmi block) that resists the motion of the fore-arc sliver. In this paper, I have examined the seismicity, slip vectors and principal axes of the focal mechanisms of the earthquakes to look for features of active subduction zones and for evidence of slip partitioning as observed in other subduction zones. The data set consists of Harvard CMT solutions of 89 earthquakes (1977–1999 with 4.8≦̸Mw≦̸7.2 and depths between 3–140 km). Most of these events are shallow and intermediate depth events occurring within the Indian plate subducting eastward beneath the Indo-Burman ranges. Some shallow events within the fore-arc region have arc-parallel Paxes, reflecting buttressing of the fore-arc sliver at its leading edge. Some of the shallowest events have nearly E-W oriented P axes which might account for recent folding and thrusting. Examination of earthquake slip vectors in this region shows that the slip vector azimuths of earthquakes in the region between 20°–26°N are rotated towards the trench normal, which is an indication of partial partitioning of the oblique convergence. It is seen that all aspects of seismicity, including the paucity of shallow underthrusting earthquakes and the orientation of P axes, are consistent with oblique convergence. The conclusions of this paper are consistent with recent geological studies and interpretations such as the coexistence of eastward subduction, volcanic activity and transcurrent movement through mid-Miocene to Quaternary period.  相似文献   

9.
In this paper, we have carefully determined the stress zones in the Sichuan-Yunnan region with reference to the in-situ stress data of hydraulic fracturing and the inverted fault slip data by using the step-by-step convergence method for stress zoning based on focal mechanism solutions. The results indicate that the tectonic stress field in the Sichuan-Yunnan region is divided into 3 stress zones by 2 approximately parallel NNW-trending stress transition belts. The area between the 2 belts is the Sichuan-Yunnan stress zone where the maximum principal stress σ1 is just in the NNW direction. The eastern boundary of Sichuan-Yunnan stress zone (the eastern stress transition belt) is basically consistent with the eastern boundary of Sichuan-Yunnan rhombic block. The western boundary of Sichuan-Yunnan stress zone (the western stress transition belt) is not totally consistent with the western boundary of Sichuan-Yunnan rhombic block. The northern segment of the western stress transition belt extends basically along the Jinshajiang fault and accords with the western boundary of Sichuan-Yunnan rhombic block, while its southern segment does not extend along the southwestern boundary of the rhombic block, i.e., Honghe fault and converge with the eastern stress transition belt, but stretches continuously in the NNW direction and accords with the Yingpanshan fault. We therefore consider that under the combined influence from the northward motion of India Plate, the southeastward shift of east Qinghai-Xizang Plateau and the strong obstruction of South China block, the tectonic stress field in the Sichuan-Yunnan region might not be totally controlled by the previous tectonic frame and new stress transition belt may have possibly formed.  相似文献   

10.
青藏高原东北缘重力异常多尺度横向构造分析   总被引:8,自引:6,他引:2  
孟小红  石磊  郭良辉  佟拓  张盛 《地球物理学报》2012,55(12):3933-3941
本文研究了青藏高原东北缘地区布格重力异常特征,采用优化滤波法和归一化总水平梯度垂直导数法对研究区重力异常进行多尺度分离和横向构造分析.分离出的多尺度重力异常特征表明:1) 青藏高原东北缘地区大致以东经106°线为界,有一条醒目的重力异常梯级带,即贺兰山-六盘山-川滇南北构造带的北段,其东西两侧布格重力异常特征在形态和走向上截然不同,意味着两侧密度结构和构造特征存在明显差异. 2) 鄂尔多斯地块内部定边以北,重力异常高带走向由北东向转为近南北向,推测定边附近存在一个密度或构造界面,其两侧物质组成和构造特征具有差异,对比大尺度重力异常和中尺度重力异常,表明异常特征的这种差异主要是由上地幔深部结构引起的. 3) 青藏高原东北部各块体深部边界位置与地表构造分布不同,反映出该区构造复杂,深浅构造差异大. 4) 由于印度-欧亚板块碰撞及随后印度板块持续向北的挤压作用,造成青藏高原东北缘中、下地壳物质在巨大的北东向推挤力和鄂尔多斯刚性块体阻挡的共同作用下,沿着相对软弱的秦岭造山带方向蠕动.依据多尺度重力异常及其横向构造特征,综合推断出研究区内五条断裂带,即秦岭地轴北缘断裂带、海原-六盘山断裂带、香山-天景山断裂带、烟筒山断裂带和青铜峡-固原断裂带,并分析了它们在地壳深部的可能展布特征.  相似文献   

11.
The Mohe region near the border area of China with Russia is in Heilongjiang Province. Topographically the area consists of lower mountains or hills situated at the northern end of the Da Hinggan Mountains. Struc-turally the Mohe basin rests on the north margin of the Ergun Block, and the Mongol-Okhotsk Orogen is lo-cated to the north of the basin. Due to poor access conditions and good vegetation coverage, previous researches on the basin are much weak with few spe-cial geological inves…  相似文献   

