首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While time-slice simulations with atmospheric general circulation models (GCMs) have been used for many years to regionalize climate projections and/or assess their uncertainties, there is still no consensus about the method used to prescribe sea surface temperature (SST) in such experiments. In the present study, the response of the Indian summer monsoon to increasing amounts of greenhouse gases and sulfate aerosols is compared between a reference climate scenario and three sets of time-slice experiments, consisting of parallel integrations for present-day and future climates. Different monthly mean SST boundary conditions have been tested in the present-day integrations: raw climatological SST derived from the reference scenario, observed climatological SST, and observed SST with interannual variability. For future climate, the SST forcing has been obtained by superimposing climatological monthly mean SST anomalies derived from the reference scenario onto the present-day SST boundary conditions. None of these sets of time-slice experiments is able to capture accurately the response of the Indian summer monsoon simulated in the transient scenario. This finding suggests that the ocean–atmosphere coupling is a fundamental feature of the climate system. Neglecting the SST feedback and variability at the intraseasonal to interannual time scales has a significant impact on the projected monsoon response to global warming. Adding interannual variability in the prescribed SST boundary conditions does not mitigate the problem, but can on the contrary reinforce the discrepancies between the forced and coupled experiments. The monsoon response is also shown to depend on the simulated control climate, and can therefore be sensitive to the use of observed rather than model-derived SSTs to drive the present-day atmospheric simulation, as well as to any approximation in the prescribed radiative forcing. While such results do not challenge the use of time-slice experiments for assessing uncertainties and understanding mechanisms in transient scenarios, they emphasize the need for high-resolution coupled atmosphere-ocean GCMs for dynamical downscaling, or at least for high-resolution atmospheric GCMs coupled with a slab or a regional ocean model.  相似文献   

2.
Model differences in projections of extratropical regional climate change due to increasing greenhouse gases are investigated using two atmospheric general circulation models (AGCMs): ECHAM4 (Max Planck Institute, version 4) and CCM3 (National Center for Atmospheric Research Community Climate Model version 3). Sea-surface temperature (SST) fields calculated from observations and coupled versions of the two models are used to force each AGCM in experiments based on time-slice methodology. Results from the forced AGCMs are then compared to coupled model results from the Coupled Model Intercomparison Project 2 (CMIP2) database. The time-slice methodology is verified by showing that the response of each model to doubled CO2 and SST forcing from the CMIP2 experiments is consistent with the results of the coupled GCMs. The differences in the responses of the models are attributed to (1) the different tropical SST warmings in the coupled simulations and (2) the different atmospheric model responses to the same tropical SST warmings. Both are found to have important contributions to differences in implied Northern Hemisphere (NH) winter extratropical regional 500 mb height and tropical precipitation climate changes. Forced teleconnection patterns from tropical SST differences are primarily responsible for sensitivity differences in the extratropical North Pacific, but have relatively little impact on the North Atlantic. There are also significant differences in the extratropical response of the models to the same tropical SST anomalies due to differences in numerical and physical parameterizations. Differences due to parameterizations dominate in the North Atlantic. Differences in the control climates of the two coupled models from the current climate, in particular for the coupled model containing CCM3, are also demonstrated to be important in leading to differences in extratropical regional sensitivity.  相似文献   

