首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Middle Durance fault system, southeastern France, is a slow active fault that produced moderate-size historical seismic events and shows evidence of at least one   M w ≳ 6.5  event in the last 29 000 yr. Based on dynamic rupture simulation, we propose earthquake scenarios that are constrained by knowledge of both the tectonic stress field and of the 3-D geometry of the Durance fault system. We simulate dynamic rupture interaction among several fault segmentations of different strikes, dips and rakes, using a 3-D boundary integral equation method. 50 combinations of reasonable stress field orientations, stress field amplitudes and hypocentre locations are tested. The probability of different rupture evolutions is then computed. Each segment ruptures mainly as a single event (44 per cent of the 50 simulations test in this paper). However, the probability that an event triggers simultaneously along three segments is high (26 per cent), leading to a potential rupture length of 45 km. Finally, 2 per cent of the simulations occur along four adjacent segments, producing the greatest total rupture length of 55 km. The simulation results show that the southernmost segment is most easily ruptured (40 per cent), because of its favourable orientation with respect to the tectonic stress and of its favourable location for interaction with the other segments. South-bound unilateral propagation is slightly preferable (41 per cent), compared to north-bound unilateral and bilateral propagation modes. Although, these rupture scenarios cannot be directly translated into probabilities of occurrence, they do provide a better insight as to which rupture scenarios are more likely, an important element to better estimate near-field strong ground motion and seismic hazard.  相似文献   

2.
Two distinct phases are commonly observed at the initial part of seismograms of large shallow earthquakes: low-frequency and low-amplitude waves following the onset of a P wave ( P 1) are interrupted by the arrival of the second impulsive phase P2 enriched with high-frequency components. This observation suggests that a large shallow earthquake involves two qualitatively different stages of rupture at its nucleation.
We propose a theoretical model that can naturally explain the above nucleation behaviour. The model is 2-D and the deformation is assumed to be anti-plane. A key clement in our model is the assumption of a zone in which numbers of pre-existing cracks are densely distributed; this cracked zone is a model for the fault zone. Dynamic crack growth nucleated in such a zone is intensely affected by the crack interactions, which exert two conflicting effects: one tends to accelerate the crack growth, and the other tends to decelerate it. The accelerating and decelerating effects are generally ascribable to coplanar and non-coplanar crack interactions, respectively. We rigorously treat the multiple interactions among the cracks, using the boundary integral equation method (BIEM), and assume the critical stress fracture criterion for the analysis of spontaneous crack propagation.
Our analysis shows that a dynamic rupture nucleated in the cracked zone begins to grow slowly due to the relative predominance of non-coplanar interactions. This process radiates the P1 phase. If the crack continues to grow, coalescence with adjacent coplanar cracks occurs after a short time. Then, coplanar interactions suddenly begin to prevail and crack growth is accelerated; the P2 phase is emitted in this process. It is interpreted that the two distinct phases appear in the process of the transition from non-coplanar to coplanar interaction predominance.  相似文献   

3.
It is pointed out, in the context of the boundary integral equation method (BIEM), that, in the mechanics of 2-D curved in-plane shear cracks, a smooth curve, along which the crack orientation changes continuously, and an abrupt kink, across which it changes discontinuously, are not equivalent to each other. The discrepancy is illustrated by numerical results, and a set of conceptual models is used to demonstrate analytically how the equations that govern the crack mechanics have inherently distinct forms depending on whether the crack orientation changes continuously or abruptly across a bend, as long as one abides by the principles of linear elasticity theory. This has serious implications for the numerical treatment of a curved crack, which can be modelled as a chain of finite elements that are connected either smoothly or at abrupt kinks, the two methods producing different numerical outcomes. No similar paradox arises in the cases of anti-plane shear or open in-plane cracks.  相似文献   

4.
Scattering of wavefields in a 3-D medium that includes passive and/or active structures, is numerically solved by using the boundary integral equation method (BIEM). The passive structures are velocity anomalies that generate scattered waves upon incidence, and the active structures contain endogenous fracture sources, which are dynamically triggered by the dynamic load due to the incident waves. Simple models are adopted to represent these structures: passive cracks act as scatterers and active cracks as fracture sources. We form cracks using circular boundaries, which consist of many boundary elements. Scattering of elastic waves by the boundaries of passive cracks is treated as an exterior problem in BIEM. In the case of active cracks, both the exterior and interior problems need to be solved, because elastic waves are generated by fracturing with stress drop, and the growing crack boundaries scatter the incident waves from the outside of the cracks. The passive cracks and/or active cracks are randomly distributed in an infinite homogeneous elastic medium. Calculations of the complete waveform considering a single scatter show that the active crack has weak influence on the attenuation of first arrivals but strong influence on the amplitudes of coda waves, as compared with those due to the passive crack. In the active structures, multiple scattering between cracks and the waves triggered by fracturing strongly affect the amplitudes of first arrivals and coda waves. Compared to the case of the passive structures, the attenuation of initial phase is weak and the coda amplitudes decrease slowly.  相似文献   