12.
L. Liu 《Pure and Applied Geophysics》2001,158(9-10):1583-1611
— This paper reviews some remarkable characteristics of earthquakes in a Stable Continental Region (SCR) of the South China Block (SCB). The kernel of the SCB is the Yangtze platform solidified in late Proterozoic time, with continental growth to the southeast by a series of fold belts in Paleozoic time. The facts that the deviatoric stress is low, the orientations of the major tectonic features in the SCB are substantially normal to the maximum horizontal principal stress, and a relatively uniform crust, seem to be the major reasons for lack of significant seismicity in most regions of the SCB. Earthquakes in this region are mainly associated with three seismic zones: (1) the Southeast China Coast seismic zone related to Guangdong-Fujian coastal folding belt (associated with Eurasia-Philippine Sea plate collision); (2) the Southern Yellow Sea seismic zone associated with continental shelf rifts and basins; and (3) the Downstream Yangtze River seismic zone spatially coinciding with Tertiary rifts and basin development. All three seismic zones are close to one or two major economic and population centers in the SCB so that they pose significant seismic hazards. Earthquake focal mechanisms in the SCB are consistent with strike-slip to normal faulting stress regimes. Because of the global and national economic significance of the SCB and its dense population, the seismic hazard of the region is of outstanding importance. Comparing the SCB with another less developed region, a pending earthquake with the same size and tectonic setting would cause substantially more severe social and economic losses in the SCB. This paper also compiles an inventory of historic moderate to great earthquakes in the SCB; most of the data are not widely available in English literature.  相似文献   

13.
对青藏高原过班公—怒江构造带的三条大地电磁剖面进行探测,获得班公—怒江构造带及其邻区的电性结构模型,研究了班公—怒江构造带的深部结构与构造特征.研究结果表明:构造带及其两侧上地壳内广泛分布不连续高阻体,反映了岩浆岩的空间分布特征,表明构造带南北两侧岩浆的活动规律可能存在较大差别.研究区内的冈底斯及羌塘地体的中、下地壳普遍发育高导层,反映了印度大陆碰撞、俯冲过程的效应与痕迹,而高导层之下的高阻块体则可能是向北俯冲、冷的、刚性的印度大陆地壳.羌塘地体的电性结构模型可以分为南北两个区段,南羌塘块体的壳内高导层与班公—怒江构造带对印度板块俯冲的阻挡作用有关;而北羌塘块体壳内高导层与亚洲大陆对印度板块向北俯冲的“阻挡”与向南“对冲”有关.印度板块向北的俯冲与挤入,受到班公—怒江构造带及亚洲板块的阻挡,可能没有越过班公—怒江构造带,并在班公—怒江构造带附近向下插入软流圈,导致幔源物质上涌,形成壳、幔热交换与物质交换的通道和规模巨大、延伸至上地幔的高导体.班公—怒江构造带的电性结构证明了该构造带是一组产状陡立、巨型的超壳深断裂带.  相似文献   

14.
Nonlinear effects in seismic wave propagation are analyzed to determine the mechanical rigidity of different-order faults that thread the tectonic structures in the central part of the East European platform (Moscow syneclise and Voronezh Crystalline Massif) and the fault zones of the Balapan and Degelen mountain regions in Kazakhstan (the Degelen magmatic node in the Central Chingiz zone). The dependency of the rigidity of the fault zone on the fault’s length is obtained. The rigidity of the tectonic structures is found to experience well-expressed temporal variations with periods of 13–15 days, 27–32 days, and about one year. In the different-order fault zones, the amplitudes of both normal k n and the shear k s rigidity for semimonthly, monthly, and annual variations can span a factor of 1.3, 1.5, and 2.5, respectively.  相似文献   

15.
华北地区现今地壳运动动力学初步研究   总被引:10,自引:4,他引:6       下载免费PDF全文
本文基于GPS、断层形变等观测资料,实现华北地区构造运动有限元数值模拟,研究其现今地壳运动及形变动力学机理.结果表明,鄂尔多斯地块、华南地块、东北亚地块等周边构造块体的相对运动基本决定了华北地区现今表面运动及应力场格局.而另一方面,当考虑区域下部岩石层较快速的“拖动”作用时,表面速度场可以得到更好模拟,并同时形成共轭分布的剪应力梯度带.可见太平洋板块的俯冲作用、印-欧板块的碰撞挤压作用等可能造成岩石层深部、浅部运动差异,从而对研究区现今地壳运动产生深刻影响.此外,地形重力作用、断层分布及区域流变结构非均匀性也对现今地壳运动具有一定影响作用,但处于次要地位.  相似文献   

16.
Geometry,kinematics and evolution of the Tongbai orogenic belt   总被引:2,自引:0,他引:2  
1 Introduction spectively[2,3]. Several tectonic units such as the Bei- The Qinling-Dabie orogenic belt has attracted huaiyang, north Dabie, south Dabie and Susong belts worldwide attention by its very complex and abundant have been recognized in eastern Dabie[4]. Nine tec- geological characters, and has been a “hot point” of tonic units have been recognized in western Dabie and international geological research[1]. A vast amount of a more detailed division has been suggested especially …  相似文献   