3.
The effect of bias on control simulation is a significant issue for climate change modeling studies. We investigated the effect of the sea surface temperature (SST) bias in present day (0 ka) Atmosphere–Ocean Coupled General Circulation Model (AOGCM) simulations on simulations of the mid-Holocene (6 ka, i.e., 6,000 years before present) Asian monsoon enhancement. Because changes in ocean heat transport have a negligible effect on the 6 ka Asian monsoon (Ohgaito and Abe-Ouchi in Clim Dyn 29(1):39–50, 2007), we used an Atmospheric General Circulation Model (AGCM) rather than an AOGCM. Simulations using the AGCM coupled to a mixed layer ocean model (MLM) were conducted for 0 and for 6 ka with different ocean heat transport estimated from the climatological SST of the 0 ka simulations from nine Paleoclimate Modeling Intercomparison Project (PMIP) phase 2 (PMIP2) AOGCMs (henceforth “MA” is used to refer to experiments using the AGCM coupled with the MLM). No correlation between MA and the corresponding PMIP2 was seen in the 0 ka precipitation and it was not very strong for the 6 ka precipitation enhancement. Thus, the influences from the different AGCMs play a substantial role on the 0 ka precipitation and the 6 ka precipitation enhancement. The sensitivity experiments indicated that it was the pattern of the 0 ka SST bias which played a dominant role in the 0 ka precipitation and the 6 ka precipitation enhancement, not the difference in the mean value of the SST bias. The distributions of the 6 ka precipitation enhancements for the nine PMIP2 AOGCMs and nine MA experiments were compared. These showed that the effects of SST bias on 6 ka precipitation enhancement among the AOGCMs were not negligible. The effects of biases among the AGCMs were not negligible either, but of comparable size. That is, improvements in both the SST bias and the AGCM contribute to simulate better 6 ka monsoon.  相似文献   

4.
The veracity of modeled air–sea interactions in the Indian Ocean during the South Asian summer monsoon is examined. Representative simulations of the twentieth century climate, produced by coupled general circulation models as part of the Intergovernmental Panel on Climate Change Fourth Assessment Report, are the analysis targets along with observational data. The analysis shows the presence of large systematic biases in coupled simulations of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50% of the climatological values. Many of the biases are pervasive, being common to most simulations. The representation of air–sea interactions is also compromised. Coupled models tend to emphasize local forcing in the Indian Ocean as reflected by their large precipitation–SST correlations, at odds with the weak links in observations which suggest the importance of non-local controls. The evaporation–SST correlations are also differently represented, indicating atmospheric control on SST in some models and SST control on evaporation in others. The Indian monsoon rainfall–SST links are also misrepresented: the former is essentially uncorrelated with antecedent and contemporaneous Indian Ocean SSTs in nature, but not so in most of the simulations. Overall, coupled models are found deficient in portraying local and non-local air–sea interactions in the Indian Ocean during boreal summer. In our opinion, current models cannot provide durable insights on regional climate feedbacks nor credible projections of regional hydroclimate variability and change, should these involve ocean–atmosphere interactions in the Indian basin.  相似文献   

5.
Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius–Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that such effects are small compared to other sources of uncertainty, although models with large Arabian Sea cold SST biases may suppress the range of potential outcomes for changes to future early monsoon rainfall.  相似文献   

6.
The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Ni?o-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.  相似文献   

7.
In this study the potential impact of the anticipated increase in the greenhouse gas concentrations on different aspects of the Indian summer monsoon is investigated, focusing on the role of the mechanisms leading to these changes. Both changes in the mean aspects of the Indian summer monsoon and changes in its interannual variability are considered. This is done on the basis of a global time-slice experiment being performed with the ECHAM4 AGCM at a high horizontal resolution of T106. The experiment consists of two 30-year simulations, one representing the present-day climate (period: 1970–1999) and one representing the future climate (period: 2060–2089). The time-slice experiment predicts an intensification of the mean rainfall associated with the Indian summer monsoon due to the general warming, while the future changes in the large-scale flow indicate a weakening of the monsoon circulation in the upper troposphere and only little change in the lower troposphere. The intensification of the monsoon rainfall in the Indian region is related to an intensification of the atmospheric moisture transport into this region. The weakening of the monsoon flow is caused by a pronounced warming of the sea surface temperatures in the central and eastern tropical Pacific and the associated alterations of the Walker circulation. A future increase of the temperature difference between the Indian Ocean and central India as well as a future reduction of the Eurasian snow cover in spring would, by themselves, lead to a strengthening of the monsoon flow in the future. These two mechanisms compensate for the weakening of the low-level monsoon flow induced by the warming of the tropical Pacific. The time-slice experiment also predicts a future increase of the interannual variability of both the rainfall associated with the Indian summer monsoon and of the large-scale flow. A major part of this increase is accounted for by enhanced interannual variability of the sea surface temperatures in the central and eastern tropical Pacific.  相似文献   