5.
We portray a dedicated spectral-element method to solve the elastodynamic wave equation upon spherically symmetric earth models at the expense of a 2-D domain. Using this method, 3-D wavefields of arbitrary resolution may be computed to obtain Fréchet sensitivity kernels, especially for diffracted arrivals. The meshing process is presented for varying frequencies in terms of its efficiency as measured by the total number of elements, their spacing variations and stability criteria. We assess the mesh quantitatively by defining these numerical parameters in a general non-dimensionalized form such that comparisons to other grid-based methods are straightforward. Efficient-mesh generation for the PREM example and a minimum-messaging domain decomposition and parallelization strategy lay foundations for waveforms up to frequencies of 1 Hz on moderate PC clusters. The discretization of fluid, solid and respective boundary regions is similar to previous spectral-element implementations, save for a fluid potential formulation that incorporates the density, thereby yielding identical boundary terms on fluid and solid sides. We compare the second-order Newmark time extrapolation scheme with a newly implemented fourth-order symplectic scheme and argue in favour of the latter in cases of propagation over many wavelengths due to drastic accuracy improvements. Various validation examples such as full moment-tensor seismograms, wavefield snapshots, and energy conservation illustrate the favourable behaviour and potential of the method.  相似文献   

6.
We implement the wave equation on a spherical membrane, with a finite-difference algorithm that accounts for finite-frequency effects in the smooth-Earth approximation, and use the resulting 'membrane waves' as an analogue for surface wave propagation in the Earth. In this formulation, we derive fully numerical 2-D sensitivity kernels for phase anomaly measurements, and employ them in a preliminary tomographic application. To speed up the computation of kernels, so that it is practical to formulate the inverse problem also with respect to a laterally heterogeneous starting model, we calculate them via the adjoint method, based on backpropagation, and parallelize our software on a Linux cluster. Our method is a step forward from ray theory, as it surpasses the inherent infinite-frequency approximation. It differs from analytical Born theory in that it does not involve a far-field approximation, and accounts, in principle, for non-linear effects like multiple scattering and wave front healing. It is much cheaper than the more accurate, fully 3-D numerical solution of the Earth's equations of motion, which has not yet been applied to large-scale tomography. Our tomographic results and trade-off analysis are compatible with those found in the ray- and analytical-Born-theory approaches.  相似文献   

7.
Modelling dynamic rupture for complex geometrical fault structures is performed through a finite volume method. After transformations for building up the partial differential system following explicit conservative law, we design an unstructured bi-dimensional time-domain numerical formulation of the crack problem. As a result, arbitrary non-planar faults can be explicitly represented without extra computational cost. On these complex surfaces, boundary conditions are set on stress fluxes and not on stress values. Prescribed rupture velocity gives accurate solutions with respect to analytical ones depending on the mesh refinement, while solutions for spontaneous propagation are analysed through numerical means. An example of non-planar spontaneous fault growth in heterogeneous media demonstrates the good behaviour of the proposed algorithm as well as specific difficulties of such numerical modelling.  相似文献   

8.
Scattering of surface waves modelled by the integral equation method   总被引:1,自引:0,他引:1  
The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at   R = 0  , based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.  相似文献   

9.
The perfectly matched layer (PML) absorbing boundary condition is incorporated into an irregular-grid elastic-wave modelling scheme, thus resulting in an irregular-grid PML method. We develop the irregular-grid PML method using the local coordinate system based PML splitting equations and integral formulation of the PML equations. The irregular-grid PML method is implemented under a discretization of triangular grid cells, which has the ability to absorb incident waves in arbitrary directions. This allows the PML absorbing layer to be imposed along arbitrary geometrical boundaries. As a result, the computational domain can be constructed with smaller nodes, for instance, to represent the 2-D half-space by a semi-circle rather than a rectangle. By using a smooth artificial boundary, the irregular-grid PML method can also avoid the special treatments to the corners, which lead to complex computer implementations in the conventional PML method. We implement the irregular-grid PML method in both 2-D elastic isotropic and anisotropic media. The numerical simulations of a VTI lamb's problem, wave propagation in an isotropic elastic medium with curved surface and in a TTI medium demonstrate the good behaviour of the irregular-grid PML method.  相似文献   