17.
Paleomagnetic research in the Siberian area provides new data to derive models of relative horizontal movements and the process of amalgamation or consolidation of the Siberian plate. Comparison of the Apparent Polar Wander (APW) curves for different regions of Siberia show that there were several stages of plate consolidation, the most important of which belonged to Baikalian time (c. 520–800 Ma). The consolidation was complicated by rifting processes. There were six megaterrains in pre-Vendian times, which underwent differential horizontal displacements. The joining of the Altai-Sayan fold area and the North-East microplates and fold belts to the Siberian plate, and the separation of the Taimyr peninsula, were the main post-Baikalian events. The most complete geologic sections were studied in conjunction with radiometric age dating and related to the geochronological Precambrian time scale of the USSR. This has led to the discovery of a stratigraphic polarity bias in the early Riphean-Vendian interval. There were five polarity stages in this interval 200–240 Ma each.  相似文献   

18.
Interplate coupling plays an important role in the seismogenesis of great interplate earthquakes at subduction zones. The spatial and temporal variations of such coupling control the patterns of subduction zone seismicity. We calculate stresses in the outer rise based on a model of oceanic plate bending and coupling at the interplate contact, to quantitatively estimate the degree of interplate coupling for the Tonga, New Hebrides, Kurile, Kamchatka, and Marianas subduction zones. Depths and focal mechanisms of outer rise earthquakes are used to constrain the stress models. We perform waveform modeling of body waves from the GDSN network to obtain reliable focal depth estimates for 24 outer rise earthquakes. A propagator matrix technique is used to calculate outer rise stresses in a bending 2-D elastic plate floating on a weak mantle. The modeling of normal and tangential loads simulates the total vertical and shear forces acting on the subducting plate. We estimate the interplate coupling by searching for an optimal tangential load at the plate interface that causes the corresponding stress regime within the plate to best fit the earthquake mechanisms in depth and location.We find the estimated mean tangential load over 125–200 km width ranging between 166 and 671 bars for Tonga, the New Hebrides, the Kuriles, and Kamchatka. This magnitude of the coupling stress is generally compatible with the predicted shear stress at the plate contact from thermal-mechanical plate models byMolnar andEngland (1990), andVan den Buekel andWortel (1988). The estimated tectonic coupling,F tc , is on the order of 1012–1013 N/m for all the subduction zones.F tc for Tonga and New Hebrides is about twice as high as in the Kurile and Kamchatka arcs. The corresponding earthquake coupling forceF ec appears to be 1–10% of the tectonic coupling from our estimates. There seems to be no definitive correlation of the degree of seismic coupling with the estimated tectonic coupling. We find that outer rise earthquakes in the Marianas can be modeled using zero tangential load.  相似文献   

19.
This work presents at attempt to model brittle ruptures and slips in a continental plate and its spontaneous organization by repeated earthquakes in terms of coarse-grained properties of the mechanical plate. A statistical physics model, which simulates anti-plane shear deformation of a thin plate with inhomogeneous elastic properties, is thus analyzed theoretically and numerically in order to study the spatio-temporal evolution of rupture patterns in response to a constant applied strain rate at its borders, mimicking the effect of neighboring plates. Rupture occurs when the local stress reaches a threshold value. Broken elements are instantaneously healed and retain the original material properties, enabling the occurrence of recurrent earthquakes. Extending previous works (Cowie et al., 1993;Miltenberger et al., 1993), we present a study of the most startling feature of this model which is that ruptures become strongly correlated in space and time leading to the spontaneous development of multifractal structures and gradually accumulate large displacements. The formation of the structures and the temporal variation of rupture activity is due to a complex interplay between the random structure, long-range elastic interactions and the threshold nature of rupture physics. The spontaneous formation of fractal fault structures by repeated earthquakes is mirrored at short times by the spatio-temporal chaotic dynamics of earthquakes, well-described by a Gutenberg-Richter power law. We also show that the fault structures can be understood as pure geometrical objects, namely minimal manifolds, which in two dimensions correspond to the random directed polymer (RDP) problem. This mapping allows us to use the results of many studies on the RDP in the field of statistical physics, where it is an exact result that the minimal random manifolds in 2D systems are self-affine with a roughness exponent 2/3. We also present results pertaining to the influence of the degree of stress release per earthquake on the competition between faults. Our results provide a rigorous framework from which to initiate rationalization of many, reported fractal fault studies.  相似文献   

20.
2013年4月20日发生在龙门山南段的芦山MS7.0地震是继发生在龙门山中北段的汶川MS8.0地震之后的又一次强震。本文通过震后地表变形特征、余震分布、震源机制解、石油地震勘探剖面、历史地震数据等资料,结合前人对龙门山南段主干断裂、褶皱构造特征的研究以及野外实地考察,应用活动褶皱及"褶皱地震"的相关理论,初步分析芦山地震的发震构造模式。认为芦山地震为典型的褶皱地震,发震断裂为前山或山前带一隐伏断裂。构造挤压产生的地壳缩短大部分被褶皱构造吸收。认为龙门山南段前缘地区具有活褶皱-逆断层的运动学特征,表明龙门山逆冲作用正向四川盆地内部扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号