8.
This work documents the diversity in Coupled Model Inter-comparison Project Phase 5 (CMIP5) models in simulating different aspects of sea surface temperature (SST) variability, particularly those associated with the El Niño–Southern Oscillation (ENSO), as well as the impact of low-frequency variations on the ENSO variability and its global teleconnection. The historical simulations (1870–2005) include 10 models with ensemble member ranging from 3 to 10 that are forced with observed atmospheric composition changes reflecting both natural and anthropogenic forcings. It is shown that the majority of the CMIP5 models capture the relative large SST anomaly variance in the tropical central and eastern Pacific, as well as in North Pacific and North Atlantic. The frequency of ENSO is not well captured by almost all models, particularly for the period of 5–6 years. The low-frequency variations in SST caused by external forcings affect the SST variability and also modify the global teleconnection of ENSO. The models reproduce the global averaged SST low-frequency variations, particularly since 1970s. However, majority of the models are unable to correctly simulate the spatial pattern of the observed SST trends. These results suggest that it is still a challenge to reproduce the features of global historical SST variations with the state-of-the-art coupled general circulation model.  相似文献   

9.
While organized tropical convection is a well-known source of extratropical planetary waves, state-of-the-art climate models still show serious deficiencies in simulating accurately the atmospheric response to tropical sea surface temperature (SST) anomalies and the associated teleconnections. In the present study, the remote influence of the tropical atmospheric circulation is evaluated in ensembles of global boreal summer simulations in which the Arpege-Climat atmospheric General Circulation Model (GCM) is nudged towards 6-h reanalyses. The nudging is applied either in the whole tropical band or in a regional summer monsoon domain. Sensitivity tests to the experimental design are first conducted using prescribed climatological SST. They show that the tropical relaxation does not improve the zonal mean extratropical climatology but does lead to a significantly improved representation of the mid-latitude stationary waves in both hemispheres. Low-pass filtering of the relaxation fields has no major effect on the model response, suggesting that high-frequency tropical variability is not responsible for extratropical biases. Dividing the nudging strength by a factor 10 only decreases the magnitude of the response. Model errors in each monsoon domain contribute to deficiencies in the model??s mid-latitude climatology, although an exaggerated large-scale subsidence in the central equatorial Pacific appears as the main source of errors for the representation of stationary waves in the Arpege-Climat model. Case studies are then conducted using either climatological or observed SST. The focus is first on summer 2003 characterized by a strong and persistent anticyclonic anomaly over western Europe. This pattern is more realistic in nudging experiments than in simulations only driven by observed SST, especially when the nudging domain is centred over Central America. Other case studies also show a significant tropical forcing of the summer mid-latitude stationary waves and suggest a weak influence of prescribed observed SST in the northern extratropics. Results therefore indicate that improving the tropical divergent circulation and its response to tropical SST anomalies remains a key issue for increasing the skill of extratropical seasonal predictions, not only in the winter hemisphere but also in the boreal summer hemisphere where the prediction of heatwave and drought likelihood is expected to become an important challenge with increasing concentrations of greenhouse gases.  相似文献   

10.
The East Asian summer monsoon (EASM) circulation and summer rainfall over East China have experienced large decadal changes during the latter half of the 20th century. To investigate the potential causes behind these changes, a series of simulations using the national center for atmospheric research (NCAR) community atmospheric model version 3 (CAM3) and the geophysical fluid dynamics laboratory (GFDL) atmospheric model version 2.1 (AM2.1) are analyzed. These simulations are forced separately with different historical forcing, namely tropical sea surface temperature (SSTs), global SSTs, greenhouse gases plus aerosols, and a combination of global SSTs and greenhouse gases plus aerosols. This study focuses on the relative roles of these individual forcings in causing the observed monsoon and rainfall changes over East Asia during 1950–2000. The simulations from both models show that the SST forcing, primarily from the Tropics, is able to induce most of the observed weakening of the EASM circulation, while the greenhouse gas plus (direct) aerosol forcing increases the land-sea thermal contrast and thus enhances the EASM circulation. The results suggest that the recent warming in the Tropics, especially the warming associated with the tropical interdecadal variability centered over the central and eastern Pacific, is a primary cause for the weakening of the EASM since the late 1970s. However, a realistic simulation of the relatively small-scale rainfall change pattern over East China remains a challenge for the global models.  相似文献   