10.
The diffraction of P, S and Rayleigh waves by 3-D topographies in an elastic half-space is studied using a simplified indirect boundary element method (IBEM). This technique is based on the integral representation of the diffracted elastic fields in terms of single-layer boundary sources. It can be seen as a numerical realization of Huygens principle because diffracted waves are constructed at the boundaries from where they are radiated by means of boundary sources. A Fredholm integral equation of the second kind for such sources is obtained from the stress-free boundary conditions. A simplified discretization scheme for the numerical and analytical integration of the exact Green's functions, which employs circles of various sizes to cover most of the boundary surface, is used.
The incidence of elastic waves on 3-D topographical profiles is studied. We analyse the displacement amplitudes in the frequency, space and time domains. The results show that the vertical walls of a cylindrical cavity are strong diffractors producing emission of energy in all directions. In the case of a mountain and incident P, SV and SH waves the results show a great variability of the surface ground motion. These spatial variations are due to the interference between locally generated diffracted waves. A polarization analysis of the surface displacement at different locations shows that the diffracted waves are mostly surface and creeping waves.  相似文献   

11.
Amplitude measurements of the transverse component of SKS waves, the so-called splitting intensity, can be used to formulate a non-linear inverse problem to image the 3-D variations of upper mantle anisotropy. Assuming transverse isotropy (or hexagonal symmetry), one can parametrize anisotropy by two anisotropic parameters and two angles describing the orientation of the symmetry axis. These can also be written as two collinear pseudo-vectors. The tomographic process consists of retrieving the spatial distribution of these pseudo-vectors, and thus resembles surface wave vectorial tomography. Spatial resolution results from the sensitivity of low-frequency SKS waves to seismic anisotropy off the ray path. The expressions for the 3-D sensitivity kernels for splitting intensity are derived, including the near-field contributions, and validated by comparison with a full wave equation solution based upon the finite element method. These sensitivity kernels are valid for any orientation of the symmetry axis, and thus generalize previous results that were only valid for a horizontal symmetry axis. It is shown that both lateral and vertical subwavelength variations of anisotropy can be retrieved with a dense array of broad-band stations, even in the case of vertically propagating SKS waves.  相似文献   

12.
Finite-frequency sensitivity kernels for head waves   总被引:2,自引:0,他引:2  
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the 'banana–doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.  相似文献   

13.
In this study, we test the adequacy of 2-D sensitivity kernels for fundamental-mode Rayleigh waves based on the single-scattering (Born) approximation to account for the effects of heterogeneous structure on the wavefield in a regional surface wave study. The calculated phase and amplitude data using the 2-D sensitivity kernels are compared to phase and amplitude data obtained from seismic waveforms synthesized by the pseudo-spectral method for plane Rayleigh waves propagating through heterogeneous structure. We find that the kernels can accurately predict the perturbation of the wavefield even when the size of anomaly is larger than one wavelength. The only exception is a systematic bias in the amplitude within the anomaly itself due to a site response.
An inversion method of surface wave tomography based on the sensitivity kernels is developed and applied to synthesized data obtained from a numerical simulation modelling Rayleigh wave propagation over checkerboard structure. By comparing recovered images to input structure, we illustrate that the method can almost completely recover anomalies within an array of stations when the size of the anomalies is larger than or close to one wavelength of the surface waves. Surface wave amplitude contains important information about Earth structure and should be inverted together with phase data in surface wave tomography.  相似文献   

14.
This paper analyses the computational issues of full 3-D tomography, in which the starting model as well as the model perturbation is 3-D and the sensitivity (Fréchet) kernels are calculated using the full physics of 3-D wave propagation. We compare two formulations of the structural inverse problem: the adjoint-wavefield (AW) method, which back-propagates the data from the receivers to image structure, and the scattering-integral (SI) method, which sets up the inverse problem by calculating and storing the Fréchet kernels for each data functional. The two inverse methods are closely related, but which one is more efficient depends on the overall problem geometry, particularly on the ratio of sources to receivers, as well as trade-offs in computational resources, such as the relative costs of compute cycles to data storage. We find that the SI method is computationally more efficient than the AW method in regional waveform tomography using large sets of natural sources, although it requires more storage.  相似文献   

15.
Summary. Analytical results are presented for Love waves generated by sudden changes of the rate of advance of a curved rupture front in an inclined fault plane that is embedded in an elastic half-space. The boundary condition at the surface of the half-space approximates the presence of an overlying layer. The calculation consists of two parts. First, ray theory is used to calculate far-field approximations to the horizontally polarized wavefields which are emitted when the speed of the rupture front suddenly changes. These fields can be expressed as products of emission coefficients (which govern the angular dependence) and propagation terms. Secondly, a representation integral for the Love wave over a surface enclosing the rupture front is constructed, using the emitted signal and an appropriate Green's function. This integral is evaluated asymptotically. The resulting approximate Love-wave spectrum shows an explicit dependence on the nature of the rupture process, on the rupture-front and fault-plane geometry, and on the magnitude of a sudden change in the rate of advance of the rupture front.  相似文献   