11.
The East Asian Monsoon Simulation with IAP AGCMs-A Composite StudyWangHuijunandBiXunqiang(InstituteofAtmosphericPhysics(IAP),...  相似文献   

12.
An updated version of the Canadian Regional Climate Model (CRCM-II) has been used to perform time-slice simulations over northwestern North America, nested in the coupled Canadian General Circulation Model (CGCM2). Both driving and driven models are integrated in a scenario of transient greenhouse gases (GHG) and aerosols. The time slices span three decades that were chosen to correspond roughly to single, double and triple current GHG concentration levels. Several enhancements have been implemented in CRCM-II since the CRCM-I climate-change simulations reported upon earlier. The larger computational domain, extending further to the west, north and south, allows for a better spin-up of weather systems as they enter the regional domain. The increased length of the simulations, from 5 to 10 years, strengthens the statistical robustness of the results. The improvements to the physical parameterisation, notably the moist convection scheme and the diagnostic cloud formulation, cure the excessive cloud cover problem present in CRCM-I, reduce the warm surface bias and prevent the occurrence of grid-point precipitation storms that occurred with CRCM-I in summer. The dynamical ocean and sea-ice components of CGCM2 that is used to provide atmospheric lateral and surface boundary conditions to CRCM-II, as well as the use of transient rather than equilibrium conditions of GHG and the inclusion of direct aerosols forcing, in both CGCM2 and CRCM-II, increase the realism of the CRCM-II climate-change simulation.  相似文献   

13.
The present study aims at evaluating and comparing precipitation over the Amazon in two sets of historical and future climate simulations based on phase 3 (CMIP3) and 5 (CMIP5) of the Coupled Model Intercomparison Project. Thirteen models have been selected in order to discuss (1) potential improvements in the simulation of present-day climate and (2) the potential reduction in the uncertainties of the model response to increasing concentrations of greenhouse gases. While several features of present-day precipitation—including annual cycle, spatial distribution and co variability with tropical sea surface temperature (SST)—have been improved, strong uncertainties remain in the climate projections. A closer comparison between CMIP5 and CMIP3 highlights a weaker consensus on increased precipitation during the wet season, but a stronger consensus on a drying and lengthening of the dry season. The latter response is related to a northward shift of the boreal summer intertropical convergence zone in CMIP5, in line with a more asymmetric warming between the northern and southern hemispheres. The large uncertainties that persist in the rainfall response arise from contrasted anomalies in both moisture convergence and evapotranspiration. They might be related to the diverse response of tropical SST and ENSO (El Niño Southern Oscillation) variability, as well as to spurious behaviours among the models that show the most extreme response. Model improvements of present-day climate do not necessarily translate into more reliable projections and further efforts are needed for constraining the pattern of the SST response and the soil moisture feedback in global climate scenarios.  相似文献   

14.
In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall.  相似文献   

15.
Recent studies indicate a weakening of the Walker Circulation during the twentieth century. Here, we present evidence from an atmospheric general circulation model (AGCM) forced by the history of observed sea surface temperature (SST) that the Walker Circulation may have intensified rather than weakened. Observed Equatorial Indo-Pacific Sector SST since 1870 exhibited a zonally asymmetric evolution: While the eastern part of the Equatorial Pacific showed only a weak warming, or even cooling in one SST dataset, the western part and the Equatorial Indian Ocean exhibited a rather strong warming. This has resulted in an increase of the SST gradient between the Maritime Continent and the eastern part of the Equatorial Pacific, one driving force of the Walker Circulation. The ensemble experiments with the AGCM, with and without time-varying external forcing, suggest that the enhancement of the SST gradient drove an anomalous atmospheric circulation, with an enhancement of both Walker and Hadley Circulation. Anomalously strong precipitation is simulated over the Indian Ocean and anomalously weak precipitation over the western Pacific, with corresponding changes in the surface wind pattern. Some sensitivity to the forcing SST, however, is noticed. The analysis of twentieth century integrations with global climate models driven with observed radiative forcing obtained from the Coupled Model Intercomparison Project (CMIP) database support the link between the SST gradient and Walker Circulation strength. Furthermore, control integrations with the CMIP models indicate the existence of strong internal variability on centennial timescales. The results suggest that a radiatively forced signal in the Walker Circulation during the twentieth century may have been too weak to be detectable.  相似文献   

16.
An ensemble of twenty four coupled ocean-atmosphere models has been compared with respect to their performance in the tropical Pacific. The coupled models span a large portion of the parameter space and differ in many respects. The intercomparison includes TOGA (Tropical Ocean Global Atmosphere)-type models consisting of high-resolution tropical ocean models and coarse-resolution global atmosphere models, coarse-resolution global coupled models, and a few global coupled models with high resolution in the equatorial region in their ocean components. The performance of the annual mean state, the seasonal cycle and the interannual variability are investigated. The primary quantity analysed is sea surface temperature (SST). Additionally, the evolution of interannual heat content variations in the tropical Pacific and the relationship between the interannual SST variations in the equatorial Pacific to fluctuations in the strength of the Indian summer monsoon are investigated. The results can be summarised as follows: almost all models (even those employing flux corrections) still have problems in simulating the SST climatology, although some improvements are found relative to earlier intercomparison studies. Only a few of the coupled models simulate the El Niño/Southern Oscillation (ENSO) in terms of gross equatorial SST anomalies realistically. In particular, many models overestimate the variability in the western equatorial Pacific and underestimate the SST variability in the east. The evolution of interannual heat content variations is similar to that observed in almost all models. Finally, the majority of the models show a strong connection between ENSO and the strength of the Indian summer monsoon.  相似文献   

17.
There is still considerable uncertainty concerning twentieth century trends in the Pacific Walker Circulation (PWC). In this paper, observational datasets, coupled (CMIP5) and uncoupled (AGCM) model simulations, and additional numerical sensitivity experiments are analyzed to investigate twentieth century changes in the PWC and their physical mechanisms. The PWC weakens over the century in the CMIP5 simulations, but strengthens in the AGCM simulations and also in the observational twentieth century reanalysis (20CR) dataset. It is argued that the weakening in the CMIP5 simulations is not a consequence of a reduced global convective mass flux expected from simple considerations of the global hydrological response to global warming, but is rather due to a weakening of the zonal equatorial Pacific sea surface temperature (SST) gradient. Further clarification is provided by additional uncoupled atmospheric general circulation model simulations in which the ENSO-unrelated and ENSO-related portions of the observed SST changes are prescribed as lower boundary conditions. Both sets of SST forcing fields have a global warming trend, and both sets of simulations produce a weakening of the global convective mass flux. However, consistent with the strong role of the zonal SST gradient, the PWC strengthens in the simulations with the ENSO-unrelated SST forcing, which has a strengthening zonal SST gradient, despite the weakening of the global convective mass flux. Overall, our results suggest that the PWC strengthened during twentieth century global warming, but also that this strengthening was partly masked by a weakening trend associated with ENSO-related PWC variability.  相似文献   