16.
Seismic imaging of the laterally varying D" region beneath the Cocos Plate   总被引:1,自引:0,他引:1  
We use an axisymmetric, spherical Earth finite difference algorithm to model SH -wave propagation through cross-sections of laterally varying lower mantle models beneath the Cocos Plate derived from recent data analyses. Synthetic seismograms with dominant periods as short as 4 s are computed for several models: (1) a D" reflector 264 km above the core–mantle boundary with laterally varying S -wave velocity increases of 0.9–2.6 per cent, based on localized structures from a 1-D double-array stacking method; (2) an undulating D" reflector with large topography and uniform velocity increase obtained using a 3-D migration method and (3) cross-sections through the 3-D mantle S -wave velocity tomography model TXBW. We apply double-array stacking to assess model predictions of data. Of the models explored, the S -wave tomography model TXBW displays the best overall agreement with data. The undulating reflector produces a double Scd arrival that may be useful in future studies for distinguishing between D" volumetric heterogeneity and D" discontinuity topography. Synthetics for the laterally varying models show waveform variability not observed in 1-D model predictions. It is challenging to predict 3-D structure based on localized 1-D models when lateral structural variations are on the order of a few wavelengths of the energy used, particularly for the grazing geometry of our data. Iterative approaches of computing synthetic seismograms and adjusting model characteristics by considering path integral effects are necessary to accurately model fine-scale D" structure.  相似文献   

17.
Summary. General expressions are derived for the kernels of the set of integral equations that relates the spectral matrix of the six components of a random electromagnetic wave field in a magnetoplasma to the wave distribution function for the field. The dependence of the kernels on wave-normal direction is examined, with particular reference to the propagation of very low-frequency waves in the whistler mode.  相似文献   

18.
Summary. An existing 2-D integral equation method for modelling electromagnetic induction in a thin sheet at the surface of a uniform half-space can be generalized to deal with a layered half-space by the inclusion of an extra term in the integral equation. The results obtained are shown to be in excellent agreement with finite difference solutions to the same modelling problem.  相似文献   

19.
We compare 3-D upper mantle anisotropic structures beneath the North American continent obtained using standard and improved crustal corrections in the framework of Non-linear Asymptotic Coupling Theory (NACT) applied to long period three component fundamental and higher mode surface waveform data. Our improved approach to correct for crustal structure in high-resolution regional waveform tomographic models goes beyond the linear perturbation approximation, and is therefore more accurate in accounting for large variations in Moho topography within short distances as observed, for instance, at ocean–continent margins. This improved methodology decomposes the shallow-layer correction into a linear and non-linear part and makes use of 1-D sensitivity kernels defined according to local tectonic structure, both for the forward computation and for the computation of sensitivity kernels for inversion. The comparison of the 3-D upper mantle anisotropic structures derived using the standard and improved crustal correction approaches shows that the model norm is not strongly affected. However, significant variations are observed in the retrieved 3-D perturbations. The largest differences in the velocity models are present below 250 km depth and not in the uppermost mantle, as would be expected. We suggest that inaccurate crustal corrections preferentially map into the least constrained part of the model and therefore accurate corrections for shallow-layer structure are essential to improve our knowledge of parts of the upper mantle where our data have the smallest sensitivity.  相似文献   

20.
Summary. A possible mechanism for the occurrence of slow earthquakes is investigated by calculating numerical solutions for the dynamical rupture process on a quasi-three-dimensional fault with heterogeneous frictional strengths. Experimental friction laws for the dependence of sliding frictional stress on slip velocity, which are based on the cohesive properties of fault asperities, are taken into considerations.
It is found that the applied stress does not drop very rapidly with time and the rupture velocity remarkably decreases as the dependence on slip-velocity becomes smaller. These deceleration effects for the rupture propagation are greatly enhanced with increasing heterogeneities in the distribution of frictional strength and as the initial shear stress has lower levels with respect to the average strength. For these cases, the growth of rupture is extremely slow in a nucleus region with the dimension as large as 10 times the initial rupture length, and gains a terminal velocity dependent on the above factors. The displacement-time function becomes noticeably extended in these cases, and indicates a stick—slip-like phenomena in the extended time interval for a strongly heterogeneous fault.
It seems that these results could explain the characteristic features of slow earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号