18.
Global warming and accompanying climate change may be caused by an increase in atmospheric greenhouse gasses generated by anthropogenic activities. In order to supply such a mechanism of global warming with a quantitative underpinning, we need to understand the multifaceted roles of the Earth's energy balance and material cycles. In this study, we propose a new one-dimensional simple Earth system model. The model consists of carbon and energy balance submodels with a north–south zonal structure. The two submodels are coupled by interactive feedback processes such as CO2 fertilization of net primary production (NPP) and temperature dependencies of NPP, soil respiration, and ocean surface chemistry. The most important characteristics of the model are not only that the model requires a relatively short calculation time for carbon and energy simulation compared with a General Circulation Model (GCM) and an Earth system Model of Intermediate Complexity (EMIC), but also that the model can simulate average latitudinal variations. In order to analyze the response of the Earth system due to increasing greenhouse gasses, several simulations were conducted in one dimension from the years 1750 to 2000. Evaluating terrestrial and oceanic carbon uptake output of the model in the meridional direction through comparison with observations and satellite data, we analyzed the time variation patterns of air temperature in low- and middle-latitude belts. The model successfully reproduced the temporal variation in each latitude belt and the latitudinal distribution pattern of carbon uptake. Therefore, this model could more accurately demonstrate a difference in the latitudinal response of air temperature than existing models. As a result of the model evaluations, we concluded that this new one-dimensional simple Earth system model is a good tool for conducting global warming simulations. From future projections using various emission scenarios, we showed that the spatial distribution of terrestrial carbon uptake may vary greatly, not only among models used for climate change simulations, but also amongst emission scenarios.  相似文献   

19.
Future projections of the Indian summer monsoon rainfall (ISMR) and its large-scale thermodynamic driver are studied by using CMIP5 model outputs. While all models project an increasing precipitation in the future warming scenario, most of them project a weakening large-scale thermodynamic driver arising from a weakening of the upper tropospheric temperature (UTT) gradient over south Asian summer monsoon region. The weakening of the UTT gradient under global warming scenarios is related to the increase in sea surface temperature (SST) over the equatorial Indian Ocean (EIO) leading to a stronger increase of UTT over the EIO region relative to the northern Indian region, a hypothesis supported by a series of Atmospheric General Circulation Model (AGCM) experiments forced by projected SSTs. To diagnose the inconsistency between the model projections of precipitation and the large-scale thermodynamic driver, we have examined the rate of total precipitation explained by convective and stratiform precipitations in observations and in CMIP5 models. It is found that most models produce too much (little) convective (stratiform) precipitation compared to observations. In addition, we also find stronger precipitable water—precipitation relationship in most CMIP5 models as compared to observations. Hence, the atmospheric moisture content produced by the model immediately gets converted to precipitation even though the large-scale thermodynamics in models weaken. Therefore, under global warming scenarios, due to increased temperature and resultant increased atmospheric moisture supply, these models tend to produce unrealistic local convective precipitation often not in tune with other large-scale variables. Our results questions the reliability of the ISMR projections in CMIP5 models and highlight the need to improve the convective parameterization schemes in coupled models for the reliable projections of the ISMR.  相似文献   

20.
Climate drift in preindustrial control (PICTL) simulations can lead to spurious climate trends and large uncertainties in historical and future climate simulations in coupled models. This study examined the long-term behaviors and stabilities of the PICTL simulations in the two versions of FGOALS2 (the Flexible Global Ocean-Atmosphere-Land System model Version 2), which have been submitted to the Coupled Model Inter-comparison Project Phase 5 (CMIP5). As verified by examining time series of thermal fields and their linear trends, the PICTL simulations showed stable long-term integration behaviors and no obvious climate drift [the magnitudes of linear trends of SST were both less than 0.04oC (100 yr)-1] over multiple centuries. The changed SSTs in a century (that corresponded to the linear trends) were less than the standard deviations of annual mean values, which implied the internal variability was not affected. These trend values were less than 10% of those of global averaged SST from observations and historical runs during the periods of slow and rapid warming. Such stable long-term integration behaviors reduced the uncertainty of the estimation of global warming rates in the historical and future climate projections in the two versions of FGOALS2. Compared with the trends in the Northern Hemisphere, larger trends existed in the SST and sea ice extents at the middle to high latitudes of the Southern Hemisphere (SH). To estimate the historical and future climate trends in the SH or at some specific regions in FGOALS2, corrections needed to be carried out. The similar long-term behaviors in the two versions of FGOALS2 may be attributed to proper physical processes in the ocean model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号